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METRIC CONVERSION CHART 

 

 

SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS

Symbol When You Know Multiply By To Find Symbol 

LENGTH 
in inches 25.4 millimeters mm 

ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 

AREA 
in

2
square inches 645.2 square millimeters mm

2

ft
2 

square feet 0.093 square meters m
2

yd
2 

square yard 0.836 square meters m
2

ac acres 0.405 hectares ha 
mi

2
square miles 2.59 square kilometers km

2

VOLUME 
fl oz fluid ounces 29.57 milliliters mL 
gal gallons 3.785 liters L 
ft

3 
cubic feet 0.028 cubic meters m

3 

yd
3 

cubic yards 0.765 cubic meters m
3 

NOTE: volumes greater than 1000 L shall be shown in m
3

MASS 
oz ounces 28.35 grams g

lb pounds 0.454 kilograms kg
T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") 

TEMPERATURE (exact degrees) 
o
F Fahrenheit 5 (F-32)/9 Celsius 

o
C 

or (F-32)/1.8 

ILLUMINATION 
fc foot-candles 10.76 lux lx 

fl foot-Lamberts 3.426 candela/m
2 

cd/m
2

FORCE and PRESSURE or STRESS 
lbf poundforce   4.45    newtons N 
lbf/in

2
poundforce per square inch 6.89 kilopascals kPa 

APPROXIMATE CONVERSIONS FROM SI UNITS 

Symbol When You Know Multiply By To Find Symbol 

LENGTH
mm millimeters 0.039 inches in 
m meters 3.28 feet ft 

m meters 1.09 yards yd 

km kilometers 0.621 miles mi 

AREA 
mm

2
 square millimeters 0.0016 square inches in

2 

m
2
 square meters 10.764 square feet ft

2 

m
2
 square meters 1.195 square yards yd

2 

ha hectares 2.47 acres ac 
km

2 
square kilometers 0.386 square miles mi

2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 

L liters 0.264 gallons gal 

m
3 

cubic meters 35.314 cubic feet ft
3 

m
3 

cubic meters 1.307 cubic yards yd
3 

MASS 
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb

Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

TEMPERATURE (exact degrees) 
o
C Celsius 1.8C+32 Fahrenheit 

o
F 

ILLUMINATION 
lx  lux 0.0929 foot-candles fc 

cd/m
2

candela/m
2

0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS 
N newtons 0.225 poundforce lbf 

kPa kilopascals 0.145 poundforce per square inch lbf/in
2

*SI is the symbol for th  International System of Units.  Appropriate rounding should be made to comply with Section 4 of ASTM E380.  e

(Revised March 2003) 
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EXECUTIVE SUMMARY 

This research project was conducted with the objective of evaluating the viability of 
using an automated computer application to detect, classify, and quantify cracks on 
flexible and rigid pavement surfaces from digital images, to be implemented in the 
annual Pavement Condition Survey (PCS). Phase I of this project was focused on 
identification and quantification of the rigid pavement cracks from two-dimensional (2D) 
images collected using the FDOT data collection vehicle. The developed FDOT Rigid 
Pavement Distress Application (FRPDA) was able to detect joints and assign slabs, 
detect, classify, and quantify longitudinal, transverse, and corner cracks with higher 
accuracy, repeatability, and efficiency compared to the current manual windshield 
method of the PCS. Phase II of this project was focused on identification and 
quantification of the flexible pavement cracks from three-dimensional (3D) images 
collected using the Fugro data collection vehicle. The developed FDOT Flexible 
Pavement Distress Application (FFPDA) was able to detect, classify, and quantify all 
crack types with higher accuracy, repeatability, and efficiency compared to the current 
manual windshield method of the PCS. It is recommended that the automated FRPDA 
and FFPDA be used on a longer length of highway pavements along with a semi-
automated survey to conduct quality control of the results and to identify and quantify 
non-cracking distress types for the PCS. 
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INTRODUCTION 

This research project was conducted with the objective of evaluating the viability of 
using an automated computer application to detect, classify, and quantify cracks on 
flexible and rigid pavement surfaces from digital images, to be implemented in the 
annual Pavement Condition Survey (PCS). Phase I of this project was focused on 
identification and quantification of the rigid pavement cracks from two-dimensional (2D) 
images collected using the FDOT data collection vehicle. The developed FDOT Rigid 
Pavement Distress Application (FRPDA) was able to detect joints and assign slabs, 
detect, classify, and quantify longitudinal, transverse, and corner cracks with higher 
accuracy, repeatability, and efficiency compared to the current manual windshield 
method of the PCS. Phase II of this project was focused on identification and 
quantification of the flexible pavement cracks from three-dimensional (3D) images 
collected using the Fugro data collection vehicle. The developed FDOT Flexible 
Pavement Distress Application (FFPDA) was able to detect, classify, and quantify all 
crack types with higher accuracy, repeatability, and efficiency compared to the current 
manual windshield method of the PCS. It is recommended that the automated FRPDA 
and FFPDA be used on a longer length of highway pavements along with a semi-
automated survey to conduct quality control of the results and to identify and quantify 
non-cracking distress types for the PCS. 

This Final Report is organized as follows: 

• Chapter 1: Task 1. Technology State of the Practice Assessment 

• Chapter 2: Task 2. Rigid Pavement Application Design 

• Chapter 3: Task 3. Rigid Pavement Application Development and Validation 

• Chapter 4: Task 4. LRIS Feasibility on Flexible Pavements 

• Chapter 5: Task 5. Flexible Pavement Application Design 

• Chapter 6: Task 6. Flexible Pavement Application Development and Validation 

• Chapter 7: Task 7. Automated Application Implementation 

• Chapter 8: Task 8. Technology Needs and Gaps Assessment 
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CHAPTER 1 – TECHNOLOGY STATE OF THE PRACTICE 
ASSESSMENT 

Pavement evaluation can be a complex process. Many agencies have developed 
procedures that they follow for conducting such evaluations. Where “manual” or human 
raters were (or are still) involved, it was (is) fairly common to have an annual training 
and “calibration” to provide relatively consistent results, but there is limited data 
available on how much variability may actually exist within these existing procedures. 

As technology advances and traffic concerns continue to test the limits of safety, 
automation continues to be evaluated as a potential substitute for existing procedures. 
As is to be expected, questions arise regarding the “acceptability” of such automated 
data. Of course, this begs the question of what is “truly” acceptable. Each agency needs 
to establish a context-sensitive and systematic approach to evaluate the accuracy, 
precision, and efficiency of potential automated distress identification systems for 
network and project level data collection objectives. 

To conduct such an evaluation in a systematic fashion, it is first reasonable to conduct a 
review of the literature on automated technology for aiding in pavement evaluation. In 
this process, the current literature review report documents the following: 

1. Evolution of automated data collection hardware technology and future trends in 
the industry 

2. Advancements in automated image analysis and processing for aiding in 
pavement evaluation, and future improvements 

3. Implementation considerations and initiatives, including: 

a. Metrics and analyses for conducting evaluations of accuracy and precision 

b. Methods for calibration and verification of the technology 

In subsequent tasks, the findings from this literature review will be applied to identify: 

1. How best to evaluate and compare the current procedures employed by Florida 
DOT to automated options. 
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2. Recommendations for getting the optimal results from the system currently 
available to the DOT. 

3. Finally, recommendations for future considerations in the development and/or 
application of technology to satisfy the needs of Florida DOT. 

Every effort has been made to be as thorough as possible in the conduct of this 
literature review, while keeping these stated objectives (of equal importance) in mind. 

1.1 Introduction to the Literature Review 

During Task 1, the research team reviewed the available literature on the state of the 
practice regarding technologies for automated crack data collection and analysis for 
rigid and flexible pavements. The corresponding literature can be divided into three 
segments; the first on automated distress data collection hardware and data 
management, the second on automated image analysis and processing, and the third 
on implementation considerations and initiatives. As displayed in Figure 1, the first two 
components comprise the system concept for image-based pavement surface distress 
surveys (McGhee 2004). 

The NCHRP Synthesis number 334 provided a summary of the state of the automated 
pavement distress data collection practice in 2004 and was a relevant document to start 
the literature review. In addition, the NCHRP Synthesis number 401 reviewed the 
quality management practices being employed by public road and highway agencies for 
automated, semi-automated, and manual pavement condition data collection (Flintsch 
and McGhee 2009). 

Figure 1. The system concept for automated pavement data collection (McGhee 2004) 
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Task 1a – state of the practice regarding automated crack data collection: The existing 
and emerging technologies for collecting pavement surface distress images were 
reviewed. The current practice by various State Highway Agencies (SHA) and other 
roadway authorities within the United States and across the world were examined. This 
examination included investigation of the following parameters: 

• Imaging Technology Hardware and Capabilities (scan dimensions, speed, 
illumination, dynamic range, resolution, crack width, limitations, etc.) 

• Location Referencing Equipment 

• Image Sampling, Storage, and Compression Information 

• Advantages and Disadvantages to network-level condition surveys 

Task 1b – state of the art and practice regarding automated crack data analysis: The 
existing and promising emerging tools for cracking data processing and interpretation 
were investigated. While the state of the art is constantly advancing, the literature 
review in Task 1 focused on practical techniques that show promise for implementation. 
This investigation included but was not limited to the following aspects of data analysis: 

• Image Display Tools 

• Automatic Crack Type and Severity Identification 

• Crack/distress editing and review tools 

• Cracking Extent Measurement and Location Referencing 

• Accuracy, Precision, and Reliability 

• Crack Sampling and Reporting Interval 

• Advantages and Disadvantages to network-level condition surveys 
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To gain from the experiences of past work in this area, the research team reviewed and 
summarized previous efforts that have been conducted in this area. Several of these 
are included in the following example reference documents: 

• NCHRP Project 1-27: Video Image Processing for Evaluating Pavement Surface 
Distress (Fundakowski 1991). 

• Paredes’s PAS: Automated Distress Measuring Device (Lee 1991). 

• University of Texas at Austin Center for Transportation Research (CTR): 
Automated Pavement Cracking Rating System (Xu and Huang 2003). 

• NCHRP IDEA Project 88: Automated Pavement Distress Survey through 
Stereovision (Wang 2004). 

• NCHRP IDEA Project 111: Automated Real-Time Pavement Crack Detection and 
Classification (Wang and Gong 2007). 

• Visual Retrieval of Concrete Crack Properties for Automated Post-Earthquake 
Structural Safety Evaluation (Zhu et al. 2011). 

• Automatic Crack Detection and Classification Method for Subway Tunnel Safety 
Monitoring (Zhang et al. 2014). 

• Multiscale Crack Fundamental Element Model for Real-World Pavement Crack 
Classification (Tsai et al. 2014). 

• US DOT RITA: A Remote Sensing and GIS-Enabled Asset Management System 
(RS-GAMS), (Tsai and Wang 2014). 

In this task, the research team was looking for ideas, concepts and approaches to 
facilitate the codification of the proposed protocols. These findings were highlighted to 
aid in subsequent tasks of this project. Known deficiencies in current automated 
detection practices occur when the pavement is slightly damp, when the cracks are 
sealed, spalled, filled with salt or sand, where there is staining in fine cracks (this makes 
them evident in a forward image, but not necessarily in downward pavement views) or 
various types of crack sealant. 

5 



 

 

  
 

 
   

     
 

      
    

 
 

   
 

    
 

 
    

 
 

   

  

  

  

  

  
  

    

    
  

 

The current automation practices still focus on cracking related distresses and not on 
other common visual distresses such as bleeding, depressions, and patching. While 
cracking is the focus of this project, ravelling and patching among other distresses are 
also a concern and are captured in the current FDOT manual windshield surveys. 

This chapter is organized in five sections. Following this introduction, Section 1.2 
provides a summary of the information reviewed on automated distress data collection 
hardware and data management. Section 1.3 summarizes the findings on image 
applications, analysis and processing. Section 1.4 addresses implementation 
considerations. This is considered of particular importance, as the actual 
implementation into practice has tended to present the greatest challenges in the 
advancement of the automation process. Section 1.5 provides the summary and 
recommendations based on these reviews. 

1.2 Automated Distress Data Collection Hardware and Data 
Management 

This section discusses the state of the practice regarding automated distress data 
collection hardware for identification and documentation of pavement surface distresses 
and related information, as well as the associated management of this data. The 
following technologies are discussed: 

1. The right of way cameras used for forward roadway images 

2. Analog vs. digital pavement imaging 

3. Area scan 

4. Laser imaging 

5. 3D imaging 

6. Other technologies such as LiDAR, satellites, airplanes, unmanned aerial 
vehicles, and photogrammetry 

1.2.1 Right of Way (ROW) Cameras 

One of the earliest methods of obtaining pavement images was simply to use a right of 
way camera and focus it down towards the pavement surface. This method was utilized 
throughout the 1980’s when video cassette tapes were the main storage source for 
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video. The technology has advanced with time and is still used in some areas of the 
world with high resolution digital camera systems (PMS 2015). The advantage to this 
method is that it is cost effective and requires standard configurations of hardware, 
power, and computing power that are commercially available. The disadvantages are 
that it is susceptible to shadows and the image is on an angle, so some cracking will be 
difficult to see. The other significant disadvantage is that it does not facilitate automated 
processing of the images and requires manual identification of distresses. This method 
is still utilized today mainly as a method of collecting highway asset imagery due to it 
being very cost effective and the high amount of detail that can be captured with the 
new high-resolution cameras. 

1.2.2 Analog versus Digital Pavement Imaging 

The move from analog to digital imaging was a big advancement in the video log 
industry.  Digital images retained all the benefits of analog video but also provided a 
number of key advantages: 

• Centralized storage of images – images can all be stored on a central server that 
everyone can access so there is no longer the need to hunt down the correct 
video tape. 

• Increased access speed – analog video required you to find the video tape then 
fast forward to the correct spot using a VCR. With digital images users can 
access them from their own computers and jump right to the image(s) needed. 

• Distribution – Digital images can be easily e-mailed or copied and sent to others 
(Fugro Roadware 2004). 

• Quality – Digital image technologies have greatly improved the resolution and 
quality of images beyond the storage capacity of video cassettes. 

As technology advances so do the advantages of using digital images. The cameras 
become faster, able to capture images more frequently, and with better quality than 
analog video. The evolution of digital technology in the pavement evaluation industry 
was largely a result of significant advancements in existing camera technologies and 
data storage capacity. 

1.2.3 Area Scan 

Pavement imagery using area scan technology consists of high-resolution cameras 
extending from the back of the vehicle. They point straight down at the pavement and 
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each takes an image of the pavement surface that is flat and consistent for 
measurement. Early on in development, the images were recorded and displayed side 
by side on the office workstation. As technology advanced, area scan cameras created 
digital images usually in Joint Photographic Experts Group (JPEG) format that could be 
stitched together to create continuous pavement images. 

Advantages to area scan systems are that they are cost effective and as technology 
improves better quality cameras can be used to increase resolution and image quality. 
The image resolution and quality depend both on the quality of the used cameras and 
the lighting system. 

The disadvantage to an area scan system is that it requires a light source to reduce 
shadows for trees, buildings or overpasses significantly increasing the power output 
required by the vehicle. This additional lighting is often a large draw of electrical power 
for the data collection vehicles requiring additional generators or power generation. 

These 2D images were designed to be used for both automated and semi-automated 
pavement distress identification and were easily calibrated to measure within the 
images to quantify crack lengths, areas, and widths. The range in quality of the cameras 
can show a range of surface textures, but coarse-grained pavement textures can 
sometimes make it difficult to identify smaller width cracks and other defects between 
large aggregates. Also, area scan images are very susceptible to other optical 
challenges in the field such as unusual lighting conditions, damp pavement, and crack 
spalling. These issues can cause the images to show irregularities along the crack that 
make the width of the cracks difficult to accurately measure. This has also impacted 
visual surveys where a slight dampness can cause distress to appear more severe than 
it actually is. 

Figure 2 shows an older version of Fugro Roadware’s Automatic Road Analyzer 
(ARAN) vehicles equipped with an area scan system. 
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Figure 2. Fugro Roadware’s ARAN equipped with area scan system 

Continuous Lighting 

To properly view the pavement surface, lighting was found to be very important in 
capturing conditions, as there needs to be enough lighting to adequately illuminate the 
surface and still show shadows within the cracks. Constant lighting was an older 
technology used to illuminate the pavement for imaging. As an example, the early 
FDOT line scan system utilized ten 150-watt lamps to illuminate the pavement surface 
for the camera (Gunaratne et al. 2003). The drawback to this method was that the 
illumination was not as bright as the strobe system and it used considerably more 
power. Figure 3 shows an example van with constant lighting equipment. 

Figure 3. Road survey vehicle equipped with constant lighting 
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Strobe Lights 

An effective light source for area scan cameras is the use of strobe lighting. These lights 
are synched with the camera to fire a high intensity light as the image is captured. Since 
these lights are strobes they can be a lot brighter than standard lights and consume less 
power. This allows collection of pavement images at any time of the day from bright 
sunlight to nighttime collection. Figure 4 shows a Fugro BRE Automated Distress 
Vehicle (ADV) with strobe lights, and a sample of the pavement surface images 
captured with that system. 

Figure 4. Fugro BRE Automated Distress Vehicle (ADV) 

1.2.4 Line Scan 

Non-Laser Line Scan 

Early line-scan cameras capture single lines which are then compiled to form a 2-D 
image. One of the advantages the line scan camera has over area scan is that many of 
the production systems were higher resolution images, up to 6,000 pixels per line 
(Gunaratne et al. 2003). The main disadvantage to line-scan cameras is that they 
require a higher light intensity than area scan. Shadows on the road can be picked up 
by the system and mistaken for distress if the lighting is not sufficient. Many of these 
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systems had long dark streaks from shadows of mounted equipment that caused 
complications during crack identification. Figure 5 shows an example non-laser line-
scan camera image with the shadows cast on the pavement surface (McGhee 2004). 

Figure 5. Example Line-Scan Pavement Image with Vehicle-Cast Shadow in Left Wheel Path 
(McGhee 2004) 

Laser Road Imaging System (LRIS) 

Introduced in 2006 by the INO (Institut National d’Optique) of Quebec in Canada, Laser 
Road Imaging System (LRIS) is composed of two high resolution line-scan cameras and 
two illuminating lasers that are configured to capture images of full 4m transverse road 
sections with up to 1mm x 1mm resolution (4096 pixels/line) at speeds that can surpass 
62 mph (INO 2014). This system uses two illuminating laser beams that are angled 
transversely onto the road and then two cameras that pick up this laser line. Because 
the lasers are angled, they create shadows within the cracking area and therefore the 
cracks become more visible in the images. Figure 6 shows a schematic of the LRIS on 
an inspection van. Based on the LRIS sensors produced by INO, Pavemetrics provides 
the hardware and software libraries to the integrators and vendors who have the 
responsibility to develop their own software. INO recommends JPEG or JPEG 2000 to 
be used for data compression (Wang and Smadi 2011). 



 

 

 

   

    
 

 

 
 

   

  
  

  
  

  
  

Figure 6. LRIS system on inspection vehicle 

The main advantage of the LRIS system over other camera-based systems is that it is 
not dependent on light as it can collect through shadows or at night with the same 
quality of image due to the intensity of the lasers. Another advantage to this system is 
that because it uses laser illumination it consumes less power, about 200 watts versus 
thousands of watts of traditional lighting systems (Wang and Smadi 2011). The LRIS is 
also more compact than the area scan systems. The high resolution and consistency of 
this equipment caused the LRIS to be a widely used system globally. 

A disadvantage to the LRIS system is that because it creates images line by line any 
dirt or dust on the camera lens can create streaks in the image. These streaks result in 
black lines appearing in the images and can cause difficulty with automated crack 
detection software that uses the light and dark contrast to identify cracks. Figure 7 
shows an example LRIS pavement image showing dark streaks that cannot be seen on 
the ROW image. 
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Figure 7. Example LRIS pavement image (right) showing dark streaks that cannot be seen on the 
ROW image (left) 

1.2.5 3D Pavement Imaging Systems 

3D pavement systems use synchronized scanning lasers that are projected onto the 
pavement surface which are then captured by one or more cameras. The lasers can 
also measure the distance to the surface to give the image a depth. This is where the 
advantage to these systems lie, the depth measurement makes crack detection much 
easier than 2D pavement systems where pavement texture and lighting can make fine 
cracks hard to distinguish. Another advantage to 3D systems is that they are less 
sensitive to the problems of identifying cracking on damp pavements. On 2D systems 
dampness causes a lot of false positives and increased width results as the cracks are 
highlighted and have a wider dark range on the surface than they actually are to both 
the naked eye and imaging technology. 

3D pavement systems are quickly becoming the most popular method of collecting 
pavement data due to the additional information available, high resolution images, and 
repeatable results. Many large road agencies have already or are currently transitioning 
to the use of a 3D laser pavement system and it looks like this trend will continue. 

Laser Crack Measurement System (LCMS) 

The most commonly used 3D imaging technology globally is the Laser Crack 
Measurement System (LCMS) developed by INO and provided by Pavemetrics 
Systems Inc. The LCMS consists of two high-speed cameras, custom optics and laser 



 

 

   
     

    
     

  
   

    
   

   
 

 
 

 

     

 

line projectors to acquire both the intensity of reflected light and depth ranging 
information of infrastructure surfaces at speeds up to 62 mph (Habel et al. 2014). The 
LCMS system has a resolution of up to 4,096 points and captures 5,600 profiles per 
second for a transverse spacing between profiles of 5 mm (0.2 in) at 62 mph (Fugro 
Roadware 2012). The two lasers are projected onto the surface to be inspected and its 
image is captured by a camera system on a different angle (Figure 8). This allows the 
sensors to simultaneously triangulate both the 3D “Range” (height of each pixel) and the 
reflected light “Intensity” (the intensity of the reflected laser light for each pixel) of the 
scanned surfaces (Figure 9). This data is recorded in a proprietary and licensed file 
format known as a FIS file. Through post processing of these FIS files, automatic 
distress detection can be completed along with creation of the orthogonal images for 
viewing. 

Figure 8. LCMS sensors mounted on a survey vehicle 
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(a) (b) (c) 

Figure 9. LCMS image types; (a) range, (b) intensity, (c) merged 3D 

The LCMS is often used by data collection device integrators and vendors including: 
APSA (Administracion de Pimientos Sociedad Anomia), Australian Road Research 
Board (ARRB), Dynatec, enterInfo, EuroConsult, Fugro Roadware, International 
Cybernetics Corporation (ICC), Mandi Communications, Rambolt, Ronda’s, and Vectra. 
The LCMS is the most widely used pavement imaging technology for new vehicles in 
2015. 

Others in Development 

Waylon Systems has developed the PaveVision3D which is a multi-camera system for 
1mm resolution in all dimensions of pavement surface 3D imaging. This system utilizes 
up to 4 cameras on each side of the lane to collect the surface information on higher 
frequencies. Data stitching algorithms are used to assemble the measurements on each 
side of the lane and then both sides are stitched together into a single file with 1mm x 
1mm resolution for both the intensity and range data (Wang 2011). The disadvantage to 
this system is that it can only get a true 1mm resolution at low speeds of around 15 
mph. Another disadvantage is that it’s much harder to synch multiple cameras with 
movement of the vehicle that often occur while testing at higher speeds during network 
level collection. 

Waylink Systems has also been experimenting with other frequency lasers to improve 
the accuracy of the measurements with high frequency, short wavelengths of light. 
There are distinct advantages to the measurements with other frequencies. However, 
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the increased power also changes the health and safety class of these lasers, which 
may have challenges with testing on open roads. 

1.2.6 Other Technologies 

LiDAR 

Light Detection And Ranging (LiDAR) is a laser-based technology that measures 
distance by lighting a target with a laser beam and analyzing the reflected light. LiDAR 
is very useful for surveying applications like digital terrain modeling from airplanes or 
road geometry and assets inventory for transportation agencies. The biggest drawback 
for the use of current LiDAR systems for pavement imagery is the resolution and 
frequency of collection on current models. Currently LiDAR can get an accuracy of up to 
10mm, but this would be insufficient to accurately measure pavement cracks. Many of 
these systems focus only on the distance measurement information in the image, which 
provides no information regarding changes in pavement surface color. The color 
intensity information is needed for detecting construction changes, repairs, and patching 
along the pavement surface. 

Figure 10. A LiDAR survey of a highway (left), and a LiDAR antenna (right) 

Satellite 

Satellites can cover large areas very quickly but are limited by revisit times, atmospheric 
interferences, and spatial resolution (Schnebele et al. 2015). In the future if satellite 
imagery was able to improve on the resolution, they would still be affected by things like 
lighting and line of sight caused by overpasses, traffic, and trees. 

Air Based Surveys 

Air based surveys (both fixed wing and rotary wing) can get better resolutions than 
satellites due to the reduced elevations and can be fitted with various sensors and 
recording devices (Schnebele et al. 2015). Currently airplanes and helicopters are used 
for various remote sensing applications but when it comes to pavement imagery there 
are limitations. Due to the speed that airplanes travel it would be hard to achieve the 
required resolution to create usable pavement images due to motion blur.  Aircraft are 
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also susceptible to wind shear and turbulence that would make getting constant imagery 
difficult and like satellites they would be subject to line of sight and lighting concerns. 
Operating aircraft is also expensive and requires properly trained personnel to operate. 
Airspace restrictions also are another concern as many network surveys are conducted 
around urban areas that could have security concerns and reduced visibility due to 
structures. Figure 11 shows Fugro’s FLI-MAP 400 system, which provides high 
accuracy topographic and surveying data by integrating state of the art surveying 
techniques, such as LiDAR and high-resolution photo and video imagery. 

Figure 11. Fugro’s FLI-MAP400 (Fast Laser Imaging - Mapping and Profiling) system 

Unmanned Aerial Vehicle 

Unmanned Aerial Vehicles (UAV) or Drones are a less expensive alternative to 
airplanes or satellites and can provide high resolution, near real-time imagery 
(Schnebele et al. 2015). An UAV has a few advantages over other aircraft with respect 
to collecting pavement images. UAV’s are cheaper, can fly at lower altitudes and are 
quicker to deploy than most manned aircraft. With changing government regulations, 
these will also not have all the airspace restrictions that the larger aircraft would have 
and are much more maneuverable although more susceptible to wind shear. UAV’s can 
currently be effective for collecting data on gravel roads where high-resolution distress 
imagery is not required. Limitations include objects blocking road surfaces like traffic, 
bridges, trees, and buildings. As with the other airborne methods lighting is an issue 
where shadows from trees, vehicles, and power lines can affect the quality of imagery. 

Aircraft options for pavement imagery have possibilities but currently have not been 
explored thoroughly. Current technology for vehicle surveys has limitations when 
applied to aerial platforms such as distance, location accuracy and collection path. 
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Photogrammetry 

Photogrammetry is a stereo vision technique that involves taking multiple images of the 
same object from multiple angles and using these images to generate a 3D image of the 
object. Initial investigations show significant potential for 3D distress detection and 
modelling with higher spatial precision and a higher level of automation than laser-
based 3D profilers (Ahmed and Haas 2010). This system could also be easily upgraded 
over time as new technologies and higher resolution cameras become available. The 
main drawback to this method is the need for real time processing which can be limited 
by computing power and image blurring due to camera motion. However, as technology 
improves, these drawbacks will have less of an impact. 

1.2.7 Image Capturing Specifications and their Effects on Crack Identification 

The image quality plays a crucial role in gathering the most accurate and 
comprehensive data on distress from pavement images collected using the area scan 
technology. The ideal pavement image is crisp with no motion blur, evenly and well lit, 
and of high enough resolution to view details. The quality of digital image can be 
affected by the illumination, dynamic range, shutter speed, resolution, optic quality, size 
of pixels and the image sensor capabilities. 

To capture high quality pavement images, illumination or brightness is an important 
element, which is proportionally dependent on the wavelength and the surface 
reflectance (Sokolic 2004). Image brightness is also dependent on the exposure time 
controlled by the shutter speed and aperture, and the sensitivity of the image sensor. 
Brightness resolution refers to the number of brightness levels that can be recorded in 
any given pixel. In an 8-bit grayscale black and white image, each pixel is black, white 
or one of 254 shades of gray (total 256 levels). 

Dynamic range defines the ability of an imaging device to record or display the full 
range of optical density. Theoretically, higher dynamic range can detect greater image 
detail in dark shadow areas of photographic images (Wang and Smadi 2011). Dynamic 
range for pavement images is normally 8, 10 or 12 bits. Currently 24-bit color images 
are used only in right-of-way color images for asset management applications. 

The shutter speed of an area scan camera is measured in two ways; number of images 
captured per unit time, and absolute time the camera shutter is open for one image 
collection. As the shutter speed increases, more images can be taken within a given 
timeframe, which translates to a higher operating speed with less blur. But as the 
shutter speed increases, there must be an adjustment since the exposure time is 
decreased. This means that for the image to be properly lit there must be an adjustment 
to either aperture or International Standards Organization’s (ISO) sensitivity rating – the 
sensitivity of the image sensor to light. If the exposure is not adjusted, the cracks may 
not be well detected due to poor lighting conditions. Area scan systems typically take 
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one pavement image every 2 to 3 feet. Typically, ROW images are taken once every 
26.4 feet, and travelling at 60 mph, a shutter speed of 3 or 4 fps is sufficient for this 
purpose (Fugro Roadware 2004). 

One of the image quality indicators is the degree of resolution in terms of pixels per 
area. In general, the higher the number of pixels per area, the more likely it is that 
pavement surface details are picked up. It is important that the other aspects of image 
quality (e.g. optimum illumination) are also satisfied to ensure that the data reflected in 
the pixels are accurate. 

For example, a line scan camera with a resolution of 4096 pixels/profile ensures areas 
as small as 1 mm can be detected. Typically, it is expected that two pixels are required 
to identify patterns such as cracks. This indicates a 1mm resolution is capable of 
recognizing cracks with a width as small as 1mm and more reliably 2mm. Table 1 
shows the theoretical minimum visible crack widths corresponding to camera resolution 
using both line scan and area scan cameras. However, determining crack width from 
the images is subjective as representation of a crack in an image may include many 
levels of shades (Wang and Smadi 2011). 

Table 1. Image resolution and theoretical minimum visible crack width (Wang and Smadi 2011) 

Transverse Resolution (pixel) 1,300 2,048 4,096 

Visible Crack Width (mm) 3 2 1 

The specific technical details such as shutter speed, aperture, depth of field, lens 
quality, sensor type, dynamic range, focus range, and resolution varies with the model 
and build of the imaging system used, but an example of both an area-scan and line-
scan camera are listed in Table 2. 

Table 2. Example specs for line-scan and area-scan cameras 

Area Scan Camera Hitashi KP-F120 Line Scan Camera LRIS 

Shutter Speed (fps) 15, 30, 60, or 120 Line Rate (lps) 28,000 

Image Resolution 1392 x 1040 pixels Image Resolution 4096 pixels/line 

1.2.8 Image Quality Management 

Pavement surface imagery is typically collected in compliance with the American 
Association of State Highway and Transportation Officials (AASHTO) provisional 
protocol (PP) number 68 (AASHTO 2014a), which was later adopted as AASHTO 



 

 

   
 

  
   

 
    

   
  

    

   
    

 

 
    

   
  

 
 

 
   

  

  
     

  
 

  
    

  
  

   
 

    

Standard R86-18 (AASHTO 2018b). This standard calls for these requirements in terms 
of image quality: 

“4.3.1. The images must provide sufficient difference between data point values 
representing distressed and non-distressed areas that subsequent distress detection 
techniques can delineate a minimum of 33 percent of all cracks under 3 mm (0.12 in.), 
60 percent of all cracks present from 3 mm (0.12 in.) and under 5 mm (0.2 in.) wide, and 
85 percent of all cracks 5 mm (0.2 in.) wide or wider regardless of orientation or type. 
The determination of this capability will be made utilizing a minimum of ten 0.03-km 
(100-ft) samples containing an average of at least five such cracks per sample. 

4.3.2. The images should be sufficiently void of erroneous differences between data 
point values that a section of pavement without distress, discontinuities, or pavement 
markings contains less than 3 m (10 ft) total length of detected false cracking in 50 m2 
(540 ft2) of pavement. The determination of this capability will be made utilizing a 
minimum of ten 0.03-km (100-ft) samples of various types that meet the criteria.” 

There are no other standards that would recommend more comprehensive 
requirements for quality management measures taken for pavement images for crack 
identification. This is an important topic that has received little attention. There are two 
ways to filter through the collected images, automated or manual. One example of an 
image QA procedure is to run the collected images through software designed to review 
the range of values recorded in images. These pixel values will indicate if the images 
are too bright or dark to be helpful. Other information can also be verified such as 
metadata and camera settings stored within files. Automated checks do not reliably 
evaluate image quality, focus, or ability to identify features. 

The following two documents are the predominant source of information regarding the 
state of practice in quality management of pavement data collection. While they address 
some aspects of pavement images, they do not provide specific guidelines to ensure 
pavement image quality. 

• NCHRP Synthesis 401, Quality Management of Pavement Condition Data 
Collection (Flintsch & McGhee, 2009) 

• FHWA Practical Guide for Quality Management of Pavement Condition Data 
Collection (Pierce et al. 2013) 

Recognizing the need for a unifying image format that can facilitate data analysis, 
reporting, sharing, and evaluation, the Federal Highway Administration has recently 
issued a request for quote on Standard Data Format for 2D/3D Pavement Image Data. 
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Expected benefits include facilitating workable protocols for condition surveys, 
improving implementation of new technologies, and accelerating the development 
potential of analysis tools for pavement condition. 

1.2.9 Image Storage, Compression, and Database Management 

The collected pavement images are a valuable resource due to the large amounts of 
data they provide, but they come with large file sizes. This raises issues with the image 
storage, compression, and database management. While collecting the data, there must 
be enough memory to store at least one run’s worth of data on-board the vehicle. An 
example of the vehicle memory capacities of the on-board system is a computer for 
each camera system with removable hard drives with sizes proportional to the length of 
road to be tested and the resolution of the images. The estimated storage required is 
1.3 GB per lane-mile for the pavement image data and 76 MB per lane-mile for high 
definition ROW images. Some imaging technologies are proprietary and require 
software license information to review contained data. 

The images are often compressed to optimize the amount of data available and the 
storage requirements. Different file types have different balance of files size reduction 
and potential reduction in data quality. Traditionally, the imaging data was often saved 
as a JPEG file with around 75% compression at the end of the run before being sent to 
the workstation, but later a compression format called JPEG 2000 was found to 
compress the image from around 1.4 MB to 400 KB, with comparable image quality 
(Gunaratne et al. 2003; McGhee 2004). 

To obtain greater compression ratio, the JPEG algorithm used in pavement imaging is 
lossy, which means some information is lost during the compression process and 
original raw image cannot be restored (Wang and Smadi 2011). Database tables are 
commonly used to store the location data, sensor data, image location and other 
relevant details regarding the field operation. Custom software can be made for easy 
and rapid access to the compressed images through the computer networks. 
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1.2.10 Location Referencing 

The collected road data must be provided with location context, and there are a couple 
of systems that can be used in conjunction or isolation. The three most commonly used 
types are Global Positioning System (GPS), inertial aided GPS systems, and linear 
referencing systems. The advantages and limitations of each system are summarized in 
Table 3. 

Table 3. Advantages and limitations of location referencing systems 

System GPS Inertial Linear Distance 

Description 

Uses satellites and 
triangulation for 
location and time 
information 

Uses GPS, 
accelerometers and 
gyroscopes to calculate 
data on acceleration, 
angular rotation, vehicle 
orientation, grade, and 
road curvature 

Measures linear 
distance and velocity 
travelled by the 
vehicle 

Advantages Detailed information 
Highly accurate even with 
vehicle motion 

Simple; reliable; not 
affected by speed 

Limitations 
Clock errors; delays 
or occasional data 
loss; noise and bias 

Still requires GPS for start 
and end position; errors 
can accumulate between 
high quality GPS 
positions. 

Limited data; requires 
external reference for 
start and end position; 
systematic error grows 
with distance traveled 

Best Uses 

In open locations, 
travelling at low 
speeds, good 
weather, and 
minimum of 4 visible 
satellites 

For short-term 
observations 

Used in conjunction 
with another system to 
provide more context 

The GPS uses triangulation and satellite information to provide location and time 
information most commonly in terms of latitude, longitude and elevation. This system 
provides a high level of detail and information. But there are limitations such as loss of 
signal and reduced accuracy (Gunaratne et al. 2003). 

The inertial measurement unit (IMU) is a self-contained unit (working in tandem with a 
GPS system), which measures relative displacement from a start point based on three 
accelerometers (one for each of the primary axes), and three gyroscopes. The 
combination of these six units measure acceleration in all directions to determine 
change in position, as well as angular rotations, vehicle orientation, grade and road 
curvature. The benefit for using this system while it is coupled with the GPS results is 
that it is self-contained and is highly accurate even with vehicle motion. This improves 
the accuracy of GPS and helps to fill in some gaps in satellite coverage. The addition of 

22 



 

 

  
 

   

 
   

  
   

  
 

     
     

  
  

   

 
  

  
   

  

     

  
   

      
     

  
  

 
   

 

    

   
     

   
    

   

vehicle role, pitch, and yaw to vehicle position allows for the measurement of other 
factors such as pavement cross-slope, longitudinal grade, and measurements within 
ROW images (Gunaratne et al. 2003). 

A linear DMI system is one which measures the linear distance that the vehicle has 
travelled. This particular system is simple, reliable, but like the inertial system, needs an 
external reference start position. As the system only provides linear measurements, it 
does not provide detailed enough information when used in isolation. There are two 
broad methods to measuring linear distance: contact and non-contact. Contact DMI’s 
require frequent calibration but offer an increased accuracy compared to non-contact 
DMI’s. 

Most vehicles collecting pavement data are equipped with a combination of the above 
systems to mitigate the drawbacks to each and provide reliable location data for every 
point along the run. For example, the ProGPS-DMI system integrated by Ames 
Engineering uses GPS and a linear distance measuring instrument (DMI) to achieve a 
reported location measurement accuracy of 0.05%. 

In summary of this section, it should be noted that significant advancements in 
automated distress data collection hardware have occurred over the past decade. It 
should be expected that similar advancements will likely be experienced in the decade 
ahead. With this in mind, implementation efforts should be modular and flexible in 
nature to take advantage of the technology evolution. 

1.3 Automated Image Analysis and Processing 

This section discusses the results of the literature review regarding the state of the art 
and practice of automated crack detection software. Knowing pavement conditions and 
symptoms of the deterioration type is critical to maintaining road networks in a safe and 
cost-effective manner, and to make informed decisions, there must be reliable data on 
which to make such evaluations. Traditional methods of obtaining data include manual 
and semi-automated surveys, which involve significant human intervention and have 
proven time-consuming given the extensive length of road networks. In response, there 
has been extensive research in automating the process to establish a more efficient and 
repeatable distress evaluation system. 

1.3.1 Basic Image Processing Concepts 

As it was discussed in Section 1.2 of this document, there are a variety of mediums 
which can be used to collect the pavement images such as lasers, 2D or 3D imaging 
systems. Once the data is collected, it is often pre-processed to be fit for use for manual 
or automated distress detection. The focus of the current project is mainly on cracking 
distresses. A cracking distress is a crevice or an opening on the pavement surface as a 
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result of stresses caused by traffic loading or environmental conditions. Each 
occurrence of cracking is described by its features. To collect crack features, such as 
length, orientation, and width, the potential cracks must be identified in calibrated 
images. Once the locations of cracks are identified, width, shape, and patterns are 
extracted. 

Due to the proprietary nature of most of the available software, the details of the crack 
detection algorithms are not published in the literature. Figure 12 illustrates an example 
of general steps for feature (crack) detection, quantification, and classification 
procedures, which are typically followed to conceptualize pavement crack detection 
algorithms. The steps illustrated in Figure 12 can be succinctly described as follows: 

(Step 1) Image Normalization: The first step of the process is to normalize the image 
depending on the road surface type. If this step is not performed, then automated crack 
detection would not be possible across many surface types since a heavily textured 
road (i.e. open graded) would output many false positive cracks. This is corrected by 
using a depth threshold parameter which is determined automatically using the local 
texture information of the road surface. For roadways with rougher surface texture, the 
depth threshold for crack detection should be higher to avoid classifying texture 
anomalies (e.g. raveling) as cracks. 

Appropriate transformations are applied to the input image to normalize the intensity 
response. This normalization is necessary to neutralize the effect of: 

1) Ambient lighting 

2) Artificial lighting 

3) Difference in sensor impulse response 

4) White balance of images 

There are several transformations that may be employed for this purpose, and the 
selection of a suitable one depends on the image configuration. A few of the common 
transformations are: 

a) Histogram equalization 

b) Histogram matching 
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c)  Color  transforms  

d)  Shadow identification  and removal  

e)  Gamma correction  

Figure 12. General example procedure for crack detection, quantification, and classification 

(Step 2) Pre-Filtering: The pavement surface image is divided into smaller regions and 
each region is then subjected to a battery of tests of increasing complexity to quickly 
identify regions where it can be trivially concluded no feature of interest (specifically 
cracks) exists. This helps save processing time by limiting the computationally 
expensive detection operations to be limited only to regions where there is a high 
chance of occurrence of cracks. It also helps reduce the number of false positives. 
Region division may be done based on: 

a) Rectangular tiles 

b) Super pixel 

c) Texture analysis 

d) Segmentation 



 

 

  

  

  

  

  

  

   

  

   
  

   
    

  

    

   
   

 
  

      
   

 
  

   
    

  
 

The common tests to identify such regions can be based on: 

a) Histogram 

b) First order and second order statistics 

c) Texture properties 

d) Local binary patterns 

e) Steerable filters 

f) Difference of Gaussian features 

g) Integral images 

(Step 3) Pixel Probability Computation: In this step, each pixel in the identified 
regions (where there is a high chance of occurrence of cracks) is assigned a probability 
score to indicate the possibility of it belonging to a feature (specifically a crack). The 
higher the score, the more likely it is to belong to a feature. These scores may be 
computed using one of the following methodologies: 

1) A pixel can be assigned a sum of tuned filters (e.g. Gabor filter) response. 

2) A pixel can be assigned a weighted sum of pixel features in the neighborhood. 
The optimal weights can be determined using Supervised/Unsupervised Machine 
Learning techniques (for example Support Vector Machines, or Neural Networks) 
from prior example sets. 

3) In the case of a crack, it can also be computed as the difference of pixel value 
from the median/mean value of pixel intensity in the neighborhood. 

The computed pixel probability map can be combined with a similar map from other 
calibrated sensors (for example a Range Sensor, or GPR) to improve the probability 
estimates. The final probability map is then filtered using morphological operations, as 
the expected features (cracks) have a structure to them. Pixels belonging to the true 
feature are not significantly affected by these operations, but the pixels having high 
probability due to noise are suppressed. 
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(Step 4) Feature Detection: The final pixel probability map is divided into regions as in 
the pre-filtering step and in each region the multiple features (for example two cracks, 
one longitudinal and one transverse) are extracted. The extraction can be done by: 

a) Dynamic programming-based path selection 

b) Flood fill followed by boundary/skeleton detection 

c) Connected pixel tree/graph extraction based on adaptive threshold 

(Step 5) Feature Description: For each detected feature, various properties can be 
computed to describe the feature. The properties can be: 

1) Geometric properties like length, width, area, bounding box, axis of orientations 

2) Photometric properties like texture parameters, average intensity, intensity 
variations 

3) Feature specific properties like in the case of cracks it can be crack width, crack 
density in neighborhood, crack nodes 

4) Longitudinal and transverse linear and spatial location referencing 

(Step 6) Feature Classification: For each detected feature, the descriptor can be used 
to classify the feature. In case of cracks it may be as follows: 

1) Axis of orientation can be used to classify Transverse and Longitudinal cracks 

2) Crack density can be used to classify pattern cracking (such as map cracking or 
fatigue) 

3) Width, density, and position of cracks can be used to classify cracks by severity 

4) Proximity to other detected cracks or joints 
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1.3.2 2D Image Processing 

The following sections will focus on the state of the practice in application of 2D 
pavement images for the general steps of image enhancement, identification of 
potential cracks, and classification of crack features. 

Image Enhancement: Normalization and Pre-Filtering 

To mitigate noisy data and improve crack visibility from the raw 2D pavement images, 
there have been a variety of research efforts in refining pre-processing methods to 
enhance these images. This step aims to reduce the crack detection sensitivity to 
lighting conditions and pavement texture to focus solely on cracks (Sy et al. 2008). Most 
image enhancement methods involve the initial segmentation of the pavement images 
to grey-scale, image equalization, or combinations including the use of morphological 
tools (Gavilan et al. 2011). This image processing has most commonly been applied in 
two locations, as the first step or after image segmentation if the process involved 
splitting up the pavement images (Wang and Gong 2007). There are many variations in 
the processes and steps taken to prepare the images for crack detection. For example, 
the Canny edge detector uses a Gaussian filter, where a method developed by Ayenu-
Prah and Attoh-Okine (2008) called the bi-dimensional empirical mode decomposition 
(BEMD) uses a transformation to remove noise (Ayenu-Prah and Attoh-Okine 2008). 
Table 4 represents the major techniques used for pre-processing pavement images. 

Often, the underlying assumptions govern exactly what the image enhancement 
focuses on. For example, if cracks are identified as having darker intensity than 
surrounding cells, a histogram equalization method can be used in conjunction with a 
gray-scale thresholding method to filter the images (Sy et al. 2008; Gavilan et al. 2011). 
But in most cases, these filtering methods need to be adapted to support the specific 
texture conditions, and even still will reduce effectiveness at detecting cracks in highly 
textured pavements (Subirats et al. 2006). A recent research study performed a texture 
analysis to address the issue of detecting cracks in highly textured pavements, where 
other methods often mistake the surface texture for cracks. By splitting the pavement 
image into sub-images with relatively uniform texture backdrops described by five 
unique parameters, an Artificial Neural Network (ANN) can identify the cracks within the 
sub-images (Mathavan et al. 2013). 
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Table 4. Major techniques used for pre-processing pavement images 
Pre-Processing 
Technique 

Description Advantages Limitations 

Texture Analysis 
and Self 
Organizing Map 
(SOM) 

Define 5 texture 
properties to identify 
different surfaces 
(distinguish different 
surfaces through overall 
texture), then the SOM 
splits the pavement image 
into several sub-images 
based on pavement 
normal background 

Reduces noise 
based on pavement 
texture by isolating 
cracks into areas 
with relatively 
uniform 
background texture 

Used in conjunction 
with SOM (which 
requires program 
training and sensitive 
to under or over 
fitting), precision of 
roughly 75% 

Gradient Define crack pixel Filters out noise Often thresholds are 
Histogram intensity as darker than and is simple empirical or must be 
Analysis non-crack pixels based on 

histogram analysis of 
pavement images 

adjusted per 
pavement surface 
variations and 
lighting conditions 

Bi-Dimensional 
Empirical Mode 
Decomposition 
(BEMD) 

BEMD removes noise via 
transform by sifting the 
data to validate 
instantaneous frequency 

Allows for 
separation of 
filtering from certain 
crack edge 
detection methods 

Not well researched 
and thus not very 
effective 

Identifying Potential Cracks: Feature Detection 

Most methods for crack identification on 2D pavement images fall under one of the five 
general categories: 

1) intensity-threshold-based 

2) edge detection 

3) transform-based 

4) seed-based 

5) machine-based 

Generally, the intensity-threshold-based methods define cracks as having a darker 
intensity than surrounding non-crack area. The edge detection methods define a crack 
edge as the local maximum of the gradient (measured as a change in intensity), and as 
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such defines a crack map (Zou et al. 2012). Transform-based methods use a 
transformation such as Fourier transform to take the data extracted from pavement 
images to different domains (coordinates or states), to find the locations and sometimes 
the properties of cracks. The seed-based methods initiate by identifying certain cells as 
crack seeds, and then grow connecting paths by either percolation or calculation of 
normalized distance to create the crack areas. Lastly machine-based methods involve 
training of a machine learning network to learn a human rater’s response to a series of 
pavement images representative of various field conditions (Gavilan et al. 2011). 

The histogram-methods are the basic type of intensity-based methods, they are simple, 
but often produce noisy results. They are also unsuccessful in changing pavement 
environments, sensitive to changing light conditions, and can produce disjointed crack 
fragments. There has been work on improving the use of these methods through more 
effective filtering and using these principles in other methods (Zou et al. 2012). 

Edge detection is effective but usually doesn’t adhere to crack connectivity, rather 
identifies disjoint crack fragments and may mistake noise as crack fragments (Peng et 
al. 2014). Some examples of edge detectors are the Sobel edge detector, and the 
widely-used Canny edge detector (Ayenu-Prah and Attoh-Okine 2008). 

The transform-based methods like Wavelet-transform based models were found to be 
reliable, but they do not perform well for cracks with high-curvature and with low 
continuity (Zou et al. 2012). A widely-known example of a transform-based method is 
the fuzzy logic approach, which uses multiple transformations to define cracks. 
Following transformation of the image from the difference domain to the brightness 
domain, an intensity-based method is applied to define pixels having brightness less 
than a certain threshold as crack pixels. Finally, in the crack domain, the connectivity’s 
of crack pixels are investigated to identify cracks longer than a minimum length. This 
method has a similar issue with light sensitivity but addresses texture sensitivity by 
considering isolated dark pixels as noise (Mathavan et al. 2013). The Beamlet transform 
is highly effective at extracting cracks from noisy, textured and unevenly lit images, but 
is used for extracting linear features, therefore cannot be extended to identify non-linear 
defects such as potholes (Ying 2009). 

The seed-based methods consider crack connectivity well but are dependent on lighting 
conditions as they use intensity values to determine whether a cell is a crack seed or 
not (Gunaratne et al. 2008). The ability of the seed-based method to successfully 
identify crack areas depends on the path-growing technique. There has been research 
on the different path-growing techniques; the most widely used being the percolation 
technique due to its relatively lower computational cost (Gavilan et al. 2011). 

The machine-based methods are more sophisticated, but often involve a learning nature 
which requires a large number of samples to accurately represent the specific 
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conditions (Gavilan et al. 2011). Additionally, since the learning is done as local 
methods on sub-images, the software may not always connect cracks over image 
boundaries (Zou et al. 2012). Section 1.3.4 includes more detail on machine vision 
techniques for crack detection. 

Classifying Crack Features 

Automatically retrieving the crack features like length, orientation, and width has not 
been as fully documented as the previous steps have been. There are a couple of 
general methods in order to gather properties from an original crack map; the first uses 
image thinning to create a crack skeleton in order to retrieve crack properties, the 
second uses a distance transform to create a distance field for properties. Other 
methods included the use of ANNs to gather crack properties (Zhu et al. 2011). Table 5 
shows some example methods for classifying crack features. 

Table 5. Example methods for classifying crack features 

Type Description Advantages Limitations 

Crack Skeletons 

Crack skeletons (segment 
information) gathered 
from maps through binary 
image thinning and a 
distance field was created 
from a Euclidean 
transform 

Crack maps are 
common output for 
many methods of 
crack identification 

Average precision for 
this method is 
roughly 60% 

Graph search 

Visual tool to gather crack 
geometry properties after 
manual start and end 
input from user 

Efficient process 
Requires manual 
input on start and 
end points of crack 

Artificial Neural 
Networks 

Used learning methods to 
identify crack properties 
from images 

Efficient process 
after ANN is 
trained 

Challenging process 
to form network 
training data 

Closing & Thinning 
Algorithms with 
Hough Transform 

Properties are directly 
determined from using 
algorithms and transforms 
on the preprocessed 
images 

No crack map or 
skeleton needed 

Process not well 
documented 

In addition to crack length and width, Amarasiri at al. (2010) used the optical modeling 
of the image formation process and the subsequent analysis of the variation in pixel 
intensity profiles within digital images to evaluate crack depth. Using the variation of 
reflection properties at surface discontinuities, a bidirectional reflection distribution 
function was employed to model shallow longitudinal and transverse cracks as well as 
joints in concrete pavements. This preliminary study revealed a definitive relationship 
among the crack widths and depths and the maximum pixel intensity contrasts seen in 
the images of the cracks. To calibrate the models, the reflection properties were 
modified to match the pixel intensity contrasts across model generated images of cracks 
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and joints against those of identical cracks formed in concrete pavements. The model 
predictions of crack depths were also verified using actual crack data not used in the 
calibration. This preliminary study showed promising results in terms of using the 
generated depth information in differentiating cracks from joints on concrete pavements 
(Amarasiri, Gunaratne, & Sarkar, 2010). 

1.3.3 The Use of 3D Imaging for Crack Detection 

Although there have been many methods addressing the issues inherent with the use of 
2D imaging for 3D distress information, the potential for the use of 3D data is promising. 
If 3D data were used in conjunction with pavement images, many of these issues would 
be addressed (Peng et al. 2014). The most common method for collecting 3D data 
(which is essentially depth data collected as a line scan across the road) is using laser 
sensors for road profiling. By collecting both 2D and 3D data simultaneously, the 
comparison of data can infer whether a potential crack is truly a crack with depth. A 
method developed by Peng et al. used 3D laser data with 2D pavement images under a 
seed-based method and resulted in 92.5% precision and 90.6% true detection for the 
sample data used (Peng et al. 2014). Another approach developed by Wang was the 
use of two offset 2D images to produce a 3D stereovision set, which used imaging 
cameras as opposed to laser sensors. Testing for the application of crack detection has 
not been verified (Wang and Gong 2007). 

Sponsored by the U.S. Department of Transportation (US DOT) Research Innovative 
Technology Administration (RITA) program, Tsai and Li (2012) evaluated the feasibility 
of using elevation data from 3D laser technology as opposed to 2D intensity data to 
detect cracks under different lighting and poor intensity contrast conditions. Cracks 
ranging from 1 to 5 mm wide were measured in a laboratory setting to evaluate the 
performance of a 3D data acquisition and crack segmentation method based on 
dynamic optimization. The study concluded that the 3D system could effectively detect 
cracks equal to or greater than 2 mm wide under controlled laboratory environment. The 
significance of this study was to demonstrate the consistency of the 3D detection 
method under various lighting conditions including night-time, daytime with shadows 
and daytime with no shadows. The software was capable of detecting cracks even with 
low intensity contrast (Tsai & Li, 2012). 

1.3.4 Machine Vision 

The process of automated detection and the measuring of pavement cracks is one 
application of machine vision, which in general terms captures and analyzes visual 
information. Machine vision takes advantage of a subset of computational intelligence 
techniques called machine learning (ML) techniques. ML techniques typically involve 
massive networks of parallel processing nodes that become capable of recognition 
without definition, after proper training on a representative data set. The ML network 
uses a series of parameters to form a connection between the inputs and outputs. 
These parameters are optimized to enhance the capability of the network in recognizing 
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(and differentiating) the pattern (from the noise) within the data. ML algorithms have 
demonstrated great generalization capability and have been successfully used in 
pattern recognition, prediction, and control applications among others. 

These similar networks of processors are trained using different learning paradigms to 
estimate model parameters based on observed input-output data records. While 
Artificial Neural Networks (ANNs) are inspired by biological neurons, Radial Basis 
Function (RBF) networks and Support Vector Machines (SVMs) are based on statistical 
learning theory. The learning paradigm for ANN is a recursive stochastic approximation 
used in supervised training of multi-layer perceptrons (MLP). Network parameters are 
randomly initialized and then adjusted recursively in a manner that the mean squared 
error (MSE) between predicted versus measured outputs moves in the direction of 
steepest slope. The RBF learning paradigm is termed hyper-surface reconstruction 
which is essentially smooth curve fitting using regularized interpolation. The SVM 
learning paradigm is an approximate implementation of the principle of structural risk 
minimization adopted from the statistical learning theory. The maximum degradation 
(distance) of an approximating hyper-plane from the observed data is minimized. To 
learn more about the details of these paradigms, the reader is referred to instructive 
published resources (Haykin 1998; Smola and Schölkopf 2004). Any superior 
performance of each technique compared to others has proved to be problem specific 
and a systematic benchmarking and comparison approach is required to determine the 
most appropriate technique for each specific problem at hand (Kargah-Ostadi & 
Stoffels, 2015). 

Most related topics discussed in the literature are components of machine vision 
systems, the hardware capturing the information and the software providing the analysis 
of the data (Najarian et al. 2011). Omer used a machine vision system for monitoring 
the condition of a winter road surface, automating the procedure. This system included 
the use of a machine learning technique called a Support Vector Machine (SVM), 
trained through a localized model approach with images that were smoothed and 
normalized (Omer and Fu 2010). This application can be extended to the use of 
machine vision to detecting and reporting characteristics of pavement cracks. 

Best used for situations where there is a large amount of data with difficult to describe 
variables, machine learning has found applications in many fields, such as 
pharmaceutical, business, as well as in the pavement engineering sector. One specific 
method of machine learning is the use of Artificial Neural Networks. ANNs use a 
learning strategy similar to the human brain in exploiting the strength and flexibility of 
connections between simple processing elements (Fieguth and Sinha 1999; Mathavan 
et al. 2013). The following sections will focus on the applications to crack detection and 
elsewhere, as well as the link to machine vision. 
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Artificial Neural Networks 

The learning style of ANNs fall under one of three categories, supervised (user-defined 
input and expected output to give the system inference of the relations), unsupervised 
(only input is provided and the system recognizes patterns), and reinforcement learning 
(trial and error based method), all of which adapt values of free parameters according to 
the training (Gao 2009; Mathavan et al. 2013; Lu et al. 2002). 

Within supervised learning, there are two more sub-divisions: parametric and non-
parametric learning. Parametric learning uses pre-defined knowledge on the data, like 
probability distributions, where non-parametric has classifiers that do not have the 
conditional probability distributions. The advantage of using parametric learning is that it 
requires less training data, but non-parametric does not make assumptions or need 
information on the distribution of the data. Oliveria and Correia performed supervised 
learning with both classification strategies for crack detection in pavements, three 
methods were parametric – based on bivariate class-conditional normal density – and 
three non-parametric. The best system was found to be one using a quadratic boundary 
with parametric learning and classification with a precision of 92.5% and true detection 
of 97% (Oliveira and Correia 2008). 

The application to crack detection done by Mathavan et al. used unsupervised learning 
to remove human subjectivity from the training of the computer to identify cracks. By 
allowing the computer to distinguish crack regions from non-crack regions after a series 
of training images, the texture analysis software was able to reach a detection precision 
of 77% and true detection of 73% for highly textured pavements (Mathavan et al. 2013). 

In a research project sponsored by FDOT, ANNs were trained using manual ratings of 
transverse cracks to estimate crack depth. In addition to pavement related parameters 
(type, age, material, functional class, and traffic) and the transverse cracking 
information, data on geometry of the cracks from laser sensors (installed on a manually 
operated push-car) were used to identify and estimate the depth of cracks at walking 
speed. Through supervised training and testing, the developed system found field 
cracks with detection rates above 90% and accurately measured crack depths with 
errors as low as 0.5% compared to field measured data (Lu et al. 2002). 

1.3.5 Currently Available Software 

Mirroring the large amount of research efforts, the industry has produced many different 
systems aiming to automate pavement distress collection and analysis. In the following 
sections, ten systems were reviewed for general reported function and performance (in 
alphabetical order). Due to the proprietary nature of the majority of available software, 
the details of the crack detection algorithms are not published in the literature. 
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Automated Distress Analyzer (ADA) – Kelvin Wang, University of Arkansas 

Working with the Digital Highway Data Vehicle (DHDV) and the line-scan images, the 
ADA detects and calculates the lengths and widths of longitudinal, transverse, block and 
alligator cracking in real-time up to 40 mph as claimed by the developer (Wang and 
Gong 2007). Another function of the software is to analyze pavement distresses such as 
rutting and roughness (Gunaratne et al. 2008). The software takes advantage of 
multiple on-board computers with multiple CPUs each to employ a real-time database 
and run a parallel computing code to allegedly achieve real-time identification of 
pavement cracking. 

CrackScope – International Cybernetics 

CrackScope can operate both offline and online (real-time with a vehicle operating at 
highway speed), operating with a crack-seed method to determine punch-outs, spalled, 
transverse, longitudinal, alligator and block cracking (International Cybernetics 2015). 
The CrackScope system uses a line-scan camera and laser illumination (Shah et al. 
2010). 

LcmsRoadInspect - Pavemetrics 

The LcmsRoadInspect software combines 2D and 3D data collected at speeds up to 62 
mph, to detect and analyze cracks, and other distresses such as rutting, patches, 
potholes, and ravelling (Pavemetrics Inc. 2015). Basically, the LcmsRoadInspect 
application is built using the LCMS Data Processing Library (DLL library of C/C++ 
functions). Pavemetrics also supply an acquisition software called 
LcmsAcquisitionControl. 

PAVUE – Ramboll 

This system uses area or line scan cameras with strobe lights that can capture pictures 
up to 55 mph, where the PAVUE analysis parameters must be manually selected to 
extract crack data (Kim 2008). The system uses transformations to produce crack 
boundaries, where features are then extracted for the user (Timm and McQueen 2004). 
After the overlay type and macro texture settings are defined for each pavement 
section, the automated analysis can be run (Aijo, 2005). 

PicCrack – Hosin (David) Lee, University of Iowa 

PicCrack’s main image analysis methods are edge detection, binarizarion (image 
binarization converts an image of up to 256 gray levels to a black and white image, 
where a threshold value is chosen to classify all pixels with values above this threshold 
as white and all other pixels as black), morphology (shape analysis), and the use of a 
Hough Transform. All of the crack detection and analysis is completed offline (Cheng 
and Glazier, 2007). By using an ANN, PicCrack is an adaptive machine learning system 
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that has been reported to have a crack detection accuracy of about 95% (Lee et al. 
2004). 

RoadCrack - ARRB 

Developed by the Australian Commonwealth Scientific and Industrial Research 
Organization (CSIRO) and the Australian Road Research Board (ARRB), the 
RoadCrack system uses line-scan cameras, lasers, and a seed-based approach to 
detect road cracks as small as 1 mm wide (Mathavan et al. 2013). The system can 
operate at night at speeds up to 65 mph with real-time crack detection and 
classification, allowing a report on type, severity and extent of cracks to be generated 
(Kim 2008). 

uniANALYZE – Adhara Systems 

Using a seed-based method, uniANALYZE allows both manual and automatic crack 
identification and measurement (Adhara Systems n.d.). This system first completes 
image segmentation by dividing the pavement into grids; the image is then filtered for 
noise and run under a white line detection filter to reduce white line errors. After these 
three steps, a crack detection analysis is run to distinguish crack cells from non-crack 
cells (Aijo, 2005). 

VCrack – Texas DOT 

Using a line-scan camera and LED linear lighting, the image analysis software VCrack 
classifies punch-outs, longitudinal, transverse, block, alligator and spalled cracks 
through a seed-based method. The system can record images up to 70 mph, and 
generate real-time crack maps for speeds less than 45 mph (Gunaratne et al. 2008). 
Using a grid-cell analysis technique, VCrack produced a repeatability score consistently 
over 0.95 – calculated as a correlation coefficient for the analysis of multiple runs on the 
same pavement section (Huang and Xu 2006). 

WiseCrax – Fugro Roadware 

Out of the 30 highway agencies surveyed in a 2004 study (McGhee 2004), 8 reported 
using the WiseCrax software for an interactive crack detection process. Using data from 
area or line scan cameras, strobe lighting and/or infrared lighting from an Automatic 
Road Analyzer (ARAN) system, WiseCrax can detect cracks as small as 1 mm wide 
through an offline system (Gunaratne et al. 2008). The system can operate either 
manually or automatically, working to identify cracks by first establishing the start and 
end points, with user-customizable crack criteria for classification (Timm and McQueen 
2004). 
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An initial step involves selection of representative pavement images for each project. 
The program uses these representative images to identify an optimum set of detection 
parameters according to pavement type, texture, pixel by pixel grayscale variation as 
related to crack contrast and brightness. Following this initial step, WiseCrax can be 
used in an interactive or fully automated mode. Typically, users run the software in 
automated mode and then use the interactive mode for modifying the results. 

1.3.6 Challenges and Future Development 

Challenges 

Most systems have focused on asphalt concrete surfaced roads, presumably because it 
is significantly more prevalent than any other pavement type. As a result, less 
experience with Portland Cement Concrete (PCC) surface roads is documented. There 
are several unique features of PCC that present challenges in the process of automated 
crack detection. 

Tine texturing of PCC pavements (commonly applied during construction to provide for 
skid resistance) typically masks cracking in PCC pavements. While texturing follows a 
definite pattern, it is not uncommon for some finer (narrower) cracks to be hidden (or 
lost) in the tine pattern. 

Similarly, jointed concrete pavements (JCP) have ‘constructed cracks’ (joints) built into 
them. While joints look (and act) like cracks, they are typically handled quite differently 
in pavement evaluation. Joint detection is required to establish where slabs begin and 
end, so that distresses associated with a slab can be quantified. However, great care is 
required to not include joints as cracks or vice versa. Several options are available to 
use pavement profile data to detect JCP joints. 

Typically, the width of cracks in PCC pavements can also tend to be much narrower. 
While most systems today claim to detect crack widths down to 1mm, the crack widths 
of PCC truly challenge this claim. Many of the materials related distresses such a 
durability cracking and alkali silicate reactions cause very fine cracking with little or no 
measurable depth. 

For asphalt concrete surfaced roads, this has not yet been considered as a significant 
concern, perhaps because there is enough other distress to focus on. For PCC surfaced 
roads however, any working cracking is a concern (perhaps because of the efforts taken 
to avoid or eliminate cracking or the expense to repair). Considering that some PCC 
pavements are reinforced to reduce the potential for cracking (or at least hold the cracks 
tightly together, if they do occur), this combination makes the detection of cracking more 
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challenging in JRCP and CRCP. However, the vast majority of concrete pavements in 
Florida are jointed plain concrete pavements (JPCP). 

Finally, just the difference in color of PCC surfaced roads tends to create some unique 
challenges for pavement evaluation. Light tends to reflect differently off of the lighter 
PCC surfaced road. While this can be adjusted for, a system needs to be able to 
recognize such differences in pavement surface type and make the necessary 
adjustments accordingly. 

Regarding flexible pavement distress identification, one of the challenges is detection of 
cracks in heavily weathered and raveled pavement sections, where the deep surface 
texture results in patterns that are perceived as cracks by the automated algorithms. 
These misleading features are often called “phantom” cracks, and this issue is also 
prevalent during manual distress surveys. 

Another challenge on asphalt concrete pavements is the automated identification of 
patching areas. Several solutions have been proposed in the past, but a robust 
methodology is yet to be created. The most promising technique in this regard has been 
the application of the texture information provided by 3D images. 

Regardless of pavement surface type, there are a couple of other significant challenges 
that remain. One of these is establishing a true reference on which the capabilities of 
crack detection system can be judged. Precision and bias for detection systems are not 
readily available because of the lack of agreement on a true reference. As a result, it is 
difficult (if not impossible) to establish what systems work ‘better’ and/or how much so. 
This challenge has significantly stymied the advancement of the evolution of automated 
pavement evaluation. 

The other significant challenge (as previously noted in the discussion on hardware) is 
depth perception. Cracks that have been sealed (or filled) are treated differently in 
evaluation systems. This distinction is in part, because the actual width of such cracks is 
masked, but it is also important to record the number and length of cracks that have 
already been addressed. 

Future Development 

Significant effort is under way nationally to address the issue of depth perception. With 
the advent of 3D systems, this concern is expected to be significantly diminished in the 
near future. 
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Efforts are underway to establish reference standards on which comparison can be 
made (AASHTO 2014b; UK Roads Board, 2009), but until a more universally accepted 
‘ground truth’ is established, future development will continue to be challenging. 

To address some of the challenges described above, multiple research studies have 
applied the learning capabilities of machine vision systems to simulate the manual 
ratings of the collected images by human raters. These machine learning techniques 
need to be further investigated to evaluate their reliability before being employed in 
practice. 

1.4 Implementation of Automated Crack Detection 

This section of the literature review focuses on initiatives to implement an automated 
distress data collection. The discussed topics include the major previous 
implementation efforts, the success metrics used to evaluate the effectiveness, 
efficiency, and reliability of automated distress identification techniques, and finally the 
considerations required for integration of automated distress surveys into practice. 

1.4.1 Previous Implementations of Automated Distress Collection 

In semi-automated condition evaluations, professional raters process pavement images 
to identify and calculate various pavement distress quantities and severity levels. Using 
a point and trace manual method, the type, extent, and severity of pavement surface 
distresses are examined one image at a time by a rater at an office work station. This 
approach is very time consuming especially for long projects and network level 
evaluation. Currently, most State Highway Agencies (SHA) are using this semi-
automated approach (Pierce et al. 2013). Similar to manual distress surveys, semi-
automated distress evaluations involve significant human intervention. 

The fully automated distress evaluations are conducted using image processing and 
pattern recognition software for distress identification and quantification. Along with 
quality assurance testing of the software, professional raters are used to perform quality 
control of the software distress ratings. 

A range of national, international, and state specific standards have been created to 
facilitate automation, such as the AASHTO provisional protocol (PP) number 67 
(AASHTO 2014b) and United Kingdom’s Surface Condition Assessment of the National 
Network of Roads (SCANNER) specifications (UK Roads Board, 2009), but such 
standards are still in various stages of adoption. In the AASHTO PP 67-14 standard, the 
pavement surface area is divided into five zones across the lane width: two outer edge 
zones, two wheel-path zones, and one center zone (Figure 13). A similar approach was 
adopted by the SCANNER specifications, with slightly different widths for each zone 
(UK Roads Board, 2009). 
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Unlike the manual (and semi-automated) distress identification procedures, distresses 
are not identified according to the crack generation mechanism, but according to the 
geometric characteristics. For example, in lieu of identifying fatigue (or alligator) 
cracking, the amount and severity of “pattern” cracking is measured within each of the 
five identified zones. Also, instead of discrete severity levels, continuous average crack 
width is recorded to account for the intensity of surface distresses (McGhee 2004). 

In NCHRP Synthesis Report 334 on automated pavement distress collection 
techniques, the researchers published the results of surveying 43 State Highway 
Agencies (SHA) and 10 Canadian provinces or territories (McGhee 2004). The results 
indicated that 30 of the surveyed agencies were collecting pavement forward, lateral, or 
downward images through automated means at highway speeds. However, only 14 of 
those agencies were using an automated procedure to identify and summarize 
pavement distress data from the collected images. The other agencies used semi-
automated procedures, where distress data were manually obtained and reduced from 
the collected images. Of the 30 agencies collecting pavement imagery, only four used 
the AASHTO provisional protocols (AASHTO 2014a; AASHTO 2014b), five used a 
portion of the Long-Term Pavement Performance (LTPP) Distress Identification Manual 
(DIM) (Miller and Bellinger 2014) and the other 21 used an in-house distress 
identification protocol. 

Figure 13. Typical pavement cross section and the identified zones for automated distress 
identification (AASHTO 2014b) 

Studies conducted in 2004 and updated in 2008 show that among the 50 states, Puerto 
Rico, 11 Canadian provinces and the Eastern Federal lands, 44 out of 65 (68%) use 
automated pavement data collection (Pierce et al. 2013). A summary of the findings is 
included in Table 6, which demonstrates that most of the highway agencies while 



 

 

      
      

    
  

   
  

  

    

  

  

  
 

 

 
     

     

 
     

     

   
  

  
 

 
   

   

   

   
    

  

 
 

 
   

  
  

     
  

  
  

   
 

collecting the pavement imagery are still reluctant to use a fully automated approach. A 
large range of methods are currently used, and many advances have been made over 
the years (Attoh-Okine and Adarkwa 2013). Unlike the advanced data collection 
technology available in the pavement industry, pattern recognition software are 
perceived to be in need of further enhancements to accurately detect and classify the 
various types of pavement surface distress (although, without a true reference, it is not 
possible to accurately establish the true effectiveness of such systems). 

Table 6. Summary of pavement condition data collection methods (Pierce et al. 2013) 

Process Method 

Number of Agencies 

Agencies Vendors 
Total 
(Percentage) 

Collection 
Automated 23 21 44 (68%) 

Manual 19 2 21 (32%) 

Processing 
Fully-Automated 7 7 14 (32%) 

Semi-automated 16 14 30 (68%) 

The data and images collected today provide an opportunity for reprocessing in future 
years when crack detection software are more capable and faster with the future 
increased computing powers. This means that collecting the data today may have 
additional long-term analysis potential. The same is true for monitoring the potential 
deterioration of other roadside assets such as signs and guiderails. More effort should 
be made today in developing calibration and quality standards for image collection 
equipment and for the captured images. 

Use of Semi-Automated Distress Surveys 

Many SHAs in the US use a semi-automated approach (Table 6). This approach 
involves digital image collection and some level of manual post-processing and distress 
identification by professional raters. 

Pennsylvania Department of Transportation (PennDOT) had implemented a semi-
automated pavement distress condition surveying program based on pavement video-
logging. Additionally, the automated data collection provides pavement roughness data, 
geometric information, and other features that are uploaded and stored in PennDOT 
Roadway Management System. Data collection for PennDOT is conducted with a 
vehicle equipped with ROW camera, area scan pavement images and other condition 
sensors (Pennsylvania DOT 2015a; Pennsylvania DOT 2015b). PennDOT pavement 
condition data and images are collected by contracted service providers. Then, images 
are analyzed through data reduction and each section of highway is rated. Distress 
severity and extent data is derived, through a combination of automated distress 
programs and a manual visual rating of the pavement images (Pennsylvania DOT 
2015a). 
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Virginia Department of Transportation (VDOT) and North Carolina Department of 
Transportation (NCDOT) have adopted a similar semi-automated approach, evaluating 
pavement distress using digital images. The data collected is interpreted and processed 
with some level of human intervention. Pavement distress data is used to determine 
pavement condition index (PCI) values which in turn are used to estimate the required 
pavement maintenance and rehabilitation treatments. When the automated pavement 
distress identification is utilized, DOT requests the contracted service providers to 
conduct a manual visual review of the collected images on all pavement sections prior 
to submitting results (Virginia DOT 2012; North Carolina DOT 2011). This is different 
than the manual review of a sample for quality control or independent verification 
purposes. 

Oklahoma Department of Transportation (OK DOT) also uses contractors to collect the 
pavement condition images and manually measure and record the pavement distresses 
according to ODOT protocols (Oklahoma DOT 2005). 

Use of Fully-Automated Distress Evaluations 

There are several States that are actively moving towards using a fully automated 
approach. However, a rigorous quality control, acceptance testing, and independent 
verification is typically required. While most agencies explore the concept of full 
automation, many fall back to some level of human intervention out of lack of 
confidence in the results being obtained. Many of the agencies that use the fully-
automated approach perform the data collection with in-house staff and equipment. 

Vermont DOT uses a fully automated approach to identify the location and type of all 
distresses in their network since 2001. The cracking information is primarily divided into 
longitudinal, transverse, and alligator cracking. They do some manual adjustment of the 
results only to identify which of the cracks found have been sealed (Papagiannakis et al. 
2009). 

Maryland SHA uses a fully automated approach to crack detection with a sampling QC 
to better understand the limitations and results. As a standard part of the Maryland data 
collection procedure, Fugro’s Wisecrax software is used to measure the length of 
cracking in any given portion of the pavement (Groeger et al. 2003a). The results of this 
analysis are a modified version of the AASHTO PP 67-14 results, including distribution 
of cracking length by road zone and by severity (AASHTO 2014b). 

In addition to the fully automated approach, Maryland SHA staff members conduct a 
manual review and adjustment of a small sample of the pavement imagery to determine 
the impact of manual review and adjustment (Groeger et al. 2003b). Then adjustment 
factors are created based on the difference between the fully automated approach and 
the samples in which adjustments have been made. These adjustment factors are 
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applied to the fully automated data on pavement sections that have similar conditions to 
the reviewed sample sections. 

Research Studies 

Automated Distress identification has been investigated by a range of academic and 
research organizations over time to get a better objective rating of pavement distress. 

Oregon Department of Transportation (ODOT) completed a research study in 
automated data collection equipment for monitoring highway condition (Mullis et al. 
2005). Some of the research objectives were the evaluation of accuracy of Oregon’s 
current pavement condition data collection, the accuracy and consistency of available 
ADC technology, and the potential to combine data collection efforts using automated 
technology. The ADC equipment were provided by four vendors: Fugro-BRE, 
Infrastructure Management Services (IMS), Roadware, and Pathway Services. The 
vendors were required to provide pavement distress data according to ODOT protocol 
and using the video log images that they collected using their ADC systems. 

Eight test sections (6 AC and 2 CRCP) were selected, having in total 187 segments of 
0.1 mile each. These sections were selected to cover a range of pavement types and a 
variety of pavement conditions. Two sections were rated twice by each rater to test 
repeatability. Each test section was rated by three ODOT rating crews and by four ADC 
system vendors. A walking survey and rating was done by experienced Oregon 
pavement personnel to establish a baseline (ground truth) to which ODOT rating crews 
and vendor’s equipment could be compared. They found that the ADC and manual 
distress were significantly correlated with the ground truth for raveling and rutting, 
although the ADC systems did not do as well as the rating crews, based on the 
evaluations of this study. The raw data analysis shows that rating crews did better at 
identifying the patches on AC pavement and punchouts in CRCP and the ADC systems 
tended to report larger totals of transverse and longitudinal cracking quantities than the 
ground truth showed. 

A study conducted for the Texas DOT (Serigos et al. 2015) compared a range of 
methods including semi-automated and fully automated distress to a detailed manual 
survey. The initial assessment showed that the fully automated data showed a large 
variability around the manually established “ground truth”. Also, this study showed that 
the accuracy improved after applying manual post-processing (visual interpretation and 
correction of the results produced by the vendors algorithms), and the number of false 
positives was reduced for most cracking types. However, the amount of reported false 
positives was larger for several combinations of service providers and crack types, even 
after the significant improvement achieved by the manual intervention. Based on 
insignificant correlations found between collected surface macro-texture data and 
distress measurement errors for all the vendors, they concluded that the cracking 
measurement accuracy of the service providers was not affected by surface texture. 
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This was because all service providers used 3D systems that are less prone to 
challenges faced by 2D systems in identifying cracks on rough textures. 

In a 2002 study, Groeger et al. compared two automated crack detection algorithms 
based on cumulative length of longitudinal and transverse cracking on a network of 
approximately 2000 data points (Groeger et al. 2003a). Three experienced evaluators 
classified the test section based on a five-level condition scale (very good to very poor) 
and established the reference values. That study found that 94 percent of the time, both 
examined automated procedures had matched the reference condition rating by one 
deviation in reported condition level. For example, if the reference overall condition was 
reported poor, the automated procedure had reported the overall condition to be very 
poor. 

The Ontario Ministry of Transportation conducted a comparison study between their in-
house manual distress survey results and automated and semi-automated distress 
surveys provided by three service providers (Tighe et al. 2008). This study used the 
summary quantity of the overall pavement condition called distress manifestation index 
(DMI). The study concluded that automated results were generally comparable with 
manual surveys. However, the authors emphasized that some of the distresses were 
difficult to identify through the automated approaches and supplemental manual surveys 
were suggested specifically for project-level analyses. The authors did not mention the 
performance of the automated and semi-automated surveys with regards to individual 
distresses, but the paper (Tighe et al. 2008) hints that the disintegration type of distress 
(e.g. ravelling, stripping, or spalling) were more difficult to identify as opposed to 
cracking and rutting distresses. 

To develop an automated crack classification methodology, Tsai et al. (2014) proposed 
a multi-scale crack fundamental element (CFE) model, which provides crack topological 
properties at three different scales (Tsai et al. 2014): 

1) Fundamental crack properties, which describe the physical properties of each 
crack including length, width, depth, etc. 

2) Aggregated crack properties, which focus more on patterns within the CFE and 
represent the interaction of cracks with one another, such as intersections, 
polygons, crack density, etc. 

3) Clustered CFE geometrical properties, which describe the overall properties of 
each CFE including element center, orientation, length, and width. 
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This concept is illustrated in Figure 14 (Tsai and Wang 2014), which shows crack 
properties at three scales defined in the CFE model. 

Figure 14. The multi-scale crack fundamental element concept (Tsai and Wang 2014) 

To handle the diversity among different distress identification protocols used by various 
highway agencies, the authors used this model to standardize crack performance 
measures for different transportation agencies. The authors argue that experienced 
pavement engineers tend to first identify a group of cracks to be clustered together as 
one element (CFE), and then look at the pattern inside that element, and finally 
measure the length and width of individual cracks (Tsai et al. 2014). The model input is 
the automatically detected crack map, which can be delivered through either 2D or 3D 
systems. This research study, which was sponsored by the US DOT RITA program 
reported promising results in terms of precision and recall (the ratio of correctly 
classified cases to total actual cases). 

In an effort to create an overall pavement condition index based on the AASHTO 
provisional protocol 67 (AASHTO 2014b) for flexible pavements, Wang et al. (2015) 
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proposed application of the analytical hierarchy process (AHP) concept to a hierarchical 
framework as demonstrated in Figure 15. The severity and intensity of each crack type 
are calculated using the Fuzzy set theory based on the average width and the total 
length of each crack, respectively. The classic pairwise comparison method developed 
in the AHP concept is employed to determine the weighing factors required for the linear 
combination of the various cracks in each zone and the multiple zones for each 
pavement section (Wang et al. 2015). 

Figure 15. Framework of the proposed overall crack evaluation index (Wang, et al., 2015) 

1.4.2 Success Metrics 

The three principal success metrics of any process are effectiveness, efficiency, and 
reliability. With respect to automated condition evaluations, these three metrics could be 
considered for two aspects of the process, first for the detection and classification of 
individual surface defects (cracks), and second for the overall evaluation and 
quantification of the pavement condition in a distinct section. 

In the context of automated distress identification, effectiveness can be expressed in 
terms of accuracy of the crack detection software when compared to a reference 
baseline. Accuracy is a qualitative term referring to whether there is agreement between 
a measurement made on an object and its true (target or reference) value. Bias is a 
quantitative term describing the difference (or error) between the average of 
measurements made on the same object and its true value. 

Reliability of automated distress surveys is often expressed in terms of precision. 
Precision is also a qualitative term describing the degree of repeatability of a 
measurement value. Variance and standard deviation of error are quantitative estimates 
of precision. Accuracy and precision (or the corresponding quantitative estimates: bias 
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and variance) ultimately define how effective and reliable a system is as described in 
greater detail below. 

Verification of Identified Cracking: “Ground Truth”, False Positives, and Missed Cracks 

Multiple research efforts in the past have introduced various methods to establish 
reference values or “ground truth” for pavement surface defects by using the “most 
appropriate” methodology available (Flintsch and McGhee 2009). The major types of 
reference values include: 

1. Manual distress identification: In this method, professional (trained and 
experienced) distress raters are used to identify the surface distresses on a set 
of pavement sections that are deemed representative of conditions across a 
network. 

2. Semi-automated detection: This method is similar to the manual method, but the 
professional raters use the images collected by monitoring vehicle to identify the 
distresses. 

3. Artificially fabricated distress: In this method, cracks are designed and fissured 
into steel plates or cut into an existing asphalt surface, so the precise dimensions 
of the defects are known. This method is mostly used to resolve image distortion 
issues caused by the camera lens or the image sensor. 

Each method has its own advantages and limitations. The manual method simulates the 
actual distress identification process that has been in use by many SHA for a long 
period; however, there is a low degree of agreement among different professional raters 
which renders the “ground truth” as a highly variable measure. 

The LTPP program conducts annual accreditation workshops for the LTPP certified 
distress raters, during which the identification methods of various pavement distresses 
are clarified, maximum harmonization among different raters is sought, and the 
potentially required modifications to the LTPP Distress Identification Manual (Miller and 
Bellinger 2014) are identified. In a 1999 study (Rada, et al., 1999), the variability of the 
LTPP manual distress ratings was investigated based on 9 different workshops, 
including 119 ratings on 18 test sections (9 AC and 9 PCC), by 6 to 16 individual raters 
per workshop. The manual rating of the same test sections through a consensus 
between the instructors immediately before each workshop were used as reference 
values, to determine the individual rater variability in terms of accuracy and precision. 
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For AC pavements, Table 7 shows accuracy as the bias between the reference values 
and the corresponding group means, and precision as the standard deviation among 
various raters interpolated across various workshops. To overcome the often very small 
quantities of some distresses, the coefficient of variation (COV), in percentages, was 
estimated by plotting the standard deviation versus mean for each distress type/severity 
level combination and fitting the best line through these data. The slope of the best-fit 
line (in percentages) forced through zero is a measure of the ratio of standard deviation 
to mean and was taken as the COV. 

It was found that combining distresses of a particular type across all severity levels 
resulted in significantly lower bias and precision values for the total sums than for 
individual severity levels. As indicated in Table 7, there was a better agreement among 
different raters in terms of the total length of transverse cracks (COV of 9% or 91% 
agreement) as opposed to the total length of longitudinal wheel path cracking (67% 
agreement), or the total area of fatigue cracking (62% agreement) on AC pavements. 

Table 7. Accuracy and precision for LTPP manual ratings of AC pavements (Rada, et al., 1999) 

Distress Type Unit 
Distress 
Severity 

Pooled 
Reference 

Group Statistics 

Mean 
Std. 
Dev. 

COV 
(%) 

Bias 

Fatigue Cracking 
Sq. 
meters 

All 
Levels 
(Total) 

14.2 16.5 6.2 38 2.3 

Longitudinal 
Cracking WP 

meters 
All 
Levels 
(Total) 

18.4 18.3 6.0 33 -0.2 

Longitudinal 
Cracking NWP 

meters 
All 
Levels 
(Total) 

75.0 70.7 14.7 21 -4.3 

All 
Transverse Cracking number Levels 26.4 24.7 3.2 13 -1.7 

(Total) 

All 
Transverse Cracking meters Levels 44.3 44.6 4.2 9 0.3 

(Total) 

Table 8 shows similar values for PCC pavements. There seems to be much less 
agreement among the raters in terms of the total length of spalling of longitudinal and 
transverse joints (32% and 29% agreement, respectively), compared to the total length 
of longitudinal and transverse cracks (78% and 92% agreement, respectively) on PCC 
pavements. 
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Table 8. Accuracy and precision for LTPP manual ratings of PCC pavements (Rada, et al., 1999) 

Distress Type Unit 
Distress 
Severity 

Pooled 
Reference 

Group Statistics 

Mean 
Std. 
Dev. 

COV 
(%) 

Bias 

Corner Breaks number 
All 
Levels 
(Total) 

3.9 3.7 0.5 14 -0.2 

Longitudinal 
Cracking 

meters 
All 
Levels 
(Total) 

7.5 7.0 1.6 22 -0.5 

Transverse Cracking number 
All 
Levels 
(Total) 

9.4 9.6 1.4 15 0.2 

Transverse Cracking meters 
All 
Levels 
(Total) 

24.8 25.0 2.1 8 0.2 

Spalling of Long. 
Joints 

meters 
All 
Levels 
(Total) 

6.6 7.2 4.9 68 0.5 

Spalling of Trans. 
Joints 

number 
All 
Levels 
(Total) 

3.7 3.4 0.9 25 -0.3 

Spalling of Trans. 
Joints 

meters 
All 
Levels 
(Total) 

1.7 2.0 1.4 71 0.3 

Between Table 7 and Table 8, the only distress values that can be compared include 
longitudinal cracking (m, combining WP and NWP for AC), transverse cracking (m), and 
transverse cracking (number).  By normalizing these results (bias divided by Pooled 
Reference or the mean x 100%) one finds that there is a greater relative bias between 
the average group ratings and the reference ratings of various AC pavements compared 
to PCC pavements for only one distress type (transverse cracking, number). 
Furthermore, the relative bias is in the same order of magnitude for both pavement 
types (i.e. single digit). While there seems to be more disagreement among various 
raters on PCC pavement distresses, the average of the rater distress values seems to 
be closer to the reference values on PCC pavements compared to AC pavements. On 
both pavement types, there is a tendency for the agreement among raters to increase 
(coefficient of variation to decrease) with an increase in the magnitude of the amount of 
distress present. The authors reported similar results in a later study on the LTPP 
distress variability (Rada et al. 2007). 

The semi-automated option might be superior to the manual method for establishing 
“ground truth,” because the collected images are available for multiple raters to view in 
an office environment with less distraction from field traffic. However, some of the low 
severity cracks that are at initial stages of development might not be visible from the 
collected images. Increasing the number of raters could result in a more reliable ground 
truth. 



 

 

 
     

  
  

 

  
   

  
 

  
  

    
    

  

  
 

   
    

  

 
    
   

  
    

 
 

  
 

  
 

  
 

The artificially fabricated distress while precise is not always representative of pavement 
surface defects and the variability observed in the field. However, such fabricated 
boards have been frequently used as calibration targets to address dimensional 
systematic errors, dynamic range, and signal to noise ratio issues in the collected 
images. 

Accuracy of the measured distress against the established reference values (“ground 
truth”) is evaluated to identify the systematic and random errors. The systematic error or 
bias could be addressed by calibration, but the random errors need to be addressed by 
increasing the reliability of the crack detection algorithm through various control 
parameters within the algorithm. Regarding the effect of error type in network-level 
pavement management decisions, Saliminejad and Gharaibeh (2013) suggested that 
systematic errors in pavement condition data have a higher impact on the PMS outputs 
than random errors (Saliminejad and Gharaibeh 2013). 

False positives are cracks that have been reported by the automated crack detection 
software, while no crack has been recorded in the “ground truth” at the same location. 
On the other hand, missed cracks are existing cracks that have been reported in the 
“ground truth”, but are not detected by the software (i.e. false negatives). As with the 
manual rating conducted in the field, the reference values on the computer may also 
have a range of agreement from professional raters in terms of how to measure crack 
width, severity, and in some cases crack extent. 

Studies have been conducted to evaluate the performance of automated crack 
detection algorithms in terms of detecting individual cracks (Wang et al. 2011). Wang 
assumed a “precision” indicator to be calculated as the ratio of the correctly detected 
cracks (true positives) to the total detected cracks (true positives and false positives). 
He also defined a recall parameter to be calculated as the ratio of the correctly detected 
cracks to the total actual cracks existing on the pavement surface (true positives and 
false negatives). As indicated in Figure 16, these two parameters have an inverse 
relationship for each algorithm. An algorithm with properties closer to the upper right 
corner (high “precision” and recall values) should be selected. It should be noted that 
this “precision” parameter is different than the statistical precision of the overall 
automated crack detection surveys, which is calculated as the standard deviation or the 
coefficient of variation of the error in estimating each distress type along each pavement 
section. 

50 



 51 

 

 

      

     
  

     
  

    
  

 
   

   
  

  
   

    
  

  
   

 
  

   
  

  

Figure 16. “Precision” and recall curve for different crack detection algorithms (Wang et al. 2011) 

Tsai and Wang (2014) used a linear-buffered Hausdorff scoring method to quantitatively 
evaluate the crack segmentation performance by comparing each of the detected 
cracks with the manually established ground truth (Tsai and Wang 2014). Incorporating 
mean squared error and a modified Hausdorff distance metric, this method compares 
the binary crack maps produced by the automated software and the manually digitized 
ground truth. The buffered distance can be interpreted as the average Euclidean 
distance between the crack pixels in the ground truth image and the segmented images, 
which represents the accuracy of the software in detecting the same cracks as the 
ground truth reference crack maps. The authors evaluated their experimental 3D image 
processing system on two example test roads in Georgia. The average score of the 
automated software was about 86% on the flexible pavement section, and about 65% 
on the concrete pavement section (Tsai and Wang 2014). 

In a study conducted for Texas DOT (Serigos et al. 2015), the results of automated 
surveys with varying levels of human intervention were compared among three different 
3D image processing software tools. Two of them used the INO LCMS 3D images and 
the third used the PaveVision 3D image collection system. Manual distress surveys of 
20 (0.1-mile-long) representative test sections according to the LTPP distress 
identification protocol were used as reference values. There were 7 Hot Mix Asphalt 
(HMA) pavements, 7 Surface Treatment (ST) sections, 1 Permeable Friction Course 
(PFC) surface with negative macro-texture, 2 Jointed Concrete Pavements (JCP), and 3 
Continuously Reinforced Concrete Pavements (CRCP). Each test section was divided 
into twelve 50-feet segments to conduct the comparison analysis. 
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Table 9 demonstrates the number of false positives and missed cracks reported by 
each of the three automated survey methods before and after manual post-processing 
of the automated crack identification results (Serigos et al. 2015). The values in each 
cell indicate the number of segments out of the total 144 (12 sub-sections of 12 test 
sections), where false positives or missed cracks were identified. The numbers in 
parentheses show percentages of segments with reported issues. The third vendor 
(using PaveVision images) did not manually post-process their data, because they 
reported confidence in their automated algorithms. It was concluded that generally, the 
manual post-processing reduced the number of false positives and missed cracks. 
However, Table 9 does not fully support this conclusion. 

Table 9. False positives and missed cracks using three different crack detection software before 
and after manual human intervention (Serigos et al. 2015) 

Distress Vendor 
False Positives Missed cracks 

Before After Before After 

Fatigue 
Cracking 

INO LCMS 1 
23 
(26%) 

20 (23%) 40 (52%) 
44 
(57%) 

INO LCMS 2 
33 
(38%) 

34 (39%) 36 (47%) 
25 
(32%) 

Pave Vision 
12 
(14%) 

12 (14%) 36 (47%) 
36 
(47%) 

Longitudinal 
cracking 

INO LCMS 1 
81 
(74%) 

45 (41%) 22 (20%) 
37 
(34%) 

INO LCMS 2 
83 
(75%) 

69 (63%) 8 (7%) 7 (6%) 

Pave Vision 
64 
(58%) 

64 (58%) 41 (37%) 
41 
(37%) 

Transverse 
cracking 

INO LCMS 1 
90 
(63%) 

11 (8%) 17 (22%) 
18 
(24%) 

INO LCMS 2 
97 
(67%) 

79 (55%) 4 (5%) 3 (4%) 

Pave Vision 
27 
(19%) 

27 (19%) 11 (14%) 
11 
(14%) 

Effectiveness of Automated Surveys: Quantification Accuracy 

In evaluating the effectiveness of a methodology, efforts are made to identify the bias or 
average error between methodologies (the average ratings from manual and automated 
distress surveys such as total length of transverse cracks, etc.) and evaluate how to 
reduce or minimize the bias. In the practical application of the network-level condition 
evaluation data for pavement management systems, it is the aggregate representative 
condition of an entire pavement section and not the specific localized defects that 
influences corresponding decisions. Most of the highway agencies that use an overall 
pavement condition rating (PCR) with a 100 point index (such as PCI) have typically set 
an acceptable limit of ±5 PCR points on the difference between the automated results 
and the independent reference values (Flintsch and McGhee 2009). 
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To establish automated data quality management procedures for Indiana DOT (IN 
DOT), three quantitative measures were used to evaluate the effectiveness of 
automated distress data compared to benchmark manual ratings by experienced IN 
DOT staff (Ong, et al., 2010). The first measure was hypothesis testing on the statistical 
significance of the difference in PCR values. The second measure was the percentage 
cumulative differences between the PCR collected by the two systems over the entire 
range of PCR, thereby accounting for the mean-variance dependency of PCR. The third 
measure was Cohen’s Kappa statistic for individual distresses, which estimates the 
strength of agreement between the automated and reference systems. 

For the Texas DOT study (Serigos et al. 2015), the accuracy and precision of each of 
the three automated systems before and after human intervention are presented in 
Table 10. The average measurement error or bias between the software measured 
distress quantity and the reference values are the first number in each cell representing 
software accuracy. The second value, shown in parenthesis, is the standard deviation of 
the errors, which is an estimate of software precision. The last number is the median of 
the errors expressed as a percentage relative to the manual measurement. It was 
observed that generally, the manual post-processing improved the accuracy of distress 
quantification. However, the precision (as represented by the standard deviation of 
error) does not seem to improve with manual intervention. 

Table 10. Quantification errors using three different crack detection software before and after 
manual human intervention (Serigos et al. 2015) 

Distress Vendor 
Quantification Errors 

Before After 

INO LCMS 
1 

-11.76 m2 (9.34 m2) -
80% 

0.69 m2 (16.49 m2) 7% 

Fatigue 
Cracking 

INO LCMS 
2 

-6.56 m2 (11.31 m2) -
56% 

2.32 m2 (10.92 m2) 33% 

Pave Vision 
-13.88 m2 (8.62 m2) -
92% 

-13.88 m2 (8.62 m2) -
92% 

Longitudinal 
cracking 

INO LCMS 
1 

1.09 m (9.86 m) 13% 4.1 m (11.95 m) 17% 

INO LCMS 
2 

4.41 m (10.7 m) 57% 1.51 m (8.51 m) 11% 

Pave Vision 7.24 m (23.73 m) 9% 7.24 m (23.73 m) 9% 

INO LCMS 
1 

-15.54 m (23.75 m) -
44% 

-1.24 m (13.08 m) 1% 

Transversal 
cracking 

INO LCMS 
2 

-8.36m (17.41 m) -30% -3.55 m (13.39 m) -11% 

Pave Vision 
-12.79 m (15.94 m) -
54% 

-12.79 m (15.94 m) -
54% 

Timm and Turochy (Timm and Turochy 2014) compared manual and automated data 
sets for Alabama DOT. They found large discrepancies and very little correlation 
between transverse cracking manually and automatically collected. Also, very poor 
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correlation was found between the two methods for wheel path cracking and non-wheel 
path cracking. The following table summarizes the Pearson correlation coefficient 
between manual and automated distress data calculated for each severity level and for 
three data sets. 

Table 11. Alabama DOT paired t-test between manual and automated distress data (Timm and 
Turochy 2014) 

Severity level 

Pearson correlation coefficient 

Transverse 
cracking 

Wheel path 
cracking 

Non-wheel path 
cracking 

Low 0.568 0.248 0.241 

Medium 0.277 0.258 0.391 

High Undefined 0.102 Undefined 

Reliability of Automated Surveys: Precision and Repeatability 

While systematic errors identified in the bias can be calibrated out, such evaluations 
must also address the random errors as well. The average results may be quite 
comparable, but individual results can deviate significantly. Efforts must also be made to 
control these deviations to produce results which can ultimately be classified as reliable. 
The values in parentheses in Table 10 represent an estimate of the precision of the 
three software methods used for automated crack detection in the Texas DOT research 
study (Serigos et al. 2015). 

The ASTM E177 (ASTM 1998) includes a criterion called “difference two standard 
deviation (D2S)”, which states that the difference between two laboratories running the 
same test on the same material should not exceed D2S more than 1 time out of 20 or 
5% of the time (i.e., there is a 95% confidence limit). In that relationship, S is the pooled 
standard deviation of all paired test results to be compared. In practice, it is possible to 
apply a similar approach to either process control or as an acceptance criterion in 
automated pavement condition data collection (McGhee 2004). This repeatability 
criterion could be applied to pavement condition indices; as well as to individual 
distresses making up the indices. 

In a research study conducted by the ARRB Group (Warren et al. 2013) the 
repeatability of the RoadCrack crack detection algorithm with LCMS images was 
evaluated by conducting multiple runs (trials) on a test section (Figure 17). As noted in 
the work published by ARRB, many of the statistics are often simplified to show a higher 
level of consistency. Statistics such as number of cracked frames and total length of 
cracking are often used to identify the quality of crack detection rather than the severity 
and classification of the measured cracks. 
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Figure 17. Repeatability trials of simulated real time cracking analysis using the RoadCrack® 

algorithm on LCMS images (2.5 mm sampling at 40 mph) (Warren et al. 2013) 

Efficiency of Automated Surveys 

Ultimately, for such a system to be truly beneficial, it must be able to generate results 
that are considered reliable (minimized standard deviations compared to suitable 
alternatives), effective (with minimal bias to the suitable reference) and efficient (when 
comparing the resources required compared to comparable alternatives) 

The surveys typically do not require a large number of staff to process the data, but 
rather require additional computing power. As noted by ARRB (Warren et al. 2013), the 
crack identification can be completed at rates of 14 mph, plus additional classification 
and reporting. This was reported for 2080x2000 pixel images, which result in 0.8 GB of 
data per mile. Higher resolution images can reduce the processing speed. 

Distress quality control for fully automated distress collection is also an important step in 
the process. Sampling of automated crack detection can indicate any potential quality 
issues and identify systematic issues. Systematic issues may be identified in different 
manners such as adjusting image settings or detection parameters to better address 
specific field conditions. 



 

 

   

   
    

  

  

  
 

   
 

  
 

  

  

  
   

  
   

   
    

    
 

  
    

  
  

   

 
    

   
 

Benefits to Agency 

Successful development and application of crack detection software will result in the 
following potential advantages to the data collection and pavement management 
initiatives by every roadway authority: 

• Increased safety of the data collection staff 

• Increased efficiency and productivity of network-level evaluations using real-time 
automated crack detection software 

• Enhanced objectivity of crack rating (identifying type and severity) using the 
automated applications 

• Increased accuracy and precision in measuring crack extent, identifying crack 
location, and providing summary statistics 

• Better pavement management decisions and improved rehabilitations activities 

1.4.3 Integration into Practice 

Of equal (if not greatest) importance, is the necessity to be able to integrate any such 
system into practice. This requires evaluation of what if any impacts such a transition 
will have on decisions made utilizing the system. What if any adjustments or 
calibrations may be anticipated or required? What training will be required to facilitate 
the new system is properly understood, executed and incorporated into the existing 
practice? What limitations should be acknowledged (and what steps are recommended 
/ proposed to address those limitations)? What is the plan for continuous improvement 
to give the new system the greatest opportunity to reach its full potential? 

Each of these concerns must be fully explored to identify and address any obstacles 
that can be anticipated. This process will identify actions required to provide the 
greatest opportunity for successful integration and realization of the benefits expected 
from the implementation of an improved system. 

Quality Management Procedures 

Quality by definition is “the degree to which a set of inherent characteristics fulfill 
requirements” (ISO 2005). According to TRB, quality management is the overarching 
system of policies and procedures that govern the performance of quality control and 
acceptance activities (TRB 2009). In order, to achieve a consistent level of quality, it is 
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necessary to adopt a systematic approach for the quality management practices that 
includes methods, techniques, tools and model problem solutions. Quality management 
involves the specification of data collection protocols, quality standards, responsibilities 
of personnel, quality control, quality acceptance, corrective action and quality 
management documentation (Attoh-Okine and Adarkwa 2013). 

With respect to automated distress identification software, the level of quality can be 
quantified according to the aforementioned success metrics. One purpose of quality 
management is to quantify variability in the process and maintain it within the range of 
acceptable limits. It should be noted that the quantity being measured by the software is 
by itself an indicator of variability in pavement condition along the length of the highway, 
and therefore it will inherently exhibit variability. Due to this characteristic of the 
measured pavement condition, the determination of acceptable limits is a challenging 
task. Quality management procedures include comprehensive and systematic steps for: 

1. Quality Control: to ensure that a desired level of quality is obtained for the 
developed product or service. 

2. Quality Acceptance: to confirm that the quality of the developed product or 
service is indeed acceptable for application by the user 

3. Quality Assurance: to increase the ability of the development process to fulfill 
quality requirements for the product or service being provided 

In the transportation infrastructure industry, quality control by the product or service 
provider (contractor), and quality acceptance by the roadway authority (user) are the 
major areas of focus in quality management of pavement condition data collection 
(Flintsch & McGhee, 2009). In addition to the quality control and acceptance practices, 
independent validation and verification (IV&V) by a third party are recommended as 
external audit in quality management plans. In most pavement condition data collection 
projects, where IV&V are used, the main focus has been the quality acceptance. 

The quality control of distress data is typically conducted in two steps. Initially pilot runs 
are performed, and the data collected is compared with data obtained from manual 
surveys to ensure the equipment is functioning. Then during data collection, random 
sections are chosen, and data is compared with manual survey to ensure that data is 
not exceeding the acceptable variability (Attoh-Okine and Adarkwa 2013). According to 
a recent survey, approximately 64% of state and provincial highway agencies have a 
form of data collection quality control plan in place (Attoh-Okine and Adarkwa 2013). An 
active quality control plan is also a requirement under the proposed rules for MAP-21 
(FHWA 2015). 
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A minimum sample size needs to be adopted to ensure that the sample is 
representative of the observed pavement conditions to evaluate accuracy and precision 
of the automated distress surveys. There are a series of statistical techniques that 
estimate the required sample size based on the desired accuracy and the degree of risk 
(uncertainty). Typically, the sample size is selected by balancing accuracy and cost. In a 
study for the National Park Service pavement management system (PMS), Selezneva 
et al. (2004) proposed promising statistical sampling approaches for quality acceptance 
of automated pavement distress data. The interested reader is referred to that study 
(Selezneva et al. 2004) and the Quality Assurance Manual for the Road Inventory 
Program at the National Park Service (2003). 

A 5 percent sample is common for most of the quality control and acceptance testing. 
Out of the service providers surveyed in 2009 (Flintsch and McGhee 2009), 29 percent 
reported reviewing 2 to 5 percent of the data, another 29 percent indicated sampling 6 
to 10 percent, and the remaining 42 percent of the contractors reported reviewing 10 
percent or more as part of their regular quality control practice. 

Raman et al. (2004) conducted a statistical analysis on the severity and extent of 
transverse cracks reported by various procedures. In the situations where data was 
normally distributed, analysis of variance was used. In the cases where data was not 
normally distributed, the Kruskar-Wallis nonparametric test was conducted. Following a 
comparison of sampled and full-section image data, the authors concluded that a 5% 
sampling rate was adequate to evaluate transverse cracks with the desired precision for 
network-level evaluations in Kansas (Raman et al. 2004). 

Using the provisional AASHTO protocol on data obtained from Arkansas highways, 
Wang et al. (2004) compared the results of manual versus automated cracking surveys. 
For each comparison section, only 5 percent of the images were investigated. The study 
found some differences between the manual and automated procedures but suggested 
that these discrepancies might have been the result of low repeatability of the manual 
surveys (Wang et al. 2004). 

PennDOT distress condition survey quality assurance program entails field testing over 
2.5% of the annual survey mileage. The goal is to assure the quality of the service and 
product provided by PennDOT’s pavement data collection vendor (Pennsylvania DOT 
2015b). Up to 5% of the vendor IRI data is allowed to exceed ±25% of their own 
independent measurement. They allow up to 10% of the other distresses to exceed 
either ±20% or ±30% depending on the distress type (Timm and Turochy 2014). 

Using standard variability control concepts with pavement data collection, Stoffels et al. 
(2001) proposed a process to identify acceptable ranges for comparing results from two 
independent sources. Based on the difference of two standard deviation (D2S) criteria 
applied to laboratory materials testing results (ASTM 1998), the authors established that 
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in 95% of the contractor processed data for the Virginia DOT network, the difference in 
pavement condition indices from the reference values should not exceed D2S. Average 
results from the individual ratings by the production contractor and quality monitoring 
(by VDOT staff or an independent contractor) were used to determine the bias (D). The 
pooled standard deviation of all ratings (S) was used to determine the acceptable limits 
for each pavement condition index. 

One of the most important objectives in a quality management plan is to minimize the 
variability in the pavement condition measurements. Regarding the automated crack 
detection software, this objective translates into increasing the reliability (repeatability) 
of distress identification results. In order to accomplish this objective, the following 
predominant sources of variability in automated distress identification need to be 
considered (McNeil et al. 1991; Flintsch and McGhee 2009): 

• Pavement surface condition: the optimum pavement condition for automated 
crack detection is a dry surface following rain that has removed all the loose 
debris. In conditions other than the optimum, significant variability can exist. 

• Image capturing technology: 

o Additional collected data: some technologies such as the 3D imaging 
provide additional data that can assist in enhancing crack detection and 
identification, and thereby reducing variability. 

o Image resolution: detection of smaller cracks requires higher resolution 
equipment. Lower resolution images result in higher variability in crack 
detection. 

o Lighting method: optimum illumination is required for the processing 
software to provide robust crack identification. 

o Color contrast quality: for the crack detection software to successfully 
identify cracks, the contrast of color between the crack and the 
surrounding pavement area is an important factor. 

o Field of view: if the images do not cover the entire lane, some cracks 
might be missed. 
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• Processing algorithm: the level of sophistication of a crack detection algorithm 
dictates how many of the existing cracks will be detected and how many false 
positives will emerge. 

o Algorithm control parameters: the control parameters adjust the 
normalization approach and sensitivity of the software for crack detection 
by changing the probability of crack existence. Adjusting the image 
normalization can handle larger textures such as tined concrete surfaces 
and surface treated roads but may reduce the ability to detect smaller 
cracks. By increasing the sensitivity, more of the existing cracks will be 
detected by the algorithm, but this will come at the cost of potential false 
positives. The optimum control parameters need to be identified for each 
algorithm to produce robust results. 

• Software operator training: even in fully automated crack detection, there is still 
some level of human intervention in determining the algorithm settings and 
quality control of the software results. The training and experience of the operator 
affects the final report. 

In software terminology, validation is referred to the process of checking whether the 
specification captures an agency’s needs, while verification is the process of checking 
that the software meets the specification. Calibration is necessary in the entire process 
of data collection to ensure accuracy, knowing that variations between different devices 
and operators can exist (Flintsch and McGhee 2009). Verification tests should be 
included in the quality management programs to verify data consistency. 

The independent verification of data is usually conducted by a quality assurance 
auditor, who checks the databases. The verification includes the completeness of the 
data based on a random sample of a percent of the data collected. Virginia Department 
of Transportation applies an independent verification and validation of 10% of the data 
provided by the contractor. Determined indices are calculated in randomly selected 
sections of a lot, then are compared with the contractor’s results. For a lot to be 
accepted, the differences in distress indices should be within 10 points (or the value 
determined from evaluation of the contract). When the previous criterion is not met the 
Contractor is responsible to adjust and/or reprocess the lot (Virginia DOT 2012). 

Data Management Considerations 

There are many practical considerations that also need to be addressed when dealing 
with the volume of data discussed for pavement data collection and related imagery. 
Some of the data size information was briefly noted in Section 1.2.9. 
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Due to the large amount of data required for collection, there are many challenges faced 
by those collecting and processing pavement condition data with automated data 
collection. Some of these issues include: 

• Backing up of raw field data from collection 

• Data and image storage for processing and access to processed data 

• Data and image backups during processing of altered data 

• Data and image storage of processed data for distribution of results 

• Data and image backups of final results. 

Due to the cost of collecting pavement condition data in the field and the cost 
associated with processing, proper data management and backup is also required. 
Potential loss of data can occur due to corrupted hard drives in the field and in the office 
as well as potential for the loss of data if shipping of hard drives is required from the 
field or to additional processing centers. In some cases, up to 5 copies of the data need 
to be maintained during processing to prevent significant loss of data or repeat of 
collection or processing effort. 

In many cases the raw data is collected at a much higher interval than is required for 
reporting. For example, longitudinal profile is often measured at a frequency of 1 in 
along the roadway yet reported IRI values are often summarized at intervals of 0.1 
miles. 

For the case of images, changes are not frequently made to the images themselves. 
The most common duplicate of the data encountered is the extraction of still images if 
data is recorded as video. In the case of 3D pavement systems, different image views 
are often extracted from the 3D file type to ensure they are easily viewed in other tools. 

If different normalization or other image adjustments are completed, additional copies of 
the images may be maintained for repeatability. Other changes to files such as 
geotagging, adding metadata, or stamping location information on the file may also 
require additional copies or a backup of the final product. 

Data compression, including images, has long been used to try to best use the available 
resources. In many cases compression can be completed on some data formats without 
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any loss in data quality. Examples of this include the use of data compression with 
zipped file formats. 

For images, many of the formats available also have lossless compression available. 
Additional compression can be accomplished by using adjacent data to closely 
approximate data not stored. Image compression can save valuable hard drive space, 
but data lost in this compression cannot be later recovered and care must be used. 

Image compression and reduced image size (i.e. thumbnails) are often used for the 
distribution of the final results. In many of these cases viewing the data visually can be 
done with a reduced impact with no noticeable impact on quality, but with considerable 
improvements in computer performance through reduced network bandwidth and 
reduced file storage or widely accessible servers. 

The use of metadata incorporated into the pavement images has gotten increased use 
in recent years as a consistent, open sourced method to store additional information 
about image contents such as cracking location and levels. 

In most cases, the metadata is added to the images as one of the last steps during 
processing. This reduces the number of changes to occur on the pavement images and 
the number of intermediate backups required during the data processing phase. 

1.5 Summary and Recommendations 

From this review, it is evident that the field of pavement evaluation has experienced 
significant advancements over the past couple of decades, and in fact still appears to be 
an area of significant interest for technological advancement. Using the information 
identified from this review (and the objectives and constraints of this specific study, as 
they are understood) this summary highlights the aspects of automated pavement 
evaluation that are believed to be critical to the successful completion of this study as 
well as the recommendations for the path forward. 

1.5.1 Image Capturing Hardware 

This study will be using the 2D system operated by Florida DOT. It is evident that 
advancements in 3D technology will likely provide future opportunities for improvement 
in the pavement evaluation process. These will be documented when identified to 
provide recommendation for future consideration. If there is a need to compare results 
from various technologies, a systematic procedure needs to be developed. Since the 
data processing software for 2D and 3D systems have different algorithms, each 
software-hardware system needs to be benchmarked on a predetermined set of 
representative pavement sections. Then, the comparison should be conducted 
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according to established reference values on each section. Increases in both data 
collection resolution and image quality will also improve the ability to match the 
capabilities of human raters and the expectations of the pavement management 
process. 

1.5.2 Crack Detection 

Many different systems and/or techniques are under development and/or being 
investigated for improving the state of the art in image analysis and specifically crack 
detection. Recognizing this is a rapidly evolving field, every effort will be made to 
objectively consider and explore the multitude of methodologies available (within the 
resource constraints of this specific study). These investigations will initially focus on the 
needs (and challenges) specifically associated with PCC surfaced roads (as noted in 
Section 3.6). Where crack detection opportunities are perceived to exist that are beyond 
the resources available for this specific initiative, these will be documented and reported 
for consideration. 

1.5.3 Implementation of Automated Crack Detection Surveys 

Only a few highway agencies have implemented a fully automated crack detection 
system for network-level data collection. From the existing experience, a sound and 
systematic quality management process seems to be the central consideration for a 
successful implementation. Such a quality management system requires quantitative 
quality investigations and corresponding acceptable (and context-sensitive) thresholds 
for quality control, quality acceptance, and independent verification. These components 
are determined through an evaluation of the automated technologies in terms of 
accuracy, precision or reliability, efficiency, and the benefits to the agency. In addition to 
assisting with the selection of an available technology and adoption of a quality 
management system, these success metrics also aid in identification of the potential 
improvements. 

Recognizing the importance of producing results that can be put into practice, all 
aspects of these investigations will be performed with consideration for future 
implementation. Specifically: 

1. Optimizing LRIS image capture and quality. 

2. Defining (quantitatively) deviations from current pavement evaluation procedures. 

a. Both on a distress specific basis, as well as aggregated statistics. 
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b. As well as recommendations for correction (or adjustments) where 
warranted or deemed appropriate. 

3. Identification of training needs (for both pavement evaluators as well as those 
using the results) 

4. Recommendations for quality management procedures. 

5. Data management recommendations. 

1.5.4 The Value Added by Automated Crack Detection 

The development and implementation of an automated crack detection and 
quantification software and supporting work processes is key for this project. To truly 
(and fairly) investigate the merits of the options investigated throughout this study, 
objective assessments of the value added must also be taken into consideration. These 
value assessments will be documented throughout the study to aid in both future 
planning as well as management and development of the pavement evaluation process 
going forward. 
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CHAPTER 2 – RIGID PAVEMENT APPLICATION DESIGN 

Task 2 was subdivided into three (3) subtasks. Each of these subtasks serves a vital 
role in ultimately defining what is needed and why: 1) Validation of the Collected Image 
Quality, 2) Evaluation of Existing Distress Survey Methods, and 3) Gap Analysis and 
Design Recommendations. 

This chapter is organized in five sections. Following this introduction, Section 2 provides 
a report on an investigation conducted by Fugro staff to determine whether the collected 
pavement images are of acceptable quality for crack detection and how FDOT can 
potentially measure various image quality indicators in future. Section 2.2 explains the 
evaluation and comparison study details and includes the findings on evaluation of the 
existing distress survey methods. Section 2.3 describes the efforts to determine the 
appropriate settings for automated crack detection, classification, and rating. Section 
2.4 addresses the gaps between existing automated algorithm and the required 
development efforts to address the gaps. This was the foundation for Task 3. Section 
2.5 summarizes all the efforts and the resulting recommendations from Task 2. 

2.1 Validation of the Collected Image Quality 

This section discusses the investigation conducted by Fugro staff to determine whether 
the collected pavement images are of acceptable quality for crack detection and how 
FDOT can potentially measure various image quality indicators in future. As a result of 
this study, Fugro developed a hardware calibration protocol to be used by FDOT staff in 
order to ensure long term image quality and consistency. This protocol is included in 
Appendix A. A Fugro hardware expert visited FDOT on October 2015 to examine the 
multi-purpose survey vehicle (MPSV) system and discuss quality assurance 
precautions. 

Before evaluation of the available distress survey methodologies, there is a need to 
evaluate the pavement images collected with the Laser Road Imaging System (LRIS) 
and validate the optimum quality of the images and provide guidelines for routine 
validation in the future. To conduct such an evaluation, there is a need for a control site 
with established surface features. FDOT has an established imaging target site 
containing longitudinal and transverse stripes for evaluation of the image alignment 
between the two LRIS cameras, and for any potential optical distortions. 

The following factors need to be considered in the image quality validation process, as 
they might affect the subsequent crack detection. It should be noted that while all these 
considerations can be evaluated, there are limitations with the available hardware 
system that might not allow for resolution of all of the identified issues. In addition, a 
number of these quality evaluations include subjective judgments by an experienced 
engineer or technician in practice. The INO calibration procedure for LRIS is also based 
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on human judgment of image quality. Many of the objective quality assessment 
methodologies in the image processing literature require a complete reference 
(distortion-free) image to calculate the errors against, and such evaluation is not 
feasible when dealing with miles and miles of highway pavement images. Surrogate 
techniques that are no-reference or reduced-reference methods are also available. 

2.1.1 General Image Properties 

The typical state of the practice regarding these image properties is a subjective 
evaluation by an experienced human interpreter. Unsuitable values for these image 
properties could impact crack detection by increasing the potential for missed cracks, 
detection of false positives, or erroneous crack width measurements. 

Minimum Resolution 

Minimum resolution is defined as the level of detail at which you can still see distinct 
lines next to each other. Theoretically to be able to see 1 mm wide cracks on a 
pavement image that is 4 meters wide, a transversal resolution of about 4,096 pixels is 
required. The FDOT LRIS images have about 4,044 pixels, which is deemed as 
adequate. It should be noted that this theoretical minimum does not always translate 
into practical detection of all cracks that are 1 mm wide or larger. This is because a 
variety of other properties including exposure and dynamic range can impact crack 
detection. 

Appropriate Exposure 

The required lighting or illumination needs to increase with higher resolution cameras. In 
addition, the wide-angle lenses used for pavement imagery result in darker edges which 
need to be either further illuminated or post-processed. Excessive exposure can result 
in washed out images that hinder detection of finer cracks. Adequate level of exposure 
is a very subjective matter and typically it is evaluated by an experienced 
engineer/technician. While executing the INO calibration procedure for LRIS (the 
application RoadCrack.exe displayed in the below screen capture), the calibration 
software will try to adjust pixel coefficients based on the non-uniformity found in the 
reference image, and when the expert is satisfied with the image displayed in the 
graphical interface, they press Stop. The images used for calibration should not contain 
any defects like large cracks, shoulders, drop-off, marking, etc. They should also be 
acquired on a road section that is as uniform as possible. Finally, it is also better to use 
images acquired while the vehicle is moving (could be moving slow), this gives a more 
representative intensity profile vector (small defects and surface inconsistencies are 
averaged). 
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Figure 18. Calibration dialog box. 

Dynamic Range 

Dynamic range determines the level of detailed information contained in the image 
regarding the full spectrum of color or gray scale. The higher the dynamic range, the 
more levels of differences exist in the digital values of image pixels. In the 8-bit dynamic 
range of the FDOT LRIS images (which is currently widely used in the industry), there 
are 256 levels on the spectrum which translates into 256 shades of gray in a black and 
white image. The Laser Crack Measurement System (LCMS) images typically have a 
24-bit dynamic range. This indicates that representation of a crack in an image may 
include numerous shades of gray affecting its width along its length. Therefore, manual 
rating of the images is very subjective and automated crack detection and rating 
(severity levels) will depend on how the automated algorithm handles a combination of 
image resolution, exposure, and dynamic range to best identify crack width. 

White balance 

It is recommended that a wide uniform standard 18% gray carpet be used for calibration 
of the white balance. The ICC software includes a routine for such calibration. 

2.1.2 Image Issues 

Following are the issues that could be caused by defective hardware and/or unsuitable 
hardware settings. These issues could impact crack detection by increasing the 
potential for false positives. 
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Streaks 

A disadvantage to the LRIS system is that because it creates images line by line any 
dirt or dust on the camera lens can create streaks in the image. These streaks result in 
black lines appearing in the images and can cause difficulty with automated crack 
detection software that uses the light and dark contrast to identify cracks. Based on the 
past experience of Fugro staff, this is a characteristic of the LRIS system (see Figure 19 
below). 

Alignment of the established longitudinal/transverse control lines 

There are settings parameter files that control the stitching of the left and right images. 
These settings are adjusted according to a visual examination of the images of the 
target site. Based on the currently collected LRIS images of the FDOT target site, it 
seems that correct settings have been implemented. It is recommended that the images 
of the target site be checked at least once every year that the MPSV is in service to 
make sure that the diamond stripes in the center of the lane (see Figure 20) are 
appropriately displayed in the image. 

Figure 19. Example LRIS pavement image (right) showing intensity streaks that cannot be seen 
on the ROW image (left) 

The precaution that FDOT can adopt is to clean the camera lenses (the exterior 
windows on the LRIS units) every morning before data collection and make sure that 
camera covers are on while the vehicle is not collecting images. In addition, FDOT staff 
should use reference images with a minimum number of defects and/or non-uniformity 
for the exposure calibration process. 



 

 

 
  

  
  

    
     

  

  

    
     

  
 

     

  
   

 

   

When necessary, all windows should be cleaned with a soft fabric using isopropanol or 
methanol. Avoid scratches that could damage the optical quality of windows and affect 
system performances. The controller and the sensor’s body should be cleaned with a 
soft fabric using water only. Appropriate precautions should be taken to make sure that 
the isopropanol or methanol is not used over the different labels that are affixed on the 
sensors and on the controller. It is recommended to protect the external windows with 
covers when the LRIS is not in use. 

2.1.3 Image Feature Capturing (optical distortion) 

These properties are related to misrepresentation of actual pavement features due to 
inherent optical distortions in the camera and the wide-angle lens. These issues could 
impact crack detection by increasing the potential for detecting erroneous crack lengths 
and widths. 

Crack Length in Longitudinal, Transverse, and Diagonal Orientations 

FDOT has measured the ground truth horizontal, vertical, and diagonal distances 
among physical diamond shaped stripes at the imaging target site (see Figure 20). 

Figure 20. Pavement section with optical distortion study points. 

69 



 

 

  
 

  
  

    
 

 

    
 

      
  

 

   

The same distances have been measured on LRIS 2D images and LCMS 3D images. 
The results of this exercise (which is according to the previous FDOT research 
documented in Report No. BD-544-11, chapter 2) are detailed here. The errors in these 
measurements are a good representation of the optical distortions in the images. In 
addition, these results could be used for checking the long-term consistency of the 
image capturing hardware. It is recommended that this exercise be conducted once 
annually to ensure optical distortions are not increasing with time. 

The normalized error between field measurements and image measured distances on 
the FDOT imaging target site were evaluated in the transverse, longitudinal and 
diagonal directions. Figure 21 depicts the target site setup and Table 12 shows the 
reference measurement patches that were considered for this evaluation. 

Figure 21. LRIS 2D image of FDOT target site. 
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Table 12. Reference points for measurements 
TRANSVERSE 

Row 
Patch 
Number 

Row 
Patch 
Number 

Row 
Patch 
Number 

Row 
Patch 
Number 

Row 
Patch 
Number 

Row 
Patch 
Number 

R2 

1 - 2 

R3 

1 - 2 

R4 

1 - 2 

R5 

1 - 2 

R6 

1 - 2 

R7 

1 - 2 

2 - 3 2 - 3 2 - 3 2 - 3 2 - 3 2 - 3 

3 - 4 3 - 4 3 - 4 3 - 4 3 - 4 3 - 4 

4 - 5 4 - 5 4 - 5 4 - 5 4 - 5 4 - 5 

5 - 6 5 - 6 5 - 6 5 - 6 5 - 6 5 - 6 

6 - 7 6 - 7 6 - 7 6 - 7 6 - 7 6 - 7 

7 - 8 7 - 8 7 - 8 7 - 8 7 - 8 

8 - 9 8 - 9 8 - 9 8 - 9 8 - 9 

9 - 10 9 - 10 9 - 10 

10 - 11 10 - 11 10 - 11 

11 - 12 11 - 12 11 - 12 

12 - 13 12 - 13 12 - 13 

13 - 14 

14 - 15 

LONGITUDINAL DIAGONAL 

Patch Number Patch Number 

R1,1 - R2,5 R1,1 - R3,9 

R2,5 - R3,7 R1,1 - R3,3 

R3,7 - R4,7 R6,7 - R7,4 

R4,7 - R5,8 R7,4 - R6,6 

R5,8 - R6,5 R8,1 - R6,3 

R6,5 - R7,4 R3,7 - R6,7 

R7,4 - R8,1 

In the transverse direction, all the distances between consecutive diamond stripes have 
been measured in each row. For the longitudinal and diagonal directions, a sample of 
the distances have been measured in the field. FDOT staff have conducted three 
measurements per patch and the average of those measurements was considered as 
the field reference measurement to estimate the error in image measurements due to 
optical distortions. The image measurements were done on FDOT provided LRIS 2D 
images and the Fugro collected LCMS 3D images. 

The width of LRIS 2D image and LCMS 3D image are typically 4044 and 4164 pixels, 
respectively. This depends on the amount of overlap between the left and right camera 
images during stitching. Each pixel has been assumed as 1 mm (which might not 
always be true but is the best estimate) and based on this, the error percentage of LRIS 
2D and LCMS 3D images have been calculated with respect to field measurements. 
The normalized error percentage (normalized to field measurements) was calculated as 
follows: 
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𝑖𝑚𝑎𝑔𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑖𝑒𝑙𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 (%) = 100 × ( )

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑖𝑒𝑙𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 

The average, standard deviation, minimum, and maximum percentage of normalized 
errors for all the measurement patches in longitudinal, transverse, and diagonal 
directions have been summarized in Table 13. Average error percentage in transverse 
direction is found to be slightly higher in 3D LCMS image compared to 2D LRIS image. 
However, average error percentages in longitudinal and diagonal direction are lower in 
3D LCMS image compared to 2D LRIS image. 

Table 13. Statistics for normalized error compared to field measurement 

Direction 
Image 
Technology 

Normalized Error (%) 

Average 
Standard 
Deviation 

Minimum Maximum 

Transverse 
2D LRIS 3.12 2.92 -3.38 7.61 

3D LCMS 3.98 3.15 -3.00 8.95 

Longitudinal 
2D LRIS -2.30 0.46 -3.11 -1.90 

3D LCMS -0.46 1.42 -1.81 1.98 

Diagonal 
2D LRIS -0.92 0.81 -1.80 0.05 

3D LCMS -0.03 0.74 -0.79 1.27 

It should be noted that the overlap resulting from the stitching of the left and right 
camera images could affect the distance measurements from the images in the two 
patches in the middle of each row. Measurement patches that could be affected by 
image stitching have been highlighted in gray in Table 12. Table 14 shows the average 
percentage of errors (normalized to field measurements) in the transverse direction only 
for the measurements that were entirely on one image and therefore not affected by the 
image overlap. The exclusion of the LRIS image edge measurements resulted in lower 
average error but higher standard deviation of error. In contrast, the exclusion of LCMS 
image edge measurements resulted in higher average error and lower standard 
deviation of error. 

Table 14. Average and standard deviation of error excluding measurements affected by stitching 

Direction 
Average Error (%) Standard Deviation of Error (%) 

2D LRIS Image 3D LCMS Image 2D LRIS Image 3D LCMS Image 

Transverse 2.95 4.92 3.16 2.68 

A side-by-side comparison of the measurements (distances between diamond markers) 
from the field to the measurements from the images have been shown individually in 
Figure 22 for transverse, longitudinal, and diagonal directions. 
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Figure 22. Image measurements compared to field measurements in a) transverse, b) 
longitudinal, and c) diagonal directions. 

The ratio of the field measurements to the 2D LRIS or 3D LCMS image measurements 
has been estimated as a correction factor. The transversal correction factors for 2D 
LRIS image and 3D LCMS image have been shown in Figure 23 as a function of the 
distance from the center of each measurement patch to the center of the image. The 
distance has been measured from the center of image to center of consecutive diamond 
marker points shown in Figure 21. The correction factor for 3D LCMS image 
measurements is lower than that of the 2D LRIS image most of the time, with some 
exceptions towards the edge of rows. It is also evident that there is a higher variance in 
the correction factors for the 3D LCMS image compared to the 2D LRIS image. 

It should be noted that all the field and image measurements were done to the nearest 
full millimetre. However, it is not expected that anyone can accurately measure to the 
‘center’ of these targets, in the field or off an image by conducting only one 
measurement. Therefore, multiple measurements (in this case 3) need to be averaged. 

It is evident that the amount of these optical distortion errors and correction factors are 
fairly small and variable depending on the location of the measurement within an image. 
Therefore, it is not realistic to adjust the detected cracks according to these correction 
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factors. The intention is to use these errors as a check for long term consistency of the 
errors in image capturing hardware. 

(a) Correction Factor for LRIS Image 

(b) Correction Factor for LCMS Image 

Figure 23. Correction factors for transversal image measurements in a) 2D LRIS and b) 3D LCMS. 
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Crack Width in Longitudinal, Transverse, and Diagonal Orientations 

Unlike length measurements which are very objective, crack width measurements are 
subjective due to the gray areas in the images and subjectivity in visual field 
inspections. In addition, the small magnitudes of crack width make it a challenge (if not 
impossible) to measure the errors which are in sub millimeters, while the image 
resolution is at 1 mm. The smallest crack width threshold of interest for FDOT is 3.18 
mm which defines the threshold between low and moderate severity cracking. 

Signal-to-Noise Ratio 

This is a traditional quantitative measure representing the ratio of the amount of 
undistorted features captured in an image (signal) to the distortion errors (noise) in 
detecting features, expressed in decibels. Therefore, this measure and similar 
measures such as mean squared error (MSE) require a reference “undistorted” image. 
An estimate of the signal to noise ratio (SNR) can be approximated as the average 
value of the image pixels (0 to 255 for 8-bit images) divided by the standard deviation of 
the image intensity values. This approximation eliminates the need for a reference 
image, but an image with a high SNR value approximated through this method does not 
necessarily remain faithful to the reality. 

A target could be synthetically manufactured to serve as the reference undistorted 
image. A picture of the target taken by the available camera could be used to evaluate 
the SNR of the captured image as compared to the reference. Figure 24 shows two 
sample target images used as a reference for evaluating the signal to noise ratio. 

Figure 24. Sample Target Images used as a Reference for Evaluating Signal to Noise Ratio 



 

 

  
  

  
   

 

   

  
 

  
   

  
  

 
   

  
   

   
  

 

 
   

  
   

  
   

 
 

  

 
 

 
   

  
     

   
    

 

Detailed investigation of SNR values was conducted in a previous FDOT study and it is 
documented in Report No. BD-544-11. It is recommended that a similar target image be 
used for annual control checks of the SNR values. In Appendix A, an exercise is 
recommended to be conducted annually to ensure signal to noise ratio is not increasing 
with time. 

2.1.4 LRIS Hardware 

The integrator company for the FDOT LRIS vehicle is the International Cybernetics 
Corporation (ICC) and they are responsible for resolving hardware issues, some of 
which could be addressed by routine maintenance. It is necessary that the hardware 
and software setup and “calibration” standards recommended by the LRIS equipment 
manufacturer (Pavemetrics) and the FDOT equipment integrator (ICC) be followed with 
regards to routine maintenance and calibration controls. The overall system 
maintenance and recalibration is recommended once a year. This includes checking the 
camera installed heights and the vehicle tire pressure to ensure the pavement surface is 
within the camera depth of field, where objects are in focus. 

From the initial investigation of location referencing information by Fugro staff, there 
seems to be a software issue with determination of the location of each image across 
the length of the highway. When stitching the images together across the highway 
length, there are some gaps and some overlaps between consecutive images. The 
calculation of FromDist and ToDist parameters for each image needs to be revisited by 
FDOT staff to address this issue. For the purposes of this project, these values were 
manipulated by Fugro database experts to make sure the entire length of the images 
were visible in the Vision software to facilitate rating of the distresses. Image lengths 
were not affected by this manual correction, only the locations of the images were 
manipulated to align the edges of subsequent images. 

a. Distance measuring accuracy: the distance measuring instrument (DMI) 
needs to be inspected and calibrated on a routine basis as recommended 
by the manufacturer. A control section distance can be measured with the 
DOT reference device and the vehicle DMI measurements of the control 
section can be compared to the reference measurement. 

b. Latitude-Longitude accuracy: the global positioning system (GPS) devices 
need to be inspected and calibrated on a routine basis as recommended 
by the manufacturer. The vehicle needs to be parked at specific locations 
on the control section for about 15 minutes to establish a stable 
measurement. Then the GPS coordinates of those locations should be 
surveyed using total station equipment to check the vehicle GPS 
measurements. Depending on the number and model of the IMU units in 
the vehicle, acceptable errors could be found from the manufacturer 
website. 
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c. LRIS platform stability: From the visual inspection by Fugro staff, no 
issues were found with platform stability. If there are loose connections in 
the platform, they need to be addressed as recommended by the 
manufacturer. 

Figure 25. Schematic of LRIS image collection system (Pavemetrics). 

2.1.5 Environmental Effects 

The effects of different lighting conditions (overcast, cloudy, or sunny) and vehicle 
speeds (25, 35, or 45 mph) have already been studied in a previous FDOT research 
project (documented in Report No. BD-544-11, chapter 2). It was found that the LRIS 
images are not significantly affected by different vehicle speeds and lighting conditions. 

The LRIS user manual indicates that the equipment should not be operated at 
temperatures above 40 degrees Celsius (104 degrees Fahrenheit). It is recommended 
that protective covers be used when LRIS is not in use to protect against moisture and 
dust. 

2.1.6 AASHTO Standard R86-18 

The following requirements in terms of minimum image quality acceptable for crack 
detection have been recommended in the American Association of State Highway and 
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Transportation Officials (AASHTO) provisional protocol (PP) number 68, which was later 
adopted as AASHTO Standard R86-18 (AASHTO 2018b): 

“4.3.1. The images must provide sufficient difference between data point values 
representing distressed and non-distressed areas that subsequent distress detection 
techniques can delineate a minimum of 33 percent of all cracks under 3 mm (0.12 in.), 
60 percent of all cracks present from 3 mm (0.12 in.) and under 5 mm (0.2 in.) wide, and 
85 percent of all cracks 5 mm (0.2 in.) wide or wider regardless of orientation or type. 
The determination of this capability will be made utilizing a minimum of ten 0.03-km 
(100-ft) samples containing an average of at least five such cracks per sample. 

4.3.2. The images should be sufficiently void of erroneous differences between data 
point values that a section of pavement without distress, discontinuities, or pavement 
markings contains less than 3 m (10 ft) total length of detected false cracking in 50 m2 

(540 ft2) of pavement. The determination of this capability will be made utilizing a 
minimum of ten 0.03-km (100-ft) samples of various types that meet the criteria.” 

These image quality descriptions are extremely dependent on the crack detection 
algorithms that are used to evaluate whether the mentioned amount of cracks with 
specific width could be detected, or whether false positives are avoided. Therefore, 
these quality descriptors cannot be considered independent of the crack detection 
algorithm that is used by each agency. It is recommended that each agency uses their 
corresponding crack detection software to evaluate whether their collected images in 
combination with their software meet the requirements of the existing provisional 
protocol. Ideally however, the protocol needs to be modified to provide image quality 
requirements independent of the type of applied crack detection algorithm. 

As detailed in Section 2.2.6, on average, the evaluated crack detection software was 
able to detect about 86% of the cracks in all orientations. This result was based on 24 
sample images collected from 12 test sections in this study. The sample size satisfies 
the size requirements of PP-68. Therefore, it could be stated that if crack width is not 
considered, the image quality did satisfy the requirements of PP-68 in terms of crack 
detection (or lack of missed cracks). Due to the inherent noise in the images, a pre-
processing step had to be conducted in order to filter out the noise. These filters tend to 
increase crack widths and therefore hinder accurate measurement of crack width. That 
is why the requirements of PP-68 were not evaluated for each group of crack widths. 

With regards to false positives, sample images were evaluated from 12 test sections 
that met the requirements for sample size in PP-68. The results (which have been 
detailed in Section 2.2.6) indicate that 78% of the automatically detected distresses by 
length actually existed on the reference survey. This means that 22% of the detected 
distresses by length were false positives. The requirement of PP-68 is to have less than 
10 feet of false positives in 540 ft2 sample size (45 feet if the lane width is 12 ft), which 
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would translate into 22% (10/45). Therefore, it can be stated that the image quality did 
satisfy the requirements of PP-68 in terms of false positives. 

2.1.7 Further Hardware Gap Analysis 

Following the next tasks of this research project and after establishing the appropriate 
automated crack detection algorithm and settings, the Fugro team could better identify 
potential impacts of LRIS hardware and image quality on crack detection results. If 
significant negative impacts are discovered manifested by missed cracks and false 
positives (as described in AASHTO PP-68), then potential remedies shall be suggested 
accordingly. Chapter 4 describes such additional investigations. 

2.2 Evaluation of Existing Distress Survey Methods 

The evaluation of the existing distress survey methods was done in the following two 
steps: 

1. Comparison of the overall cumulative quantities of various distress types found in 
the existing manual windshield survey, manual rating of the collected images 
(semi-automated survey through Fugro Vision), and a readily available 
automated software (Fugro WiseCrax) 

2. Verification of the automatically detected distresses against the reference crack 
maps generated through a manual evaluation of the collected images (semi-
automated survey) 

The following sections will explain the applied distress survey protocol, the 
representative pavement test sections used for these evaluations, the manual 
windshield surveys, and the performance metrics considered for these evaluations. 

2.2.1 Distress Survey Protocol 

In evaluating the existing methodologies, we must first examine what specific 
information is currently collected and how. Florida DOT’s Rigid Pavement Condition 
Survey Handbook (2017) includes the following distress types and severities: 

1. Transverse Cracking (count), Light-Moderate-Severe 

2. Longitudinal Cracking (count), Light-Moderate-Severe 
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3. Spalling (linear feet), Moderate-Severe 

4. Corner Cracking (count), Light-Moderate-Severe 

5. Patching (sq. yards), Fair-Poor 

6. Shattered Slabs (count), Moderate-Severe 

7. Surface Deterioration (sq. feet), Moderate-Severe 

8. Pumping (percentage range: Code 1 to 4), Light-Moderate-Severe 

9. Joint Condition (partially sealed, not sealed) 

10.Multiple Cracked Slabs (count) 

These are considered the core distresses to be identified. In addition to the FDOT Rigid 
Pavement Condition Survey Handbook (2017) as the primary protocol, the more 
simplified approach of the AASHTO provisional protocol 67 for flexible pavements could 
be adopted for rigid pavements and considered for this evaluation. Using the AASHTO 
PP67 approach, the main distress types are longitudinal cracking, transverse cracking, 
and other pattern cracking which would include shattered slabs and corner cracking. 

Guidelines are provided in the FDOT handbook for how the data is to be collected for 
establishing extent and severity of each distress type. These guidelines are reviewed 
with the designated FDOT raters each year to confirm they are current on their 
understanding of the guidelines and expectations. To improve consistency among the 
FDOT raters and to further clarify the protocol considerations of this experiment, a two-
day distress raters’ class was organized for both existing Florida DOT Raters and 
appropriate Fugro Roadware Staff August 25 to 26, 2015. The class included both 
classroom as well as field training exercises. The main objective of this workshop was 
for Fugro to understand how FDOT raters conduct rigid pavement condition surveys, 
and how some of the involved decisions on distress type, extent, and severity can be 
quantified for the automated algorithm to match FDOT raters' decisions. 

The workshop started with a discussion of the various distresses included in the 
handbook. Then all the participants visited a nearby jointed concrete pavement section 
in Waldo, FL for a field exercise. Ten distress raters were divided into three groups, 
each having one experienced FDOT rater, one non-experienced FDOT rater, and one 
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Fugro rater. One of the groups had four raters. There were four test sections as follows. 
Each group rated one section, except for group 1 who rated two smaller sections: 

• Section 01 rated by Group 1: 148th Ave to Earle St, R1 (inside lane) 

• Section 02 rated by Group 1: 148th Ave to Earle St, R2 (outside lane) 

• Section 03 rated by Group 2: Earle St to Seydel St, R1 

• Section 04 rated by Group 3: Seydel St to End of PCC section 

The average, standard deviation and coefficient of variation (COV) in amount of each 
distress type at each and all severity levels found on each test section has been 
documented in Appendix C. In addition, the graphs in Appendix C indicate the number 
of standard deviations that each rater (on each test section) was off from the average 
rating. Several images in Appendix C show the examples for each distress type found in 
the field. 

Based on these results, there seems to be more agreement among the raters on some 
distresses than the others. For example, there seems to be about 80% agreement 
among the raters in detecting the total amount of transverse cracking, but only about 
65% for spalling. Overall, there seems to be more agreement among the raters in 
detecting the total amount of each distress type rather than assigning the distress 
severity levels. The amount of agreement is defined as 100 minus the COV in 
percentage. 

The results of this exercise do not provide adequate statistical information for the 
distress types and severity levels that were not frequent on the example test sections. 
For example, if there is only one shattered slab in a test section and all raters identify it, 
then there will be 100% agreement, but this level of agreement might not be 
representative of the actual level of agreement among the raters when they conduct 
state wide surveys. Another example would be the severe transverse cracks: if there 
are only two instances in a section and some raters assign them to moderate, then 
there will be a significant amount of variation (low agreement) among the raters. It was 
expected that in the subsequent evaluation with 10 test sections, there would be a 
higher amount of each distress type and severity level, so that the statistics would make 
more sense. 

Based on the meeting discussions and the results of the field exercise (see Appendix 
C), several notes were recorded for consideration in the quantification process required 
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for software development. FDOT staff might discuss these notes to potentially include 
them for further clarity of the handbook. The following are the notes from those 
discussions. 

Overall Manual Distress Survey Notes: 

• The rated pavement surface is limited to the lane area between the inside edges 
of the two lane stripes, even if there are widened slabs 

• When crack spalling is present on rigid pavements, crack width is measured at 
the bottom of the crack (as opposed to the pavement surface). So, spalling 
should not affect the crack width that is used for assigning severity levels. 

• D cracking or map cracking are not rated according to FDOT protocol 

• CRCP sections are not currently placed on Florida highways 

• Bridges are not rated, also exclude the approach and leave slabs (when they are 
identified). 

• Rehabilitation comments are made on the rating forms 

• Rater comments are mainly used by the raters for the next survey 

• Multiple cracked slabs (if the slab is shattered or NOT shattered but contains 
more than one crack of any type) are counted as well during the manual survey. 
This is used to determine Percent Cracked Slabs for HPMS/MAP-21 purposes. 

Surface Deterioration Notes: 

• Surface deterioration is not commonly encountered in the field. 

• It is typically rated as square feet of deterioration per rated mile of pavement. 

• The computer should measure this affected area and the final value should be 
divided by the length of rated pavement. 
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Transverse Cracking Notes: 

• If there is a longitudinal joint within the rated lane, and two transverse cracks 
intersect that joint within a foot of each other, then the whole crack is counted as 
one transverse crack. 

• It is possible to count multiple transverse cracks within a single slab. 

• Severity is assigned according to the crack width that is present on the majority 
(more than 50 percent?) of the crack length. This needs to be clarified in the 
handbook. 

• All sealed cracks are rated as low severity. 

Longitudinal Cracking Notes: 

• Cracks are counted per slab; if a longitudinal crack extends from one slab to the 
next, it will be counted as two longitudinal cracks 

• It is possible to count multiple longitudinal cracks within a single slab. 

• All sealed cracks are rated as low severity. 

Spalling Notes: 

• If both sides of a joint (but not cracks) are spalled, then both are counted 
independently. 

• If the spalled area is sealed, it can affect the severity level if well sealed. 

• Several small spalls within a crack/joint can be accumulated on the same 
crack/joint. 

• A minimum spalling of 1 foot is claimed, if present, per crack/joint. 

• If there is less than 4” of spalling on a crack/joint, then it is not typically recorded 
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Corner Cracking Notes: 

• If there is loss of pavement material as a result of corner cracking, then it is 
counted as spalling and not corner cracking. The size of such material loss 
needs to be specified. 

• Multiple corner cracks can occur within the same slab. 

• If the points of intersection between the crack and the joints are very close to the 
corners (the LTPP Distress Identification Manual identifies it as less than 0.3 
meters), the crack should be rated as spalling instead of corner cracking. This 
needs to be clarified in the handbook. 

• Corner cracks must connect a transverse joint to a longitudinal joint.  If a 
diagonal crack occurs at a long or transverse crack, it would be counted as an 
additional longitudinal or transverse crack (based on the orientation of the crack). 

Patching Notes: 

• Patching is recorded as Sq.Ft. in the field and summarized, then converted to 
square yards for recording. 

• Note 2 reads: "If half or more of the slab is replaced, do not record as patching." 
This indicates full slab replacements are not counted as patching. 

• Doesn't matter if the patching material is asphalt or concrete. 

• The patching is rounded to the nearest square yard (<0.5 sq. Yd. = 0) 

Shattered Slab Notes: 

• When a slab is rated as shattered slab, then no other distresses are recorded on 
that slab. However, if the slab is not shattered but contains more than one crack 
of any type, then it is counted as a multiple cracked slab. For calculating the 
HPMS/MAP-21 parameter Percent Cracked Slabs, the number of cracked slabs 
(shattered or not) is needed to divide by the total number of slabs. 
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Joint Condition Notes: 

• The condition of the joints in a section is assigned based on the predominant 
condition. Does this mean more than 50% of the joints? This needs to be clarified 
in the handbook. 

2.2.2 Representative Test Sections 

To conduct an evaluation of the existing methods, FDOT engineers identified a set of 12 
representative test sections that are each at least a standard evaluation length (0.1-
mile-long) and contain several of the jointed concrete pavement distresses in them 
(making sure that all the distress types and severities are incorporated in at least a 
couple of the sections selected). In the selection of the representative test sections, the 
following major factors should be considered to the extent possible: 

1. Existence of a variety of the cracking distresses 

2. Existence of different severity levels for each crack type 

3. Pavement surface texture (rough versus smooth) 

4. Concrete tinning (or lack thereof) 

5. Lighting conditions (with or without shades) and angle (going into or out of the 
sun) 

A sample partial factorial is provided below as an example. While all cells need not be 
accounted for, by filling the bulk of them, the analysis should be able to account for 
potential or anticipated interactions and relationships. In this example, priority has been 
given to cracking distress types, because they are the focus of this project. Due to the 
project limitations, the pavement surface texture and concrete tinning factors were not 
considered in selection of the representative sections. 
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Table 15. Example Partial Factorial Plan 

Lighting Shade Into Sun Away from Sun 

Texture/Tinning Heavy Light Heavy Light Heavy Light 

D
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Low SS TC/LC SP CB TC/LC SS 

High SP CB TC/LC SS CB SP 

LC/TC: Longitudinal and/or Transverse Cracking; CB: Corner Breaks; SS: Shattered 
Slabs; SP: Spalling 

Table 16 shows a list of the 12 sections ultimately selected and some general properties 
of them. 

Table 16. Final Selected 12 Test Sections 

NO CNTY DIST ROUTE DIR LN BMP LNGTH DEFECTS_PRESENT 

1 Orange 5 SR500/SR50 S L2 13.070 0.155 
TR, LNG, SPL, CNR, 
ODD SLABS & JOINTS 

2 Orange 5 SR500/SR50 S L2 12.744 0.148 
TR, LNG, SPL, PT, ODD 
SLABS & JOINTS 

3 Orange 5 SR500/SR50 S L2 21.784 0.214 TR, LNG, SEALANT 

4 Orange 5 SR15/600 N R2 3.400 0.170 TR, LNG, SPL 

5 Orange 5 SR15/600 N R2 6.280 0.170 
TR, LNG, CNR, SPL, 
SEALANT 

6 Duval 2 SR139/SR15 SE L2 3.826 0.120 
TR, LNG, CNR, SPL, 
SHTRD SLB 

7 Duval 2 SR139/SR15 SE L2 3.706 0.121 
TR, LNG, CNR, SPL, 
SHTRD SLB 

8 Duval 2 SR139/SR15 SE R2 3.596 0.098 TR, LNG, CNR, SPL 

9 Duval 2 SR139/SR15 SE R2 3.694 0.106 TR, LNG, CNR, SPL 

10 Duval 2 I-95 SW L3 4.344 0.134 TR, LNG, CNR, SPL 

11 Alachua 2 SR24 SW L2 0.110 0.141 
TR, LNG, CNR, SPL, 
SHTRD SLB 

12 Alachua 2 SR24 SW L2 0.251 0.160 
TR, LNG, CNR, SPL, 
SHTRD SLB 

Images of these 12 test sections were collected both with the FDOT MPSV (2D LRIS) 
on December 1, 2015 and with a Fugro ARAN (3D LCMS) in October 2015. The main 
analyses were conducted using the LRIS images, but there could be a follow-up study 
showing the results of 3D analysis. Fugro staff created a SQL procedure to transfer 
LRIS images from the FDOT server folder structure to a SQL database format that is 
compatible with Fugro Vision software. This procedure has been documented in 
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Appendix M. it is imperative that any future data submission to Fugro be in the folder 
structure and format that has been identified in Appendix M. This would allow for the 
provided SQL code to create an appropriate instance of a Vision database 
corresponding to the collected MPSV images. 

2.2.3 Manual Windshield Survey 

Three FDOT raters conducted a manual windshield distress survey of the 12 test 
sections according to the FDOT protocol. Care was taken not to aggregate the 
observations into one combined score, to avoid masking or obscuring differences in 
specific distress observations which may later be helpful in the gap analysis. The 
average, standard deviation and coefficient of variation (COV) in amount of each 
distress type at each and all severity levels found on each test section has been 
documented in Appendix D. In addition, the graphs in Appendix D indicate the number 
of standard deviations that each rater (on each test section) was off from the average 
rating. 

The results from the different raters were analyzed to assess the variability among the 
raters. These analyses provide a clearer understanding of the distress definitions and 
areas of ambiguity (based on variability observed from the results of the experienced 
raters) that may merit evaluation prior to initiating the automation. The amount of 
agreement is defined as 100 minus the COV in percentage. 

The results were similar to the results of the field workshop. There seems to be more 
agreement among the raters on some distresses than the others. For example, there 
seems to be about 82% agreement among the raters in detecting the total amount of 
transverse and longitudinal cracking, but only about 64% for spalling, 56% for corner 
cracking, and 71% for shattered slabs. This result was expected because there were 
some ambiguities in the protocol definitions of corner cracking and spalling as it was 
noted in section 2.2.1. Overall, there seems to be more agreement among the raters in 
detecting the total amount of each distress type rather than assigning the distress 
severity levels. 

Considering the total amounts of all severity values for each distress type, the majority 
of ratings were under one standard deviation away from the average of all ratings for 
each test section. There were total of 36 ratings (12 sections each rated by three 
different FDOT raters). For transverse cracking, nine out of the 36 ratings in which any 
transverse cracking was recorded (25%) were more than one standard deviation away 
from the average. For longitudinal cracking, spalling, corner cracking, and shattered 
slabs, 10/36 (28%), 11/36 (30%), 5/23 (22%), and 7/27 (26%) ratings respectively were 
more than one standard deviation away from the average. These could be considered 
as outliers. 
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Table 17. Overall Agreement Among Raters in Manual Windshield Survey (See Appendix D for 
Details) 

Distress Type 
Agreement Among Raters in 
Total Distress Amount (All 
Severities), 100 - COV (%) 

Percentage of Ratings 
more than one STD away 
from AVG (outliers) 

Transverse Cracking 82% 25% 

Longitudinal Cracking 82% 28% 

Spalling 64% 30% 

Corner Cracking 56% 22% 

Shattered Slabs 71% 26% 

Patching 74% 33% 

Surface Deterioration 52% 45% 

2.2.4 Semi-Automated Survey 

With guidance from Fugro engineers, the same three FDOT raters conducted a semi-
automated rating of the same 12 test sections using the LRIS images that were 
imported into the Vision software. Due to some malfunction in the FDOT MPSV unit, the 
data corresponding to one run of the collected images on section number 7 was not 
recorded properly and therefore, section 7 was only rated by two raters. There were 
total of 35 (12 sections with three runs each minus one missing run) ratings. The data 
was extracted from the Vision database and the results in terms of the average, 
standard deviation and coefficient of variation (COV) in amount of each distress type at 
each and all severity levels has been documented in Appendix E. In addition, the 
graphs in Appendix E indicate the number of standard deviations that each rater (on 
each test section) was off from the average rating. 

On average, the agreement among the three raters is approximately 82% in terms of 
the total number of transverse cracks, 67% for longitudinal cracks, 62% for spalling, 
only 30% for corner cracks, and only 28% for shattered slabs. There seems to be less 
agreement among the raters in terms of the total amount of corner cracks and shattered 
slabs compared to longitudinal and transverse cracks. Overall, there seems to be less 
agreement among the raters using the semi-automated rating method compared to the 
manual windshield survey. This could be attributed to the years of experience of FDOT 
raters with the manual windshield survey compared to their unfamiliarity with the Vision 
software and the semi-automated method. This calls for more training and coordination 
among the raters in terms of software application. 

Considering the total amounts of all severity values for each distress type, the majority 
of ratings were under one standard deviation away from the average of all ratings for 
each test section. For transverse cracking, seven out of the 35 ratings in which any 
transverse cracking was recorded (20%) were more than one standard deviation away 
from the average. For longitudinal cracking, spalling, corner cracking, and shattered 
slabs, 9/34 (26%), 10/35 (28%), 6/19 (32%), and 8/20 (40%) of ratings respectively 
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were more than one standard deviation away from the average. These could be 
considered as outliers. 

Table 18. Overall Agreement Among Raters in Semi-Automated Survey (See Appendix E for 
Details) 

Distress Type 
Agreement Among Raters in 
Total Distress Amount (All 
Severities), 100 – COV (%) 

Percentage of Ratings 
more than 1 STD away 
from AVG (outliers) 

Transverse Cracking 82% 20% 

Longitudinal Cracking 67% 26% 

Spalling 62% 28% 

Corner Cracking 30% 32% 

Shattered Slabs 28% 40% 

Patching 24% 47% 

Surface Deterioration 62% 60% 

2.2.5 Automated Survey 

The Vision automated algorithm (WiseCrax) was adjusted to correspond to the specified 
criteria in the handbook for the viable distresses and then run on sets of images 
collected from the pavement sections, which were evaluated by the group of 
experienced raters. As detailed in Section 2.3, the WiseCrax detection, classification, 
and rating parameters were investigated to select the optimum settings. The automated 
surveys on all the test sections were conducted using the same set of software settings 
(control parameters). The same algorithm was run as many times as there were raters 
(i.e. if three raters review each image, the algorithm was run three times). This provides 
for another set of analyses to compare reproducibility between each of the three sets of 
reviews, as well as the repeatability of the algorithm results within the multiple runs. 

As detailed in Section 2.3, the WiseCrax algorithm, in its present form, is capable of 
only classifying joints, transverse cracks, and longitudinal cracks. New classification and 
rating routines are needed for corner cracking and shattered slabs, which will be 
addressed in Section 2.3. For identification of spalling and patching, there is a need for 
depth information and therefore 3D data would be required. 

Also, as discussed in Section 2.3, filters were used to take the noise out of the images 
to improve results in terms of detecting wide joints and sealed cracks. The filtering 
process increases crack widths and therefore compromises the ability of the rating 
process to assign correct severity levels. Therefore, the results here are only expressed 
in terms of total distress amount in all severity levels. Section 2.3 will discuss future 
work to address this issue. 



 

 

  
  

  
 

 
     

    
   

  
   

 
 

    
 

  

  

   
 

     
    

   

  
   

 
   

 
    

  
   

   
  

  
    

  
 

  
 

The algorithm results are based on length of the distresses and not count per slab as it 
is in the FDOT protocol. Therefore, a database SQL routine was developed to use the 
location of the detected joints to transform the total distress length by section to total 
distress counts per slab by section. This process is not final yet as there are issues with 
grouping the cracks together. As with any other automated detection routine, only 
segments of a crack are detected because of the inconsistencies in the intensity along 
the crack. Therefore, the multiple segments need to be grouped together to form the 
complete crack. WiseCrax currently has the option for grouping all distresses of the 
same type in each image frame, but that is not adequate for this project as there might 
be more than one slab in each image frame. WiseCrax also has other options for 
grouping according to a tile that encompasses multiple cracks, but the algorithm did not 
perform satisfactorily on the test sections. The algorithm needs to be improved in this 
regard. Section 2.3 will discuss future work to address this issue. Hence, the results are 
expressed both in terms of length and count in this evaluation. 

2.2.6 Comparison of Different Rating Methods 

Success Metrics 

The three principal success metrics of any process are effectiveness, efficiency, and 
reliability. With respect to automated condition evaluations, these three metrics could be 
considered for two aspects of the process, first for the detection and classification of 
individual surface defects (cracks), and second for the overall evaluation and 
quantification of the pavement condition in a distinct section. 

In the context of automated distress identification, effectiveness can be expressed in 
terms of accuracy of the crack detection software when compared to a reference 
baseline. Accuracy is a qualitative term referring to whether there is agreement between 
a measurement made on an object and its true (target or reference) value. Bias is a 
quantitative term describing the difference (or error) between the average of 
measurements made on the same object and its true value. 

While systematic errors identified in the bias can be calibrated out, such evaluations 
must also address the random errors as well. The average results may be quite 
comparable, but individual results can deviate significantly. Efforts must also be made to 
control these deviations to produce results which can ultimately be classified as reliable. 
Reliability of automated distress surveys is often expressed in terms of precision. 
Precision is also a qualitative term describing the degree of repeatability of a 
measurement value. Variance and standard deviation of error are quantitative estimates 
of precision. Accuracy and precision (or the corresponding quantitative estimates: bias 
and variance) ultimately define how effective and reliable a system is as described in 
greater detail below. 
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Based on the overall cumulative amount of each distress among different test sections 
and multiple runs, the success metrics used to compare different rating methods are: 

1. Average error (bias) was used to represent accuracy or effectiveness of each 
method. Accuracy can only be quantified with respect to a reference value. 

2. Average standard deviation of error among 12 sections was used to represent 
precision of each method. 

3. In order to represent reproducibility of manual and semi-automated methods, 
average standard deviation of error on the same test section and among the 3 
raters was used. In order to represent repeatability of the automated algorithm, 
average standard deviation of error on the same test section and among 3 runs 
was used. 

4. To use a measure of reliability independent of the reference survey, agreement 
among the three raters (or three runs) was also represented by 100 minus the 
coefficient of variation in the total amount of each distress type on each section 
among the three raters/runs. In addition, the number of outliers among the three 
raters/runs was represented by the number of section ratings that were more 
than one standard deviation away from the average of the three raters/runs. 

5. To compare efficiency of the three methods, the time required for each survey 
method was estimated. 

Reference Rating or “Ground Truth” 

Multiple research efforts in the past have introduced various methods to establish 
reference values or “ground truth” for pavement surface defects by using the “most 
appropriate” methodology available. The major types of reference values include: 

1. Manual distress identification: In this method, professional (trained and 
experienced) distress raters identify the surface distresses on a set of pavement 
sections that are deemed representative of conditions across a network. 

2. Semi-automated detection: This method is similar to the manual method, but the 
professional raters use the images collected by monitoring vehicle to identify the 
distresses. 
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3. Artificially fabricated distress: In this method, cracks are designed and fissured 
into steel plates or cut into an existing asphalt surface, so the precise dimensions 
of the defects are known. This method is mostly used to resolve image distortion 
issues caused by the camera lens or the image sensor. 

Each method has its own advantages and limitations. The manual method simulates the 
actual distress identification process that has been in use by many state highway 
agencies (SHA) for a long period; however, there is a low degree of agreement among 
different professional raters which renders the “ground truth” as a highly variable 
measure. 

The semi-automated option might be superior to the manual method for establishing 
“ground truth,” because the collected images are available for multiple raters to view in 
an office environment with less distraction from field traffic. However, some of the low 
severity cracks that are at initial stages of development might not be visible from the 
collected images. Increasing the number of raters could result in a more reliable ground 
truth. 

After much deliberation, it was decided to use a semi-automated approach in which one 
run of the images for the 12 test sections were rated by one Fugro engineer and then 
completely reviewed and corrected by two other Fugro engineers. There are two 
advantages to this method, first that the rating was 100 percent controlled by two 
additional raters, and second that the raters were not FDOT experienced raters and 
therefore this reference can be used as an unbiased reference to evaluate all the three 
rating methods. FDOT raters and the Fugro software engineer did not have access to 
this reference rating. 

Comparison Results on Overall Section Distress Quantities 

Table 19, Table 20, and Table 21 show the success metrics for manual field survey, 
semi-automated rating, and the automated algorithm, respectively, compared to the 
reference survey for the total amounts of each distress type (all severities) in each 
section. In these metrics, error is calculated as the difference between each value and 
the ground truth normalized to the ground truth and expressed in percentage. 

As it was explained in Section 2.2.5, the automated algorithm was only used for 
transverse and longitudinal cracks and joints at this point. Also, as it was mentioned in 
Section 2.2.5, the algorithm is not producing counts of each distress per slab and the 
counts presented here are based on a database routine that is showing more cracks 
than existing. 
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Table 19. Comparison of Manual Windshield Survey Rating to “Ground Truth” 

Metric 
Transvers 
e Cracking 
(count) 

Longitudina 
l Cracking 
(count) 

Spalling 
(length) 

Corner 
Crackin 
g 
(count) 

Patchin 
g (area) 

Shattere 
d Slabs 
(count) 

Bias (%) 25.3 -2.3 161.5 67.1 -18.5 30.0 

STDEV of Error 
(%) among 
Sections 

61.5 44.8 358.7 75.3 46.7 36.4 

STDEV of Error 
(%) among 
Raters 

27.3 14.7 103.8 30.9 43.9 22.4 

Table 20. Comparison of Semi-Automated Rating to “Ground Truth” 

Metric 
Transverse 
Cracking 
(count) 

Longitudinal 
Cracking 
(count) 

Spalling 
(length) 

Corner 
Cracking 
(count) 

Patching 
(area) 

Shattered 
Slabs 
(count) 

Bias (%) 6.8 -2.4 129.9 15.5 487.6 -6.7 

STDEV of 
Error (%) 
among 
Sections 

47.9 52.7 261.2 76.5 887.4 29.0 

STDEV of 
Error (%) 
among 
Raters 

35.8 39.3 45.1 72.4 941.2 62.3 

Table 21. Comparison of Automated Rating to “Ground Truth” (Length and Count) 

Metric 
Transverse 
Cracking 
Length 

Transverse 
Cracking 
Count 

Longitudinal 
Cracking 
Length 

Longitudinal 
Cracking 
Count 

Bias (%) 17.2 76.5 40.6 332.0 

STDEV of 
Error (%) 
among 
Sections 

89.3 98.0 95.2 278.9 

STDEV of 
Error (%) 
among 
Multiple 
Runs 

47.5 40.0 107.8 156.9 

The results indicate that the automated routine is relatively more successful in detecting 
and identifying the length of transverse cracks (accuracy of 83%) compared to 
longitudinal cracks (accuracy of 60%). In fact, the accuracy of the automated routine in 
terms of the transverse cracks (83%) is comparable to the accuracy in the manual field 
surveys (75%), but it is lower compared to semi-automated surveys (93%). The reason 
for lower accuracy of the automated rating of longitudinal cracks is mainly because of 
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the longitudinal joints or lane stripes that are falsely being classified as cracks and 
therefore increasing the number of cracks (positive bias). 

Figure 26  compares the accuracy of  the three rating methods as calculated by 100  
minus the absolute value of bias (%).  

Figure 26. Comparison of Different Methods in terms of Accuracy (100 - Absolute Bias(%)) 

The semi-automated rating has the highest level of accuracy among the three methods 
for all distress types. The automated rating has a higher accuracy compared to the 
manual survey in terms of the total amount of transverse cracking. In contrast, the 
automated rating has lower accuracy compared to the manual survey in terms of the 
amount of longitudinal cracks. This is mainly because of the longitudinal joints and 
stripes that were incorrectly rated as longitudinal cracks. 

Figure 27 shows a comparison among the methods in terms of precision as calculated 
by the standard deviation of error among 12 test sections. The automated rating is 
showing lower precision compared to the other rating methods. This is indicated by the 
higher amount of variation in the rating error among the 12 test sections. This is 
because the automated algorithm performed much better in some sections compared to 
the others. In test sections where any of the following defects exists, the automated 
algorithm had much higher errors causing the standard deviation of error among 
sections to be higher: 

• Skewed transverse joints 



 

 

    
 

  

  

  

 

  
 

      
    

   
    

 
   

  

• Skewed longitudinal joints (or where a longitudinal joint crosses the pavement 
image diagonally) 

• Sawed-in longitudinal joints that are not perfectly straight lines 

• Pavement marking (white or black stripes within the lane) 

• Traffic counters, and other surface scratch marks 

Figure 27. Comparison of Different Methods in terms of Precision (Standard Deviation of 
Normalized Error (%) Among 12 Sections) 

Figure 28 compares the reproducibility of the manual and semi-automated methods to 
the repeatability of the automated software using the standard deviation of error among 
the three raters/runs. The automated algorithm is showing much lower repeatability 
among multiple runs when compared to the reproducibility among multiple raters in the 
other rating methods. It should be noted that this is with different sets of images on each 
different run. This is because of the differences in levels of shades in multiple images of 
the same pavement section. If the same set of images are used, then there is zero 
variability among multiple runs of the software. 
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Figure 28. Comparison of Different Methods in terms of Reliability (Standard Deviation of 
Normalized Error (%) Among 3 Raters/Runs) 

The semi-automated results show higher accuracy (lower bias) and higher precision 
(lower standard deviation among sections) compared to the manual field surveys in 
terms of most distress amounts. However, in agreement with what was presented in 
Section 2.2.4, the raters have lower agreement (higher standard deviation) in the semi-
automated rating compared to field surveys. These results suggest that with further 
training and practice, the semi-automated results are going to have higher 
reproducibility in addition to the currently higher accuracy and precision compared to the 
manual field surveys. 

As an alternative method to evaluate reliability of the different rating methods 
independent of the reference survey, Figure 29 and Figure 30 show the reproducibility 
results from the manual and semi-automated surveys (listed in Table 17 and Table 18, 
respectively), in addition to the repeatability results from the automated rating. 
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Figure 29. Agreement Among Multiple Raters/Runs, A measure of Reproducibility/Repeatability 

Figure 30. Percentage of “Outlier” Ratings, A measure of Reproducibility/Repeatability 

In contrast to the results in Figure 28 (which are based on the variation of error 
compared to a reference survey), the results in Figure 29 and Figure 30 (which are 
based on the actual variation of distress amounts) indicate that the automated algorithm 
has a comparable repeatability to the manual and semi-automated methods. 

The results indicate that for transverse cracking, there is more agreement among the 
raters and the least number of outliers in the semi-automated rating method. For 
longitudinal cracking however, there is more agreement among the raters in the manual 
survey, but the least number of outliers is in the semi-automated method. 



 

 

    
   

   
     

  
 

  
   

  
   

   
 

  

 

  

  
     

   
  

Efficiency of the manual, semi-automated, and automated methods can be evaluated by 
the amount of time required to conduct each survey type. FDOT raters provided an 
estimate for the amount of time they spent in the field to conduct a windshield survey of 
the 12 test sections. Based on this crude estimate, the manual rating speed in doing 
windshield surveys while driving on the shoulder is about 1 to 3 miles per hour, 
depending on the amount of distresses present. It should be noted that for 
approximately 98% of the concrete pavements, they can drive on the shoulder. 

The Vision software was used to extract the amount of time that each rater had spent 
on each test section to conduct a semi-automated survey. The automated detection, 
classification, and rating takes about 20 seconds per image frame. Therefore, the 
automated survey time is calculated through multiplying the number of image frames in 
each test section by 20 seconds. Figure 31 shows a comparison between the semi-
automated and automated survey methods in terms of the survey speed in miles per 
hour for each test section and each rater/run. 

Figure 31. Comparison of the Efficiency (Speed) of Survey Methods 

Fugro raters (orange lines) have used the software more frequently for semi-automated 
rating and therefore had a higher speed (on average 0.29 mph) compared to FDOT 
raters (blue lines, on average 0.18 mph). The automated software has an average 
speed of 0.68 mph which is more than twice the efficiency of the semi-automated 
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method. The manual windshield survey is about twice faster than the automated survey. 
However, the automated survey does not require human intervention while running and 
only some QC is required after survey completion. Therefore, more computing power is 
needed rather than human intervention. In addition, the automated and semi-automated 
survey methods have the significant advantage of eliminating safety concerns for the 
raters who are driving or walking on highway shoulder. 

Verification of Automatically Detected Distresses 

While the overall comparison of the quantities of each distress type between manual 
windshield survey and the automated algorithm results provide an indication of the 
strengths and weaknesses of the automated methodology, there is a need for a distress 
by distress verification of the software performance to identify the reasons behind the 
previously indicated weaknesses. 

The reference (“ground truth”) rating used a point and trace methodology and manually 
rated the collected images to generate reference crack maps. Based on the reference 
semi-automated crack maps established, the following metrics are evaluated on a 
distress by distress basis: 

• True Positives: correctly detected cracks (or distress) 

• False Positives: detected cracks that don’t exist in the reference survey 

• False Negatives: Missed cracks 

• Distress Validity (or Accuracy): an indicator to be calculated as the ratio of the 
correctly detected cracks (true positives) to the total detected cracks (true 
positives and false positives). This statistic indicates the percentage of the 
detected distress that was actually present in the reference survey, thereby 
expressing the validity of the distress detected by algorithms. 

• Distress Sensitivity (or Recall): a parameter to be calculated as the ratio of the 
correctly detected cracks to the total actual cracks existing on the pavement 
surface (true positives and false negatives). This statistic represents the 
percentage of the distress in the reference survey that was detected by the 
automated method, thereby expressing the sensitivity of the algorithms to 
existing distress. 

• Distress Classification Performance: a measure of the number of correctly 
classified cracks (according to the reference survey), divided by the number of 
correctly detected cracks (true positives). This statistic indicates the percentage 
of the detected distress that is correctly classified by the automated algorithm. 
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These metrics were evaluated on 24 sample image frames (two image frames randomly 
selected from each of the 12 test sections on run number 1) and the results can be 
found in Table 22. False positives are cracks that have been reported by the automated 
crack detection software, while no crack has been recorded in the “ground truth” at the 
same location. On the other hand, missed cracks are existing cracks that have been 
reported in the “ground truth”, but are not detected by the software (i.e. false negatives). 
As with the manual rating conducted in the field, the reference values on the computer 
may also have a range of agreement from professional raters in terms of how to 
measure crack width, severity, and in some cases crack extent. 

Table 22. Verification of Automatically Detected Distress on Sample Image Frames (Raw Data) 

Test 
Section 

Image 
Frame 

Length (ft) Count 

Ground 
Truth 

True Positive 

False 
Positive 

False 
Negative 

Ground 
Truth 

Rating 
Result Correctly 

Rated 

Not 
Correctly 
Rated 

Section 1 3P000019 23.048 9.304 7.936 8.992 5.808 2 9 

Section 1 3P000020 23.828 21.786 0 4.432 2.042 3 7 

Section 2 3P000115 22.615 18.994 0 14.87 3.621 2 7 

Section 2 3P000116 11.425 10.747 0 0 0.678 1 2 

Section 3 3P000029 48.97 41.272 3.688 4.426 4.01 3 7 

Section 3 3P000022 22.464 20.424 0 3.166 2.04 2 5 

Section 4 3P000014 22.43 18.746 0 14.114 3.686 2 6 

Section 4 3P000024 20.312 10.38 0 44.74 9.932 1 9 

Section 5 3P000767 26.592 4.289 20.202 1.316 2.101 2 6 

Section 5 3P000768 41.112 13.019 19.635 6.924 8.458 4 12 

Section 6 3P000022 6.581 0 6.581 1.158 0 1 2 

Section 6 3P000023 44.261 36.852 2.906 3.68 7.408 7 8 

Section 7 3P000062 16.819 11.751 0 1.829 5.068 2 4 

Section 7 3P000061 17.59 11.206 3.409 0 2.107 2 4 

Section 8 3P000006 17.398 13.974 1.388 0 2.836 2 4 

Section 8 3P000010 17.472 10.627 0 0 6.845 2 2 

Section 9 3P000031 8.63 5.02 0 5.265 2.61 1 5 

Section 9 3P000038 13.757 8.67 0 2.084 5.187 2 4 

Section 10 3P000052 10.518 10.488 0 3.018 0.3 1 3 

Section 10 3P000053 33.57 31.498 0.552 0 1.52 3 9 

Section 11 3P000044 30.744 30.744 0 30.094 0 2 9 

Section 11 3P000045 43.781 43.381 0 24.051 0.4 5 14 

Section 12 3P000087 46.934 34.682 0 6.165 12.252 4 9 

Section 12 3P000088 30.578 30.578 0 20.006 0 2 7 

The results clearly indicate the issue with crack counting as it was explained in Section 
2.2.5. Since the detected segments of cracks were not appropriately grouped together, 
the total count of the cracks was much higher than existing. It is also evident that once a 
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crack is appropriately detected (within the true positives), the algorithm is doing a good 
job in terms of assigning the correct distress type (note the relatively small length of 
incorrectly rated cracks). In addition, the overall length of false positives and false 
negatives (missed cracks) are relatively comparable. However, there are some 
instances where there is a significant difference between the two. This relatively 
reasonable balance between the two extremes of aggressive detection (false positives) 
and missing cracks (false negatives) is an indication that appropriate detection settings 
have been used in the software. There needs to be an effort in the future development 
initiatives to maintain this balance and perhaps improve it. Details of the approach for 
selecting these settings have been explained in Section 2.3. 

Based on the results in Table 22, the distress verification metrics were calculated in 
Table 23. The results indicate that on average, 78% of the automatically detected 
distresses actually existed on the reference survey, 84% of the distresses on the 
reference survey were detected via the automated algorithm, and 86% of the detected 
distresses were correctly classified into longitudinal or transverse cracking or joints. 

Table 23. Verification of Automatically Detected Distress on Sample Image Frames (Metrics) 

Test 
Section 

Image 
Frame 

Distress 
Validity (or 
Accuracy) 

Distress 
Sensitivity (or 
Recall) 

Distress 
Classification 
Performance 

Section 1 3P000019 66% 75% 54% 

Section 1 3P000020 83% 91% 100% 

Section 2 3P000115 56% 84% 100% 

Section 2 3P000116 100% 94% 100% 

Section 3 3P000029 91% 92% 92% 

Section 3 3P000022 87% 91% 100% 

Section 4 3P000014 57% 84% 100% 

Section 4 3P000024 19% 51% 100% 

Section 5 3P000767 95% 92% 18% 

Section 5 3P000768 83% 79% 40% 

Section 6 3P000022 85% 100% 0% 

Section 6 3P000023 92% 84% 93% 

Section 7 3P000062 87% 70% 100% 

Section 7 3P000061 100% 87% 77% 

Section 8 3P000006 100% 84% 91% 

Section 8 3P000010 100% 61% 100% 

Section 9 3P000031 49% 66% 100% 

Section 9 3P000038 81% 63% 100% 

Section 10 3P000052 78% 97% 100% 

Section 10 3P000053 100% 95% 98% 

Section 11 3P000044 51% 100% 100% 



 

 

 
 

 
 

 
 

 

 
 

 

 
 

 

     

     

     

    

    

  
  

    
   

  
    

     
   

    

   
     

   
 
 

  

  

 
  

    
 

  
 

  
  

   

Test 
Section 

Image 
Frame 

Distress 
Validity (or 
Accuracy) 

Distress 
Sensitivity (or 
Recall) 

Distress 
Classification 
Performance 

Section 11 3P000045 64% 99% 100% 

Section 12 3P000087 85% 74% 100% 

Section 12 3P000088 60% 100% 100% 

Average 78% 84% 86% 

2.3 Appropriate Settings for Automated Survey 

Fugro Vision software includes a distress identification application called WiseCrax. 
This application involves three main routines for distress identification: 

1. Crack detection: during which any linear defects on pavement surface is detected 
and marked with lines. The performance of this step is highly dependent on the 
quality of the image, the exposure, lighting, the number of cracks and other 
defects present on the surface, the location of defects within the lane, etc. 

2. Classification: during this step, all the detected defects are classified into one of 
the three categories of longitudinal defects, transverse defects, and other (or 
pattern) defects according to a changeable criterion for defect angle and density. 

3. Rating: during this final step, the software assigns a distress type and severity to 
each of the classified defects according to a distress schema defined by the user. 
The user needs to select one or more criteria from a series of criteria such as 
angle, longitudinal and transverse extent, density, width, and others for each 
distress type and severity. Once the schema is setup and saved, this schema 
can be applied for network-level data collection. 

2.3.1 Image Pre-Processing 

After investigating multiple detection settings in the software, it was evident that the 
sealed joints with wider openings and sealed cracks were not appropriately detected. 
Therefore, it was decided that there was a need for image pre-processing with some 
filters to improve the crack detection results. A basic image processing operation was 
applied to eliminate the noise and texture in the images using an open source software 
called ImageJ. If it is determined that this pre-processing is essential with respect to 
other aspects of this project, a plugin can be developed in Vision which will include this 
open source routine for filtering out the noise. 

Four types of filters were considered for removing the noise in the images: 
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1. Gaussian Filter 

2. Median Filter 

3. Haar Wavelet Filter 

4. A Trous Wavelet Filter 

Application of these filters was investigated with changing the involved parameters 
according to the following table. Sample test results are included in Appendix B, where 
crack detection results on the filtered images can be observed. The appropriate type 
and parameter settings for the filter depends on each specific image, and a filter that 
performs best for one image, could perform less desirable on another image. However, 
it is not feasible to select a different filter for each and every image. Therefore, the 
project team selected the filter type and parameter value that provided the best overall 
results among the sample selected representative images for the 12 test sections in this 
study. This selection was based on 24 sample image frames (two images from each of 
the 12 test sections), the length of which amounts to 480 feet which is about 5% of the 
total length of the 12 test sections. Based on this study and future studies, a pre-
selected filter type could be applied to the images based on the pavement type, surface 
properties, lighting, etc. 

After selecting a set of detection parameter settings suitable for the sample images 
(next section explains the adjustments of the detection settings), the filters were applied 
again to fine tune the required filter setting. Here are the results of this step of the 
investigation. 
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Table 24. Image Pre-Processing Investigation Sample Test Results 

Filter Type Tested Parameters 
Example Detection Results in 
Appendix B 

Radius 5 
Frame: Section 11 3P000043 
Figure 1 

Gaussian Radius 10 
Frame: Section 11 3P000043 
Figure 2 

Radius 15 
Frame: Section 11 3P000043 
Figure 3 

Radius 5 
Frame: Section 11 3P000043 
Figure 4 

Median Radius 10 
Frame: Section 11 3P000043 
Figure 5 

Radius 15 
Frame: Section 11 3P000043 
Figure 6 

Haar Wavelet Coefficients: 10,10,10 
Frame: Section 11 3P000043 
Figure 7 

Coefficients: 10,10,10 
Frame: Section 11 3P000043 
Figure 8 

A Trous Wavelet 
Coefficients: 20, 20, 20 

Frame: Section 11 3P000043 
Figure 9 

Coefficients: 30,30,30 
Frame: Section 11 3P000043 
Figure 10 

Coefficients: 40, 30, 30 
Frame: Section 11 3P000043 
Figure 11 

Table 25. Image Pre-Processing Investigation Test Results After Fine-Tuning Detection Settings 

Filter Type Tested Parameters 
Detection Results in Appendix 
B 

Gaussian 

Radius 5 

Frame: Section 11 3P000048 
Figure 12 
Frame: Section 12 3P000087 
Figure 13 

Radius 10 

Frame: Section 11 3P000048 
Figure 14 
Frame: Section 12 3P000087 
Figure 15 

It is clear that the application of the pre-processing filters improves the detection results. 
As shown in the sample test results, after application of ‘A Trous filter’ or Gaussian filter 
with smaller radius (5), the detection algorithm is more sensitive to the tiny cracks which 
are very narrow. Gaussian filter with larger radius (10) makes the detection of wider 
cracks, especially the sealed joint detection easier. Finally, the Gaussian filter with a 
radius of 10 pixels was selected to pre-process all the images. However, we may 
include the A Trous filter in future work. 

The disadvantage of using these filters is that they result in the crack widths becoming 
larger and the detection routine will not be able to measure the actual crack width on the 



 

 

  
 

    
   

 

  

    
     

  

  
 

  

  
 

  
 

  
 

     
  

  
 

  

   
 

pavement and therefore higher severity levels will be assigned in the rating process. In 
this preliminary evaluation, the WiseCrax option to detect sealed cracks was not 
enabled. Instead of filtering the images, the other option would be to separate detection 
of sealed cracks for detection of sealed joints. However, that option would also result in 
larger crack widths that affect severity ratings. 

2.3.2 Detection Settings 

There are multiple detection parameters that can be adjusted for improved detection 
results. The following are the detection parameters and a short description of each: 

• Crack Options 

o Crack Simplification: Higher numbers mean fewer details are stored for 
the crack trace 

o Extraction: 

▪ Transverse Cracking: Degree of transverse cracking in the 
pavement 

▪ Longitudinal Cracking: Degree of longitudinal cracking in the 
pavement 

▪ Crack Likelihood: Higher values suppress false positive at the 
expense of processing speed 

▪ Horizontal Bridging: Two adjacent cracks will be merged into one if 
the gap is less than X pixels 

▪ Vertical Bridging: Maximum vertical distance between two nodes 
before being split into two distinct cracks. 

o Pruning 

▪ Remove Short Distress: Discard cracks if below the minimum 
length 
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▪ Minimum Length (mm): Minimum length for reporting cracks in 
millimeters 

▪ Remove Low Node-Count Distresses: Discard cracks if below the 
minimum number of nodes 

▪ Minimum Node Count: The minimum node count required to keep a 
crack 

▪ Remove Low-Cost Distress: Discard cracks below the cost 
threshold 

▪ Remove 'Bright' Distress: Discard cracks above the intensity 
threshold 

o Width 

▪ Maximum intensity to count a pixel as part of the crack 

• Lane Options 

o Enable: Turn on lane detection 

o Detect Within Lanes: Only detect cracks within lanes. Will not be used for 
incremental/zone detection 

• Sealed Crack Options: Defined sealed cracks detection parameters 

o Crack Simplification: Higher numbers mean fewer details are stored for 
the crack trace 

o Extraction: 

▪ Transverse Cracking: Degree of transverse cracking in the 
pavement 
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▪ Longitudinal Cracking: Degree of longitudinal cracking in the 
pavement 

▪ Crack Likelihood: Higher values suppress false positive at the 
expense of processing speed 

▪ Horizontal Bridging: Two adjacent cracks will be merged into one if 
the gap is less than X pixels 

▪ Vertical Bridging: Maximum vertical distance between two nodes 
before being split into two distinct cracks. 

o Pruning 

▪ Remove Short Distress: Discard cracks if below the minimum 
length 

▪ Minimum Length (mm): Minimum length for reporting cracks in 
millimeters 

▪ Remove Low Node-Count Distresses: Discard cracks if below the 
minimum number of nodes 

▪ Minimum Node Count: The minimum node count required to keep a 
crack 

▪ Remove Low-Cost Distress: Discard cracks below the cost 
threshold 

▪ Remove 'Bright' Distress: Discard cracks above the intensity 
threshold 

o Width 

▪ Maximum intensity to count a pixel as part of the crack 
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At the first step, an investigation was conducted to determine the key detection 
parameters to which the detection results are most sensitive. This was evaluated by 
changing the parameters one by one and comparing the detection results against the 
default settings. There are 10 pre-set detection profiles in WiseCrax based on a range 
of pavement types and conditions that have been determined according to the years of 
experience of Fugro raters on various statewide projects. These settings can be found 
in Appendix B. From the results of this first step, the following parameters were found to 
influence the detection result significantly. The second step was to fine tune these key 
parameters to find the optimum detection profile. The following table describes how 
these key parameters were changed. 

Table 26. Investigation of Key Detection Parameters 
Detection 
Parameter 

Initial Default Possible Range Tested Values 

Expected Transverse 
Cracking (%) 

15 0 to 100 10, 15, 20, 25, 35 

Expected 
Longitudinal 
Cracking (%) 

15 0 to 100 10, 15, 20, 25, 35 

Horizontal Bridging 3 0 to 20 3,5,7,9 

Vertical Bridging 5 0 to 20 3,5,7,9 

Intensity Threshold 60 1 to 255 60,80,100,110,115,120 

Sample detection results with different parameter settings on one example image frame 
are displayed in Appendix B to understand the impact of changing each parameter. 
Here are the observations from changing key detection parameters: 

• Expected Transverse and Longitudinal Cracking (%): Number of pixels that are 
considered to be part of crack will increase if the expected cracking percentage is 
increased. 

• Horizontal and Vertical Bridging: The continuity of the crack pixels would be 
increased if we increase the number of pixels used for bridging. Therefore, the 
chance of having cracks considered to be noise (short cracks) would be 
decreased. 

• Intensity Threshold: By increasing this threshold from 60 to 120, width of the 
detected cracks became larger. Also, more crack pixels can be detected. 
However, increasing this value may cause more false positives. 
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Table 27. Example Figures in Appendix B that Describe the Impact of Changing Key Detection 
Parameters 

Figure 154 Figure 155 

Longitudinal Cracking (%) =15 
Transverse Cracking (%) =15 

Longitudinal Cracking (%) =30 
Transverse Cracking (%) =30 

Figure 156 Figure 157 

Horizontal Bridging (%) =1 
Transverse Bridging (%) =3 

Horizontal Bridging (%) =3 
Transverse Bridging (%) =5 

Figure 158 Figure 159 

Intensity Threshold: 120 Intensity Threshold: 60 

The recommended parameter setting based on the sample images of the 12 test 
sections was found to be as in Figure 32. 

Figure 32. Detection Parameter Settings for Evaluation of Existing Software 



 

 

  

   
  

  
   

   

     

  
  

 

 

       
   
  

 

  

      
    

 

   

 

    

   

   
   

        
 

    

   
   

        
 

    

2.3.3 Cracking classification 

In the classification step, there are seven parameters that can be adjusted for suitable 
performance. The following values were used based on past experience. 

Table 28. Classification Parameter Settings 
Parameter Description Value Used 

Classification Enable Enables classification TRUE 

Separate Seal Classification Classifies sealed cracks separately FALSE 

Degree Angle Angle threshold differentiating 
between longitudinal and transverse 
defects 

45 

Tile Height Tile used for calculating the density of 50 

Tile Width defects in pattern distresses (such as 
alligator cracking) 

50 

Group Tile Height Tile used for grouping defects 100 

Group Tile Width together (see figure below) 100 

Figure 33 Group Tile Height/ Width 

Sample classification results are shown in the figures in Appendix B as referenced here. 

On Section 12: image 87, after classification, several longitudinal cracks gathered into 
one group, as highlighted in Figure 161 in Appendix B. 

Before classification After classification (several individual longitudinal cracks gathered 
into one group) 

Figure 160 Figure 161 

On Section 11: image 43, after classification, several longitudinal cracks gathered into 
one group, as highlighted in Figure 163 in Appendix B. 

Before classification After classification (several longitudinal cracks gathered into one 
group) 

Figure 162 Figure 163 
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2.3.4 Distress Rating 

The WiseCrax algorithm contains criteria such as angle, longitudinal and transverse 
extent, density, width, and others for assigning each distress type and severity. After 
considering all options, only transverse and longitudinal joints, and transverse and 
longitudinal cracks could be rated reliably. New classification and rating routines are 
needed for corner cracking and shattered slabs. For identification of spalling and 
patching, there is a need for depth data and therefore 3D data would be required for 
that purpose. 

During the rating procedure, ‘distress angle’, the angle between a distress and the 
transverse direction, is adopted as one of the main parameters to distinguish joints from 
cracking: -5 to 5 degree for transverse joints, and 85 to 90 and -90 to -85 degree for 
longitudinal joints. Another parameter used in differentiating joints from cracks is 
distress extent. For longitudinal joints, its transverse extent should be less than 0.1 m. 
For transverse joints, its longitudinal extent should be less than 0.1m. Most of joints 
were successfully identified using this criterion. However, this criterion was not 
adequate for skewed transverse joints and some longitudinal joints where the imaging 
vehicle had changed lanes or transitioned from a ramp. 

Table 29. Settings used for Rating in WiseCrax 

Distress 
Distress Angle 
(Degrees) 

Distress Extent 
(Longitudinal) (m) 

Distress Extent 
(Transverse) (m) 

Transverse Joint -5 to 5 0 to 0.1 NA 

Longitudinal Joint 85 to 90 or -90 to -85 NA 0 to 0.1 

Transverse Cracking -45 to -5 or 5 to 45 NA NA 

Longitudinal Cracking 45 to 85 or -85 to -45 NA NA 

Figure 34. Distress Angle Definitions 
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The following figures in Appendix B display sample rating results: 

Section 12: Image 87 in Figure 164 

Section 11: Image 43 in Figure 165 

Section 11: Image 44 in Figure 166 

2.4 Gap Analysis and Design Considerations 

Accuracy and precision of the measured distress against the established reference 
values (“ground truth”) were evaluated to identify the systematic and random errors. The 
systematic error or bias could be addressed by calibration relative to the existing rating 
methodology, but the random errors need to be addressed by increasing the reliability of 
the crack detection and distress identification algorithm through various control 
parameters within the algorithm. Regarding the effect of error type in network-level 
pavement management decisions, it is believed that systematic errors in pavement 
condition data have a higher impact on the PMS outputs than random errors. 

From these analyses, potential causes can be categorized to help with identification of 
prospective solutions. Initial categories of “potential causes” or “gaps” may include: 

1. Human Random Errors (i.e. “oops, missed it”) 

2. Human Systematic Errors (i.e. “that isn’t the way I interpreted the handbook”) 

3. Software Systematic Errors (i.e. algorithm needs correction) 

4. Hardware Issues (i.e. hardware settings or calibration are in question) 

5. Limitation of Existing System 

In this section of the report, the gaps in the performance of the automated rating 
algorithm are identified according to the success metrics observed in the previous 
section. In addition, a potential design consideration is offered as the solution to 
address each identified gap. 
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2.4.1 Human Random Errors 

Standard deviation of error among the different test sections should explain the degree 
of random error for each distress identification method. There is not much to be done to 
address human random errors. There seems to be higher standard deviation of error in 
the evaluated automated algorithm compared to the manual and semi-automated 
results which are relatively similar to each other. This higher variation of error for the 
automated results indicates that the algorithm performed much better in some test 
sections compared to the others. Therefore, this is not necessarily a random error and it 
could be a systematic issue. To address this gap, there needs to be a more robust 
crack detection, classification, and rating routine which will be discussed in the Section 
2.4.3 on software systematic errors. 

2.4.2 Human Systematic Errors 

The biases in the manual and semi-automated surveys represent human systematic 
errors. These errors seem to be relatively lower for the semi-automated rating 
compared to the manual field rating. In addition, there seems to be lower errors in terms 
of transverse and longitudinal cracking compared to corner cracks and shattered slabs. 
There seems to be a very high bias in terms of spalling and patching, but that could be 
attributed to the lower number of occurrences. To address this gap, it is recommended 
to improve the Distress Protocols, and/or their application and several notes have been 
provided in Section 2.2.1. Careful review, discussion and coordination needs to take 
place with FDOT staff to be certain the existing protocols are being interpreted and 
followed as closely as possible (and practical). During that coordination process, 
invariably “qualifiers” or editorial corrections are anticipated that will provide for more 
consistency in the application of the protocols for both manual and automated 
application. 

2.4.3 Software Systematic Errors 

The following are the software systematic issues that have been identified and 
corresponding solutions that have been recommended by Fugro research team. 

Transverse and Longitudinal Joint Detection 

The WiseCrax software version 3.0 did not have a joint detection routine. In this 
preliminary exercise, the rating criteria (angle and extent) were used to classify 
transverse and longitudinal lines as joints. As it is evident in the higher number of 
longitudinal cracks compared to ground truth, which have caused higher bias and 
standard deviation of error for longitudinal cracks compared to transverse cracks, there 
seems to be some longitudinal joints at diagonal directions in the images which were 
mistakenly classified as longitudinal cracks. A review of the images confirms this 
observation. To avoid incorrectly considering these skewed joints as cracks, joints must 
be detected, and their surrounding pixels should be masked as non-crack area. Several 
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image-processing techniques, such as edge detection, contour detection and Hough 
line transform can be used for this task. The team recommends a joint detection plugin 
to be developed for the Vision software. It is perceived that much of the bias and 
standard error in automated detection of longitudinal and transverse cracks could be 
addressed by separating joints and lane markings from other surface defects. 

Lane Marking Detection 

From a study of images, it was observed that several stripe edges were classified as 
longitudinal cracks. Since we mainly focus on pavement defects within lanes only, lane 
marking detection is vital to define the region of interest (ROI) for further operation 
executed with the pavement image. The algorithm for lane marking detection can still be 
improved. The computer vision-based technique for lane marking detection include 
thresholding and contour detection. Then the properties of contour can be studied, and 
the false positive detection can be filtered out. 

Crack Severity Rating 

In this preliminary evaluation, severity rating was not considered. This is because of the 
noise in the images that needed to be removed using filters to detect sealed cracks. 
Filtering the images tends to increase crack widths and therefore impact the assignment 
of severity levels. In addition, when the WiseCrax option to enable detection of sealed 
cracks is used, the recorded crack widths are larger than what is measured and 
therefore not useful for severity rating. It is recommended that filtering is not used 
moving forward. This is because the non-sealed cracks have a higher priority for FDOT 
and because the crack width and severity assignment have higher priority than 
detection of sealed cracks. 

It should be noted that the evaluation results show very low agreement among the 
raters in terms of identifying severity levels during manual and semi-automated surveys. 
This is evident in the results detailed in Appendices C, D, and E. It has been found to be 
very difficult to get consistency in severity levels regardless of the procedure used. 

Crack Grouping and Count per Slab 

As it was explained in Section 2.2.5, a database routine was developed to count the 
number of cracks per slab. However, the results of the evaluation indicate much higher 
bias and lower precision in count values compared to length values. This is because 
multiple segments of one crack are counted as separate distresses thereby increasing 
the number of cracks. This issue can be addressed by developing an enhanced 
grouping process that would allow for grouping of cracks according to their location 
across the slab. 
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Corner Cracks 

After the joints are detected, each slab is defined. Corner cracks can be detected using 
coordinates of their start points and end points and their angle. There are four types of 
corner crack: bottom right, bottom left, top right, and top left. 

Shattered Slabs 

Similar to the algorithm for corner cracking detection, the number of ‘sub-slabs’ can be 
acquired if coordinates of edges (longitudinal or transverse cracks) are given. The slab 
which are divided into more than four pieces are considered as Shattered slab. An 
alternative methodology could be based on crack counts per slab to simplify this 
process. 

Spalling 

The evaluated software cannot detect spalling using the existing images. It is expected 
that depth (3D) data is required for detection of spalling at joint or crack edges. 

Patching and Surface Deterioration 

Patching and surface deterioration continue to be two of the most challenging distresses 
to detect with an automated system. For these specific distresses of concern, 
alternative methods of identification will likely need to be identified or explored. 
However, it should be noted that the emphasis of this project is on cracking distresses. 

2.4.4 Hardware Issues 

These typically include such items as camera settings, daily calibration checks and 
other fundamental controls that provide for more consistency in the use of the hardware 
being utilized. Initial and preliminary recommendations were made in Section 2, and 
Appendix A provides a draft guideline for annual calibration and check of the imaging 
hardware. 

2.4.5 Limitation of the Existing System 

As it was mentioned, distresses such as spalling, or patching cannot be detected 
without 3D data. Images of the 12 test sections were collected both with the FDOT 
MPSV (2D LRIS) on December 1, 2015 and with a Fugro ARAN (3D LCMS) in October 
2015. The main analyses in this study were conducted using the LRIS images as was 
within the scope of this study. Following completion of Task 3, FDOT will review the final 
evaluation results and if FDOT finds it beneficial, there could be a follow-up study 
showing the results of 3D analysis. 
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2.4.6 Recommended Design Solutions 

Table 30 summarizes the identified gaps and corresponding recommended solutions. 

Table 30. Identified Gaps and Recommended Solutions 

Number Category Gap Recommended Solution 

1 
Human Random 
Errors 

High variation of rating results 
among test sections 

N/A 

2 
Human 
Systematic Errors 

High bias (average error) and 
high variation of rating results 
among multiple raters 

Review and/or revise 
distress protocols 

3 
High bias in longitudinal 
cracking amount (high number 
of false positives) 

Joint detection plugin and 
plugin for separating stripes 

4 
High variation of error among 
multiple test sections 

Joint detection plugin and 
plugin for separating stripes 

5 

Software 
Systematic Errors 

High variation of error among 
multiple runs (while 
reasonable variation in the 
actual values among multiple 
runs) 

Joint detection plugin and 
plugin for separating stripes 

6 High bias in crack counts Improve crack grouping 

7 
Issue with rating of corner 
cracks 

Corner crack plugin 

8 
Issue with rating of shattered 
slabs 

Shattered slab plugin 

9 
Issue with crack width 
determination and severity 
rating 

Do not use filters moving 
forward so that crack width 
can be measured 

10 
Hardware 
Limitations 

distresses such as spalling, or 
patching cannot be detected 
without 3D data 

Evaluate 3D data 

Based on this gap analysis, the following development efforts are recommended for 
Task 3 of this project. The algorithm logic design is briefly explained for each 
development effort: 

1) Transverse and longitudinal joint detection plugin 

a. First, an edge detection algorithm is used to detect the joint edges. Joint 
edges are detected by identifying points where the brightness changes 
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(decreases) sharply, based on the assumption that the other 'background' 
pixel brightness varies smoothly across the pavement image. 

b. Then, the non-straight line segments are filtered out by analyzing the 
shape of the contour line passing through the detected joint edges. The 
contour is a curve joining all the adjacent points along the edges. The 
elongation and orientation of the contour’s shape is estimated. Elongation 
is calculated as [1 – W/L], where W is the width of the rotated minimal 
bounding box (the rectangular enclosing the contour shape), and L is the 
length of the rotated minimal bounding box. The elongation of the contour 
should be large than a predefined threshold value to make sure the object 
is a linear feature. The angle between the line parallel to the length of the 
bounding box and the horizontal is representing the orientation of the 
contour shape. The orientation of the major axis of the contour should be 
close to 90 degrees or 0 degrees. 

c. Finally, the “straight” line is extracted using Hough Transform to fit a 
straight line through the joint edge points. 

2) Lane marking detection plugin 

a. gray-level thresholding: We assume that the pixels of lane marking are 
brighter than the rest of the pixels in the image. 

b. contour analysis and filtering: Shape of the bounding box for the lane 
markings should be close to rectangle and its area should be larger than a 
predefined threshold value. Rectangularity is evaluated by the degree to 
which a contour shape fills its minimal bounding box (area of the object 
divided by area of the bounding box). Area is evaluated as the area 
enclosed by the contour of an object. 

3) Plugin to improve crack grouping and count per slab 

a. group cracks based on the types of cracks (longitudinal or transverse) 

i. detect the endpoints of the cracks and divide them into two groups 
based on the type of crack 

ii. only connect the endpoint pair (P1(x1,y1), P2(x2,y2)) if one of the 
following exists: 
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1. if both of the points in the pair belong to the category of 
longitudinal crack endpoint AND |x1- x2|/|y1- y2|>1 AND 
Euclidean distance between the pair is smaller than a 
threshold value (for example, 300 pixels) OR 

2. If both of the points in the pair belong to the category of 
transverse crack endpoint AND |x1- x2|/|y1- y2|<=1 AND 
Euclidean distance between the pair is smaller than a 
threshold value (for example, 300 pixels) 

b. extract the corner points (vertices) of the slab and count the cracks in 
each slab based on the relationship of endpoints of crack and slab 
vertices: 

i. Assume crack endpoint P’s coordinate is (xp,yp), and the slab’s 
upper left point is (x1,y1) and lower right point is (x2,y2). 

ii. if (xp is between x1 and x2) AND (yp is between y1 and y2), then we 
consider the point (xp,yp) is inside the slab. 

iii. If any crack endpoint is inside the slab, the crack is regarded as a 
‘crack in this slab’. 

4) Plugin to classify and rate corner cracks 

a. extract the corner cracks based on the relationship between endpoints of 
crack and slab edges (or joints); A corner crack should intersect with both 
transverse and longitudinal joints, and this point of intersection should be 
more than one foot apart from the slab corner on both the longitudinal and 
transverse joints. Based on its location, we classify corner cracks into four 
types: upper left, upper right, bottom left and bottom right. 

b. rate the corner crack based on its width: 

i. light: width <= 1/8 inch 

ii. moderate: 1/8 inch < width <=1/4 inch 
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iii. severe: width > 1/4 inch 

5) Plugin to classify and rate shattered slabs 

a. count the number of regions bounded by the 'cracks inside the slab' and 
joints. If the number is greater than four, the slab is counted as shattered 
slab. Note that the grouping plugin should have satisfactory performance 
before this plugin can successfully classify shattered slabs. 

b. rate the shattered slab based on width of crack. 

i. moderate: width <=1/4 inch 

ii. severe: width > 1/4 inch 

2.5 Summary and Recommendations 

Results from the evaluations in Task 2 of this project provide the necessary tools to 
conduct appropriate analyses. Specifically: 

1. Establish reference values 

2. Determine acceptable range based on the variations observed during the 
evaluation of existing methods 

3. Compare manual, semi-automated, and fully automated methods 

4. Diagnose areas for improvement 

2.5.1 Summary Observations 

The key observations from these evaluations were as follows: 

1. While there was more agreement among the raters in manual field surveys 
compared to semi-automated rating, there seemed to be less bias (systematic 
errors) and higher precision (lower variation of each rater error among test 
sections) in the semi-automated results as opposed to field surveys. 
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2. There seemed to be more agreement among the raters in terms of transverse 
and longitudinal cracking compared to other distress types. A review of the 
distress identification protocol is recommended for increasing consistency among 
raters. Section 2.2.1 provided pertinent notes for the FDOT Rigid Pavement 
Condition Survey Handbook (2017) to be considered by FDOT staff. 

3. The automated routine was relatively more successful in detecting and identifying 
the length of transverse cracks (83%) compared to longitudinal cracks (60%). In 
fact, the accuracy of the automated routine in terms of the transverse cracks 
(83%) was higher than the accuracy in the manual field surveys (75%). The 
reason was mainly because of the longitudinal joints or lane stripes that were 
falsely being classified as cracks and therefore increasing the number of cracks 
(positive bias). There is a need for proper joint detection. 

4. In contrast to the reliability evaluation based on the variation of error compared to 
a reference survey, the evaluation based on the actual variation of distress 
amounts among multiple runs indicated that the automated algorithm had a 
comparable repeatability to the manual and semi-automated methods. It is 
perceived that by addressing the issues of joints and cracks, the variation among 
runs will decrease. 

5. There was a need to filter out image noise to be able to detect sealed joints and 
wider cracks. As a result, crack widths were detected to be wider than actual and 
this compromised the ability of the software to assign proper severity levels. It is 
recommended that filtering is not used moving forward. 

6. The evaluated software needs improvements in terms of the count of the 
distresses as opposed to the length. Proper grouping of detected crack segments 
is required. 

7. Spalling could not be detected without depth (3D) data. 

2.5.2 Recommendations for Task 3 Software Development 

For initial planning purposes, the following six subtasks are recommended for Task 3: 

1) Transverse and longitudinal joint detection plugin, 

2) Lane marking detection plugin, 
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3) Plugin to improve crack grouping and count per slab, 

4) Plugin to classify and rate corner cracks, 

5) Plugin to classify and rate shattered slabs, 

6) Final evaluation results. 

2.5.3 Future Analysis Recommendations 

The research team recommends the following analyses to be conducted in future to 
ensure an appropriate path forward with the software development and implementation: 

A. Conducting a Second Distress Workshop 

B. Confirming Detection Settings Using Additional Images 

C. Evaluating Automated Software Using 3D Data 

D. Evaluating a Second Alternative Software 

The following segments provide the objectives, required activities, and the needed 
budget amounts for these additional activities. If FDOT approves these activities 
following Task 3, Fugro will prepare an updated proposal and request a corresponding 
time extension and budget modification to account for these additional tasks. 

A. Conducting a Second Distress Workshop 

After review of the FDOT Rigid Pavement Condition Survey Handbook (2017) during 
the preliminary distress workshop, it was determined that some of the distress 
definitions needed further clarification for consistent and reproducible distress rating 
results. In addition, review of the distress ratings conducted by FDOT experienced 
raters further highlighted the need for consensus building among the raters. There is a 
need for a second distress workshop with the following objectives: 

1. Review the reference semi-automated distress rating (conducted by Fugro 
engineers) to arrive at a consensus among the FDOT experienced raters. This 
consensus survey will be used as the reference survey to evaluate accuracy and 
precision of the automated and manual distress ratings moving forward. 
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2. Review the notes from the first distress workshop on the FDOT Rigid Pavement 
Condition Survey Handbook (2017) and identify the required modifications to the 
handbook. This will also include clarifications of definitions for some distress 
types and severity levels to ensure corresponding software development. 

The required activities for conducting the second distress workshop include the 
following: 

• Activity 1: Pre-workshop coordination and preparation of presentation materials 

• Activity 2: Attending and conducting the workshop 

• Activity 3: Post-workshop review and action items 

The estimated level of effort required to conduct a second distress workshop is about 
120 hours of the consultant’s time. 

B. Confirming Detection Settings 

There is a need for further evaluation of the automated software settings on additional 
pavement images (of other textures, surface types and characteristics) with the 
following objectives: 

1. Confirm whether a pre-processing filter is essential to filter out noise and identify 
the type and properties of the required filter based on additional images. 

2. Investigate and confirm the crack detection parameter settings that provide the 
best compromise between false positives and missed cracks based on the initial 
test sections and the additional images. 

3. Investigate the impacts of the selected filters and detection parameter settings on 
the width of the detected cracks and recommend path forward for proper 
assignment of severity levels 

The required activities for confirming detection filters and settings include the following: 

• Activity 1: coordinate with SMO to obtain about 120 images (30 images from four 
additional test sites of different surface types, textures and surface 
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characteristics), format received data into proper folder structure, and create 
Vision database 

• Activity 2: investigate the necessity of filters based on four filter types and each 
with three different parameters (12 possible iterations) on a representative 
sample of the images (10%, about 12 images). Each iteration will take 
approximately five minutes to conduct and record. During this activity, the crack 
detection parameters will be fixed at the settings identified on the initial test 
sections. 

• Activity 3: investigate the suitable crack detection parameter settings based on 
about 10 key parameters (the initial software evaluation found the detection 
results to be more sensitive to these key parameters) and each with three 
different values (30 possible iterations) on a representative sample of the existing 
and the additional images (existing 12 sections 40 images each, additional four 
sections 30 images each). About 10% of the images will be used for this exercise 
(60 images). Each iteration will take approximately five minutes to conduct and 
record. For each sampled image, the average pixel intensity can be calculated 
and a correlation with the selected settings could be investigated. 

• Activity 4: obtain the FDOT manual survey results on the additional sections and 
compare total amounts of distress to confirm proper detection settings 

• Activity 5: conduct a baseline semi-automated survey on the additional images to 
obtain crack maps and confirm proper detection settings 

The estimated level of effort needed to conduct further analysis on detection settings is 
about 320 hours of consultant’s time. 

C. Evaluating Automated Software Using 3D Data 

Fugro has previously collected 3D LCMS images of the 12 test sections used in the 
initial software evaluation. However, the software evaluations were conducted based on 
the 2D LRIS images according to the proposal as the SMO MPSV unit collects 2D 
images only. Evaluation of the automated software on 3D images will benefit the project 
outcome as it will serve the following objectives: 

1. Investigate whether the current limitations of the automated software results were 
due to hardware limitations 
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2. Provide insight into the limitations of 2D images and how a hardware upgrade 
would benefit SMO in distress identification 

The required activities for evaluating the software on 3D images include the following: 

• Activity 1: coordinate with FDOT to conduct semi-automated evaluations of the 
3D images by FDOT experienced raters 

• Activity 2: determine proper filters and detection parameter settings 

• Activity 3: conduct classification and rating 

• Activity 4: summarize the results and conduct comparisons 

• Activity 5: prepare documentation 

The estimated level of effort required to conduct an analysis of the 3D pavement images 
is about 350 hours of consultant’s time. 

D. Evaluating a Second Alternative Software 

The analysis cited above was based on use of a software package that the research 
team had confidence and familiarity with. However, there are a host of other software 
available. A comparison with other software (which would meet the requirements of this 
project) will confirm whether the variability issues are due to the detection algorithm or 
due to hardware limitations. 

The required activities for evaluating an alternative software on 2D images include the 
following: 

• Activity 1: prepare the FDOT LRIS images to be used in the alternative software 

• Activity 2: determine proper filters and detection parameter settings in the 
alternative software 

• Activity 3: conduct classification and rating in the alternative software 
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• Activity 4: summarize the results and conduct comparisons 

• Activity 5: prepare documentation 

The estimated level of effort needed to conduct analyses using an alternative software 
is about 440 hours of consultant’s time. 
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CHAPTER 3 – RIGID PAVEMENT APPLICATION DEVELOPMENT AND 
VALIDATION 

Task 3 of Phase I included the development of the FDOT Rigid Pavement Distress 
Application (FRPDA) for crack identification and quantification, and the corresponding 
validation testing of the application to evaluate its merit. 

The preliminary experiment in Task 2 included: establishment of 12 validation test sites 
representing the typical crack types and severity encountered on Florida rigid 
pavements; validation of collected image quality and its adequacy for distress 
identification; ground truth measurements based on a manual rating of the collected 
LRIS images (reference survey); and comparison of accuracy and precision of the 
automated method to manual and semi-automated distress surveys using a 
comprehensive evaluation framework and established success metrics. Figure 35 
illustrates the devised evaluation plan for conceptualization and design of the FRPDA 
algorithm. The previous chapter describes all these steps in detail. 

This chapter describes the design solutions devised to address the gaps identified in 
Task 2. The design of these solutions was initiated in Task 2 and documented in the 
corresponding chapter. As the actual development effort started in Task 3, some of the 
solutions have been modified to better address the gaps. Section 3 describes the final 
algorithm in detail. Section 3.2 presents the results of automated distress identification 
using the developed solutions in terms of the same evaluation framework and success 
metrics that were established in Task 2. Finally, recommendations are provided in 
Section 3.3 on the path forward regarding implementation of the automated survey 
approach in practice. 
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2) Image Benchmarking 
and Validation 

1) Select 12 Representative 

Test Sections and Review 

FDOT Distress Protocol 

4-1) Comparison of 

Cumulative Distress: 

Accuracy 

Precision 

Repeatability 

Reproducibility 

3-1) Manual Windshield 

Survey by FDOT Raters 

Disparity/Agreement 

Reproducibility 

Consensus 

3-3) Available Automated 

Application (WiseCrax) 

3-2) Manual Survey of 

Collected Images 

by FDOT Raters: 

Disparity/Agreement 

Reproducibility 

by Fugro Raters: 

Reference Crack Map 

4-2) Verification of 

Identified Distress: 

True Positives 

False Positives 

False Negatives 

Validity 

Sensitivity 

5) Gap Analysis 

6) Design Recommendations: 

Software 

Hardware 

Protocols 

Figure 35. Framework for Evaluation and Design of Automated Pavement Distress Application 
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3.1 Rigid Pavement Application Design Solutions 

Table 31 summarizes the identified gaps in the preliminary evaluation of an available 
automated software application (WiseCrax) and corresponding recommended solutions 
based on the results of the gap analysis conducted in Task 2. Based on the gap 
analysis, the following development efforts were recommended and implemented in 
Task 3 of this project. The primary focus of this effort was on determining cracking 
distresses. 

Table 31. Identified Gaps in Automated Software System and Recommended Solutions 

Number Gap Recommended Solution 

1 
High bias in longitudinal cracking (high number of 
false positives, both count and length) Develop joint detection algorithm 

and improvements for 
separating stripes 

2 
High variation of error among multiple test 
sections 

3 
High bias in all crack counts (while reasonable 
bias in transverse crack length) 

Improve crack grouping 

4 Not rating corner cracks 
Revise corner crack definition in 
FDOT protocol and develop 
corner crack algorithm 

5 Not rating shattered slabs 
Develop shattered slab 
algorithm 

6 
Issue with crack width determination (and 
therefore severity rating) after image filtering 

Modify pixel intensity threshold 
for measuring crack width 

7 Not rating spalling of crack and joint edges 

Need depth data 

8 Not rating patching 

Sections 3.1.1 and 3.1.2 describe the adjustments to the existing software (WiseCrax) 
based on the needs of this project. The adjusted routine first filters the images (see 
Section 3.1.1) and then detects surface defects (see Section 3.1.2). Both routines have 
been assembled into a single batch processor, which can be run from the Fugro Vision 
platform. Sections 3.1.3 to 3.1.7 explain the subroutines developed specifically for this 
project and embedded in the customized batch processor, which was named “FDOT 
Rigid Pavement Distress Application” (FRPDA). 

The recommended procedure for automated identification and quantification of rigid 
pavement cracks is as follows. This process has been detailed in the FDOT Rigid 
Pavement Distress Application User’s Guide in Appendix G. 
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1. Run the automated lane assignment based on lane edge offset from image edge 
and specified lane width. Review and correct lane edges as needed to address 
any significant vehicle wander during data collection. 

2. Run the automated batch processor for crack detection (based on WiseCrax), 
which filters the images and detects the surface defects for all sections in a 
project database. 

3. Run the automated batch processor called “FDOT Rigid Pavement Distress 
Application” to: 

a. Detect the joints for all sections in a project database; 

4. Perform quality control (QC) of the joints, modify, add, or delete as appropriate 
for each section; 

5. Run the automated batch processor called “FDOT Rigid Pavement Distress 
Application” to: 

b. Conduct classification, which groups adjacent lines, assigns lines to slabs, 
and classifies lines into longitudinal and transverse based on their angle 
for all sections in a project database; 

c. Rate the classified lines into corresponding crack types and severities for 
all sections in a project database; 

6. Perform QC of the automated cracks, modify, add, or delete as appropriate for 
each section. Other non-cracking distress types can also be manually identified 
during this QC. 

3.1.1 Pre-Filtering Images 

During Task 2 of Phase I, it became evident that filtering and down-sampling the 
collected images had a significant positive impact on the crack detection results. This 
was because the detection algorithm was not capable of differentiating between darker 
pixels within joints and sealed cracks that had a considerable width. It was also found 
that for the LRIS images collected on the 12 representative rigid pavement sections, the 
most suitable filter was a Gaussian filter with a radius of 10 pixels. This filter was 
selected since it provided the best compromise between detecting wider and narrower 
surface defects. This filter was applied to all the images from all the 12 test sections 
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using an open-source software called ImageJ. Of course, using an additional software 
for this purpose was considered a short-term solution at that stage of the research 
project to provide the final results. For production-level activities, this open-source code 
was embedded into the beginning of the WiseCrax detection routine, and the whole 
process can be accessed through a batch processor within the Fugro Vision platform. 

3.1.2 Detection Profile Settings 

As was described in detail in Section 2.3, there are multiple detection parameters that 
can be adjusted for improved detection results. Based on the detailed investigation 
conducted in Task 2, the recommended parameter setting was established based on 
the sample images of the 12 test sections. 

Filtering (down-sampling) the images tends to artificially increase crack widths and 
therefore adversely impact the assignment of severity levels. The reason is that the 
output of Gaussian Filtering is a ‘weighted average’ of each pixel's neighborhood, with 
the average weighed more towards the value of the central pixels. For this reason, the 
peak width of the intensity is increased. As a result, the crack width, which is measured 
by the number of darker pixels with an intensity less than the threshold value, would 
also increase in almost all cases. 

It was recommended that a lower pixel intensity threshold (darker pixels) be used for 
determining the crack widths based on filtered images. This threshold is the maximum 
intensity (the lightest pixels) for a pixel to be counted as part of the crack width. An 
examination of different intensity thresholds (40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 
95, 100) was conducted based on the sample images of the 12 test sections. The 
results of crack width determination with each of these thresholds were validated by 
measuring the actual crack widths based on non-filtered images. It was found that a 
threshold of 70 was yielding the most accurate width measurements for sealed cracks 
and a threshold of 80 was providing the best results for the width of non-sealed cracks. 
Therefore, an intensity threshold of 75 was implemented in the final application as the 
best compromise between sealed and non-sealed cracks. 

The final detection settings are shown in Figure 36, and were applied to all images of 
the 12 test sections after pre-filtering. For detailed description of each detection control 
parameter, please refer to Section 2.3. The combination of the Gaussian filtering and 
surface defect detection was assembled into a single batch processor within the Fugro 
Vision platform. 
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Figure 36. Final Detection Parameter Settings Applied After Pre-Filtering 

3.1.3 Transverse and Longitudinal Joint Detection Routine 

Since the initial crack detection software (WiseCrax) did not have an independent joint 
detection function at the time of this research project, a joint detection routine was 
specifically developed for this project. Note that this routine was designed to identify 
longitudinal and transverse joints that are approximately at right angles to the image 
frame, and the presence of skewed/diagonal joints was considered an exceptional rigid 
pavement design which is not frequently encountered. Since a concept of narrow 
windows is used to identify very straight lines as joints, naturally, the detected joints 
have a maximum angle of approximately 5 degrees from the horizontal or vertical. 
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1. First, the image is downsized (the size of downsized image is 0.25*0.25 of 
original image) to enable detection of wider (sealed) joint lines. Then the 
downsized image is divided into a matrix of cells. The size of each 
individual cell is 8 by 8 pixels. Then, the darkest pixel in each cell is 
detected and the information (i.e. intensity and x-y coordinates) of the 
darkest pixel is assigned to that cell. The existence of a joint cell is then 
detected by comparing its intensity with the intensity of adjacent cells 
using a contrast index. If the cell intensity is lower (i.e. darker) than 
adjacent cells, then the cell is a candidate “joint cell”. The adjacent “joint 
cells” are connected to form a candidate joint. Figure 37 shows example 
detected adjacent cells for longitudinal joints on the top and transverse 
joints on the bottom. The black and gray cells are candidate “joint cells”. 

Figure 37. Detecting Adjacent Candidate Joint Cells (Dark Cells, each 8 by 8 pixels) 

2. A narrow moving window (12 pixels wide) at 0 or 90 degrees (for 
transverse or longitudinal joints) is used to scan the whole candidate joint 
cell map, which only contains joint cells. Figure 38 shows an example of 
such narrow windows for both transverse and longitudinal joints. The 
number of cells that fall into this window is counted. If the number of cells 
is larger than a threshold number (we found that 1/10 of width or height of 
downsized image was the threshold that minimized the sum of false 
positives and false negatives.), then the candidate joint pixel detection 
result is probably a true positive and the centerline of the window is 
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considered as joint coordinates. Otherwise, the detection result is a false 
positive and would be excluded from further analysis. 

Figure 38. Narrow Window to Identify Joints from Detected Joint Cells 

3. Some crack cells (cells that belongs to a pavement crack) could be the 
source of false positives. A second narrow window (12 pixels wide) is 
used to filter out this kind of error. The gap between the candidate joint 
cells that fall within the narrow window is calculated and if this gap is 
higher than a specified threshold (64 pixels), then this is a meandering 
crack (going in and out of the narrow window) and not a straight joint. 
Figure 39 demonstrates an example of such false positive joints. 

4. Finally, the selected joint coordinate (x coordinate for longitudinal joints 
and y coordinate for transverse joints) is recorded, and a line is drawn on 
the image. The coordinate information is also recorded in the SQL 
database for future assigning of cracks to specific slabs. 
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Figure 39. Removing False Positive Joints According to the Gap Between Joint 
Cells 

Table 32 lists the preliminary results from the joint detection routine described above. 
For each of the 12 representative test sections (selected in Task 2), Table 32 is showing 
the number of correctly detected joints, with some exceptions, including falsely identified 
joints and missed joints. In addition, Table 32 provides summary statistics for detection 
rate and detection validity. Joint detection rate is calculated as the percentage of all 
existing joints that were successfully detected by the algorithm. Joint detection validity 
represents the percentage of detected joints that were actually existing on the pavement 
surface. 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐽𝑜𝑖𝑛𝑡𝑠 
𝐽𝑜𝑖𝑛𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 = 

𝐴𝑙𝑙 𝐴𝑐𝑡𝑢𝑎𝑙 𝐽𝑜𝑖𝑛𝑡𝑠 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐽𝑜𝑖𝑛𝑡𝑠 
𝐽𝑜𝑖𝑛𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦 = 

𝐴𝑙𝑙 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐽𝑜𝑖𝑛𝑡𝑠 



 

 

 
  

 
 

  

 

   
   

   
   

 

 

Both indicators show high percentages overall. However, there are a few exceptional 
situations that have resulted in missing some transverse joints and falsely detecting 
some longitudinal joints. Sections with considerable issues have been highlighted in 
yellow. 

Table 32. Preliminary Joint Detection Results 

Detection Rate Validity or Accuracy

False Joints Missed Joints % of all existing joints % of all detected joints

1 46 1 4 92.0                                 97.9                                   

2 49 1 3 94.2                                 98.0                                   

3 57 2 0 100.0                               96.6                                   

4 60 4 7 89.6                                 93.8                                   

5 23 0 52 30.7                                 100.0                                 

6 30 1 0 100.0                               96.8                                   

7 33 0 2 94.3                                 100.0                                 

8 32 0 0 100.0                               100.0                                 

9 25 0 1 96.2                                 100.0                                 

10 60 1 2 96.8                                 98.4                                   

11 42 1 16 72.4                                 97.7                                   

12 56 0 14 80.0                                 100.0                                 

AVG 43 1 8 87.2                                 98.3                                   

Detection Rate Validity or Accuracy

False Joints Missed Joints % of all existing joints % of all detected joints

1 16 0 9 64.0                                 100.0                                 

2 34 0 7 82.9                                 100.0                                 

3 51 33 0 100.0                               60.7                                   

4 40 10 6 87.0                                 80.0                                   

5 65 2 16 80.2                                 97.0                                   

6 71 14 0 100.0                               83.5                                   

7 87 31 2 97.8                                 73.7                                   

8 57 14 2 96.6                                 80.3                                   

9 59 14 0 100.0                               80.8                                   

10 59 0 3 95.2                                 100.0                                 

11 34 19 2 94.4                                 64.2                                   

12 48 20 0 100.0                               70.6                                   

AVG 52 13 4 91.5                                 82.6                                   

Transverse Joints

Longitudinal Joints

Exceptions

ExceptionsCorrect 

Joints

Correct 

Joints

Section

Section

Figure 40 shows two examples of exceptional situations resulting in falsely identified 
longitudinal joints. The image on the left shows a curb on the outer right edge that was 
falsely identified as an additional longitudinal joint. This and similar issues have been 
resolved by restricting the identification of multiple longitudinal joints closer to the image 
edges. The image on the right shows the black lane stripe that was falsely identified as 
a longitudinal joint. This and similar issues have been resolved by checking the pixel 
intensities of the adjacent 100 pixels in the original image, and thus removing dark or 
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white stripes (if more than 30 pixels out of the 100 have lower than 30 or higher than 
210 intensity) from the list of longitudinal joints. 

Figure 40. Examples of Exceptional Situations with Falsely Detected Longitudinal 
Joints (Curb Edge on the Left Image, and Lane Edge on the Right Image) 

It should be noted that this procedure was not successful in some sections (such as 
Section 9 on the right in Figure 41) due to the extensive presence of exceptional 
situations. Specifically, Section 9 had faded lane stripes in the middle of the images and 
were adding to the false positive joints. Therefore, Section 9 was excluded from the final 
evaluation. However, the faded lane stripes in Section 8 did not contribute to false 
positives, because those lane stripes were not in the middle of the images and this 
subroutine was able to disregard them as stripes. The image on the left in Figure 41 
also shows another exceptional situation in Section 5, where extremely straight 
longitudinal cracks are falsely identified as longitudinal joints. This remains to be a gap 
in the developed application. 

Lane 

Edge 
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Edge 
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Figure 41. (left) Very Straight Longitudinal Cracks Resulting in False Longitudinal Joints in 
Section 5; (right) Faded Lane Stripes in the Middle of Image Resulting in False 

Longitudinal Joints in Section 9 

While some of these issues have been resolved, it is very difficult if not impossible to 
identify every exception and address them all. It is possible to use machine learning 
algorithms to develop more robust routines that would learn to distinguish joints from 
other lines (this also applies to the identification of other distress). However, a machine 
learning algorithm will need to be trained effectively on a representative database that 
has an adequately large number of sample images with all the noted exceptions, and 
that has been manually and correctly marked. The performance of the machine learning 
algorithm depends heavily on the availability of such a database. 

The automatically identified joints are displayed on the images using green lines. The 
user can then modify, delete, or add other joints if needed. It is recommended that a 
systematic QC protocol be established to review the results of the software, identify the 
common issues to be resolved in future efforts, and rectify the joint detection results 
before the identification of distresses. Following the implementation task of this project, 
there could be a routine developed that provides the raters with a randomly selected 
subset of the images to be manually controlled for quality. 



 

 

  
  

       
 

 
    

   

  
    

 

  

         

     

     

     

     

     

     

     

     

     

     

  

 
   

 
  

 
 

    

Following the identification of the longitudinal and transverse joints and removing the 
falsely identified joints, concrete slabs are identified as areas surrounded by joints and 
lane or image edges. Each slab is assigned a unique SlabID to be able to assign each 
of the identified distresses to corresponding slabs. Table 33 shows examples of 
identified slabs, along with corresponding coordinates. In addition to the data fields 
shown in Table 33, the software also provides dimensions of the slab such as length, 
width, and area, which can be output into a comma-separated (csv) file format. 

It should be noted that this segment of the routine can be run following the manual QC 
and modification of the identified joints so that the distresses are correctly assigned to 
corresponding slabs. 

Table 33. Example Slabs Identified Using Joints 

IDSlab MinX (meter) MinY (meter) MaxX (meter) MaxY (meter) 

1 0 225.0125 1.283829 227.5494 

2 1.283829 225.0125 3.430392 227.5494 

3 0 228.8075 3.373903 231.8106 

4 0.169465 234.9278 1.360859 237.8539 

5 1.360859 234.9278 4.153444 237.8539 

6 0 240.9556 1.473836 247.0091 

7 1.473836 240.9556 4.153444 247.0091 

8 0 247.0091 1.53546 253.0934 

9 1.53546 247.0091 4.153444 253.0934 

10 0 253.0934 3.89257 259.188 

3.1.4 Routine to Remove False Positive Cracks 

Following the joint detection, there were still some straight lines such as skewed joints 
and lane markings and stripes that were incorrectly classified as cracks. Therefore, an 
additional routine was developed to remove straight lines that were not classified as 
joints in the joint detection procedure and were considered false positives for being 
cracks. This routine was successful in some cases more than the others. Figure 42 
shows one example of the successful application of this routine, where the straight lines 
comprising false positive cracks have been removed after joint detection. 
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Figure 42. Example Removing Straight Lines (False Positive Cracks) in Section 4 

3.1.5 Routine to Improve Crack Grouping and Count per Slab 

The following steps describe the routine that was used to improve grouping of cracks 
that are close to one another and counting the cracks per slab: 

1. The detected lines are grouped based on the types of lines (longitudinal or 
transverse) 

2. The longitudinal lines are sorted based on minimum value of y coordinate 
(minY), and the transverse lines are sorted based on minimum value of x 
coordinate (minX) 

3. The crack pair C1 [startPoint1(sx1,sy1), endPoint1 (ex1,ey1)] and C2 
[startPoint2(sx2,sy2), endPoint2 (ex2,ey2)] are connected, if and only if one 
of the following exists: 
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iii.  Both lines belong to the category of longitudinal lines, where 
|sx −ex | 

sy1<sy2  AND ey1<sy2  AND  2 1 ≤ 1  (the trajectory between the  
|sy2−ey1| 

lines is also longitudinal) AND Euclidean distance  between  
endPoint1 and startPoint2 is smaller than a threshold value (we  
used  500 pixels) OR  

iv.  Both lines belong to the category of transverse lines, where sx1<sx2  
|sx

  2−ex1|
AND ex1<sx2 AND ≥ 1  (the trajectory between the lines is 

|sy2−ey1| 

also transverse) AND  Euclidean distance between endPoint1 and  
startPoint2 is smaller than  a threshold value (we used 500 pixels)  

Minx 

for C1 

Minx 

for C2 

startPoint1 

startPoint2 

endPoint1 
endPoint2 

C1 

C2 

Figure 43. Example of Two Transverse Cracks Grouped into One Crack 

4. The corner points (vertices) of the slab are extracted, and the cracks in 
each slab are counted based on the relationship of crack ends and slab 
vertices: 

i. Given the line startPoint (Xsp,Ysp) and endpoint (Xep,Yep) 
coordinates, and the slab’s upper left point being (X1,Y1) and lower 
right point being (X2,Y2), 
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ii. If (Xsp is between X1 and X2) AND (Ysp is between Y1 and Y2), then 
the startPoint (Xsp,Ysp) is considered inside the slab. If (Xep is 
between X1 and X2) AND (Yep is between Y1 and Y2), then the 
endpoint (Xep,Yep) is considered inside the slab. 

iii. If the bounding box of a crack intersects with a slab area, that crack is 
counted as a crack in that slab. So, a crack would be considered to be 
a crack in several slabs if it crosses several slabs, unless the length of 
its crossing is very small. 

3.1.6 Routine to Classify and Rate Corner Cracks 

The corner cracks are extracted based on the relationship between end points of crack 
and slab edges (or joints): 

1. A corner crack should intersect with both transverse and longitudinal joints, AND 
the distance from this point of intersection to the slab corner should be more than 
or equal to 1 foot and less than half the slab width or length (on both the 
transverse and longitudinal joints). 

2. If a crack intersects a joint at a distance less than 1 foot from the corner, it is 
classified as spalling (Figure 44). Note that this crack should intersect the other 
joint as well. 

3. Based on their location, corner cracks are classified into four types: upper left, 
upper right, bottom left, and bottom right. 

4. The severity of corner cracks is rated based on their width: 

i. Light: width <= 1/8 inch 

ii. Moderate: 1/8 inch < width <=1/4 inch 

iii. Severe: width > 1/4 inch 
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Figure 44. Example Corner Cracks and Spalling 

It should be noted that the spalling instances that are classified in this routine are only 
related to cases where the cracks were not fitting the definition of a corner crack but 
were intersecting both the transverse and longitudinal joints of one slab. In the absence 
of depth data, the spalling of cracks and joints are very difficult to detect. Therefore, this 
spalling number does not represent the entire amount of existing spalling and it is 
recommended that the manual QC process accounts for this. 

3.1.7 Routine to Classify and Rate Shattered Slabs 

The following is the routine used for identifying shattered slabs: 

1. The number of regions bounded by the 'cracks inside the slab' and joints 
are counted. If the number is greater than four, the slab is counted as a 
shattered slab. Note that the grouping routine should be first satisfied 
before a cracked slab can be successfully classified as a shattered slab. 

2. The severity of the shattered slab is rated based on the average width of 
cracks in that slab: 
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i. Moderate: width <=1/4 inch 

ii. Severe: width > 1/4 inch 

However, no shattered slabs were identified on the 12 representative test sections. It 
should be noted that the total number of occurrences of this distress type was 10 
shattered slabs in all test sections. There are potentially other alternative algorithms that 
can better classify shattered slabs, and further investigation is required in this regard. 
Therefore, this is a remaining gap that needs to be closed in future (please see Table 
36). 

3.2 Results of the Developed Rigid Pavement Distress Identification 
Application 

Similar to the experimental design in Task 2, the evaluation of the developed distress 
survey method was done in the following two steps: 

3. Comparison of the overall cumulative quantities of various distress types found in 
the FDOT windshield survey, FDOT manual rating of the collected images (semi-
automated survey), and the developed automated software (FRPDA). 

4. Verification of the automatically detected distresses against the reference crack 
maps generated through a manual rating of the collected images (Fugro semi-
automated survey). 

The following sections will explain the success metrics considered for these evaluations, 
and the corresponding results. 

3.2.1 Success Metrics 

During the testing and comparison experiment designed in Task 2, the following 
success metrics were established for each category of the above evaluations. As 
detailed in Chapter 2, a semi-automated approach was used as the reference survey, in 
which all the images collected in one run for the 12 test sections (total of 509 images) 
were rated by one Fugro pavement engineer and then completely reviewed and 
corrected (according to FDOT protocol) by two other Fugro pavement engineers. There 
are two advantages to this method, first that the first semi-automated rating was 100 
percent controlled by two additional raters, and second that the raters were not 
experienced FDOT raters and therefore this reference can be used as an unbiased 
reference to evaluate all the three rating methods. FDOT raters and the Fugro software 
developer did not have access to this reference rating. 
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Based on the overall cumulative amount of each distress: 

1. Average error (bias) was used to represent accuracy or effectiveness of each 
method. Accuracy can only be quantified with respect to a reference value. The 
difference between each FDOT rater and the reference survey in determining the 
amount of each distress type was normalized (divided) to the amount identified in 
the reference survey. The average normalized error of the three raters (in 
percentage) across the 12 sections was used as the bias of the FDOT manual 
windshield and semi-automated rating methods. The average normalized error of 
the software in the three runs across the 12 sections was used as the bias of the 
automated method. 

2. To represent reproducibility of manual and semi-automated methods, average 
standard deviation of error among the three FDOT raters (on the same test 
section) was used. Standard deviation of error among the three FDOT raters was 
calculated for each test section and then averaged across all sections. 

3. The repeatability (or precision) of the automated algorithm is represented by the 
average standard deviation of error among three runs on the same test section. 
Standard deviation of error among the three runs was calculated for each test 
section and then averaged across all sections. 

4. To use a measure of reliability independent of the reference survey, agreement 
among the three FDOT raters (for manual and semi-automated methods and 
among the three runs for the automated method) was represented by 100 minus 
the coefficient of variation in the total amount of each distress type on each 
section among the three raters/runs. 

5. Average standard deviation of error among the 12 sections was used to evaluate 
the variability of each method across different situations. 

6. To compare efficiency of the three methods (manual, semi-automated, and 
automated), the time required for each survey method was estimated. 

On a distress by distress basis (based on length): 

• True Positives: correctly detected cracks 

• False Positives: detected cracks that don’t exist in the reference survey 

• False Negatives: Missed cracks 
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• Distress Validity (or Accuracy): an indicator to be calculated as the ratio of the 
correctly detected cracks (true positives) to the total detected cracks (true 
positives and false positives) multiplied by 100. This statistic indicates the 
percentage of the detected distress that was actually present in the reference 
survey, thereby expressing the validity of the distress detected by algorithms. 

• Distress Sensitivity (or Recall): a parameter to be calculated as the ratio of the 
correctly detected cracks (true positives) to the total actual cracks existing on the 
pavement surface (true positives and false negatives) multiplied by 100. This 
statistic represents the percentage of the distress in the reference survey that 
was detected by the automated method, thereby expressing the sensitivity of the 
algorithms to existing distress. 

• Distress Classification Performance: a measure of the number of correctly 
classified cracks (according to the reference survey), divided by the number of 
correctly detected cracks (true positives) multiplied by 100. This statistic indicates 
the percentage of the detected distress that is correctly classified by the 
automated algorithm. This metric does not incorporate severity of the distress. 

3.2.2 Comparison Results on Overall Section Distress Quantities 

The chart in Figure 45 demonstrates the accuracy of the automated distress 
identification algorithm developed in Task 3 (FRPDA) in comparison to the previously 
available automated method in Task 2 (WiseCrax), and to the FDOT manual 
(windshield) and semi-automated methods. Accuracy is defined as 100 minus the bias 
(average error among three raters/runs across 12 sections) in identifying each distress 
type using each method. In addition to the evaluation of the total distress counts in 
Figure 45, Figure 46 shows the accuracy of the automated method in determining the 
total length of transverse and longitudinal cracks. It should be noted that the length of 
the cracks was only measured in the automated method and the manual and semi-
automated methods only provided the number of cracks. 
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Figure 45. Accuracy of Automated Methods in Identifying the Number of Cracks (higher bars are 
more accurate results) 

Figure 46. Accuracy of Automated Methods in Identifying the Length of Cracks (higher bars are 
more accurate results) 

Figure 45 and Figure 46 show that the development efforts in Task 3 of this project have 
significantly increased the accuracy of the automated method in identifying both the 
count (80%on average) and the length (16% on average), respectively, of all distress 
types compared to the preliminary evaluation in Task 2. It should be noted that the 
preliminary automated method from Task 2 was not capable of classifying corner 
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cracks. All these improvements show that the gap analysis and the corresponding 
solution design have been successful. In addition, the accuracy of the improved 
automated method (FRPDA) is higher than the accuracy of the manual method (FDOT 
windshield survey) in terms of transverse cracks (by 23% in count) and corner cracks 
(by 44% in count), and comparable in terms of identifying longitudinal cracks (Figure 
45). 

The repeatability (precision) of the automated algorithm developed in Task 3 is 
significantly higher (lower standard deviation among three runs for each section) 
compared to the automated method used in the preliminary evaluation in Task 2 (Figure 
47 and Figure 48). The repeatability of the automated method developed in Task 3 is 
higher than the reproducibility of the manual method in terms of transverse cracking and 
lower than the manual method in terms of longitudinal and corner cracking. As it was 
explained before, some of the exceptions regarding identification of longitudinal cracks 
can cause the repeatability to decrease from run to run. For example, a longitudinal line 
that was identified as a longitudinal crack in one run might be identified as a lane stripe 
in the other run due to the differences in image contrast and the different image 
boundaries caused by the wander of the imaging vehicle. In addition, it is worth to note 
that the repeatability of the improved automated results is comparable to the 
reproducibility of semi-automated results for longitudinal and corner cracking. 

Figure  47. Repeatability  of  Automated Methods Compared to Reproducibility of Manual and 
Semi-Automated Methods in Identifying the Number of Cracks (Standard Deviation of  

Error Among Multiple Runs/Raters: lower bars are more precise results)  
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Figure 48. Repeatability (Precision) of Automated Methods in Identifying the Length of Cracks 
(Standard Deviation of Error Among Multiple Runs/Raters: lower bars are more precise 

results) 

Figure 49 and Figure 50 show the reliability of the automated method in identifying the 
count and length of cracks, respectively. The reliability has been calculated as 100 
minus the coefficient of variation in overall distress values among the multiple 
runs/raters. The Task 3 automated method has a lower reliability in identifying 
longitudinal cracks compared to identifying transverse cracks. Also, Task 3 automated 
method has a lower reliability than the original Task 2 automated method. 

Figure 49. Reliability of Automated Methods in Identifying the Number of Cracks (100 – 
Coefficient of Variation in Total Distress Amounts Among Multiple Runs/Raters: higher 

bars show more reliable results) 
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Figure 50. Reliability of Automated Methods in Identifying the Length of Cracks (100 – Coefficient 
of Variation in Total Distress Amounts Among Multiple Runs/Raters: higher bars show 

more reliable results) 

The bar chart in Figure 51 shows a comparison among the different methods, in terms 
of the standard deviation of average error among different test sections. For each 
method, the average error is first calculated across all raters/runs for each section, and 
then the standard deviation of this average error among 12 sections is calculated. The 
development effort in Task 3 has resulted in a significant reduction in the standard 
deviation of average error among different sections, which proves that the developed 
algorithm (FRPDA) has a significantly lower variability compared to the algorithm used 
in Task 2 evaluations. 

Figure 51. Variability of Automated Methods in Identifying the Number of Cracks (Standard 
Deviation of Error Among Different Test Sections: lower bars mean less variable results) 
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Although the variability of the automated method developed in Task 3 is comparable to 
the manual method in terms of transverse cracking, it is significantly higher (higher 
standard deviation) in terms of longitudinal cracking. Figure 52 shows a similar trend for 
the variability in identifying the overall length of each crack type. The difference in bias 
in identifying longitudinal cracks from one section to the other is due to the existence of 
exceptional circumstances in some sections as it was shown in Figure 41. 

Figure 52. Variability of Automated Methods in Identifying the Length of Cracks (Standard 
Deviation of Error Among Different Test Sections: lower bars mean less variable results) 

Figure 53 shows a comparison of efficiency (speed) of the automated method (running 
the detection batch processor followed by the FRPDA) for distress identification in 
comparison to other distress identification methods. Based on an estimation by FDOT 
raters, the manual distress surveys are typically conducted at an average speed of 2 
mph (1 to 3 mph depending on the amount and severity of distresses present) and the 
survey speed for the automated method developed in Task 3 is slightly greater than 
that. Therefore, the automated survey can be conducted at the same efficiency, not to 
mention the significant improvement in safety of the FDOT staff. 
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Figure 53. Comparison of Efficiency (Speed) of Automated to Semi-Automated Methods. 

Table 34 shows all the above success metrics for the FDOT manual (windshield), FDOT 
semi-automated, Task 2 automated (WiseCrax), and Task 3 automated (FRPDA) 
surveys. 

Table 34. Overall Success Metrics based on Cumulative Count Values 

Statistic Crack Type 
FDOT 
Manual 

FDOT 
Semi-
Automated 

TASK2 
Automated 
(WiseCrax) 

TASK3 
Automated 
(FRPDA) 

Accuracy (%) = 100 - Bias 

Transverse 75 93 24 98 

Longitudinal 98 98 0 95 

Corner 33 85 Not Rated 77 

Average 68 92 12 90 

Repeatability/Reproducibility 
(%) = Standard Deviation of 
Error Among Multiple 
Runs/Raters 

Transverse 27 28 40 20 

Longitudinal 15 39 157 37 

Corner 37 77 Not Rated 74 

Average 26 48 98 43 

Reliability = 100 - COV of 
Distress Values Among 
Multiple Raters/Runs 

Transverse 83 82 75 71 

Longitudinal 82 67 65 55 

Corner 42 7 Not Rated 25 

Average 69 52 70 50 

Standard Deviation of Error 
(%) Among Sections 

Transverse 61 41 98 65 

Longitudinal 45 53 279 71 

Corner 63 42 Not Rated 79 

Average 56 45 188 71 

Efficiency = Speed (mph) Average 2.0 0.2 0.7 2.1 
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3.2.3 Verification of Automatically Detected Cracks 

Based on the results of the gap analysis conducted in Task 2, the majority of the 
development efforts in Task 3 focused on joint detection, and grouping, classification 
and rating of detected lines on pavement images (FRPDA). The surface lines (either 
cracks or joints or lane stripes or vehicle counter loops) on pavement images were 
detected using the same detection routine (based on WiseCrax) in both Task 2 and 
Task 3 efforts. Therefore, the results of crack detection in Task 3 have not substantially 
changed compared to the results from Task 2 (both conducted using WiseCrax on 
filtered images). 

Table 35 shows the results of this verification, which was conducted again in Task 3 
based on 24 sample images (5% of the total 509 images). Two images were selected 
from each of the 12 test sections, and the detected cracks were compared against the 
reference survey one by one. These 24 processed images have been provided in 
Appendix H for reference. In this table, the following success metrics have been 
evaluated. In these equations, true positives are the cracks that were detected and 
actually present on pavement surface. Correctly rated true positives are the true 
positives that were classified into the correct distress category (regardless of severity 
level). 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦 = = 

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = = 

𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑎𝑐𝑘𝑠 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 
𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

Table 35. Average Values for Crack Verification Metrics based on 24 Sample Images (based on 
length) 

Validity 
Sensitivity (or 
Recall) 

Classification 
Performance 

Average 72% 73% 86% 

Std 
Deviation 

45% 38% 36% 

Figure 54 shows the length of cracks in the reference crack map, against the amount of 
true positive, false positive, and false negative. Except for Image 5 from Section 3 and 
Image 11 from Section 6, the detection process has identified true positives comparable 
to reference values. The amount of false positive is considerable (more than 5 feet) in 
Image 1 (Section 1), Image 8 (Section 4), and Images 9-10 (Section 5). The length of 
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missed cracks is significant only in Image 5 from Section 3 and Image 11 from Section 
6. The reason for these isolated issues can be further investigated by examining the 
processed images that have been documented in Appendix H. For example, Image 5 of 
Section 3 and Image 11 from Section 6 have missed longitudinal cracks that were not 
detected by the detection routine. Image 8 from Section 4 shows straight lines from a 
vehicle counter loop that has been falsely identified as transverse joints. Images 9 and 
10 of Section 5 have skewed joints that is a limitation for FRPDA and are falsely 
identified as cracks. 

Figure 54. Verification of Length of Automatically Detected Cracks Against Reference on Sample 
Images 

Figure 55 compares the amount of true positive and correctly detected true positives 
against the reference values. It seems like there were considerable difference between 
the length of true positives and correctly detected true positives in Image 16 (Section 8) 
and Image 24 (Section 12). Image 16 is showing a fairly straight transverse crack that 
was falsely rated as a transverse joint. Image 24 is showing a corner crack that has 
been identified as a transverse crack because part of the crack has not been detected. 
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Figure 55. Verification of Length of Automatically Rated Cracks Against True Positives on 
Sample Images 

3.3 Summary and Recommendations for Implementation 

During Task 3 of this research project, software routines were developed based on the 
gap analysis and solution design that was conducted in Task 2. This report presents the 
results of the final evaluation of the developed routines in identifying and quantifying the 
rigid pavement cracks. Based on this final evaluation, the following are the main 
observations: 

• Following the development efforts in Task 3, the accuracy and repeatability of the 
automated algorithm (FRPDA) has increased significantly. This observation 
means that the gap analysis and the solution design were instrumental in 
addressing the issues with the preliminary automated method and therefore, 
further improvements are possible through a similar analysis. 

• The accuracy of the automated algorithm (FRPDA) in identifying transverse and 
corner cracks (with respect to semi-automated reference values) is higher than 
the manual windshield survey method conducted by FDOT staff. The accuracy of 
the automated method is comparable to the manual method in terms of 
longitudinal cracks. This means that the automated method could be replacing 
the manual survey in identifying these three crack types. Other distress types 
(e.g. shattered slabs, spalling, and patching) could be identified using a semi-
automated review of the collected images. This semi-automated review would be 
part of the QC process. It will be extensive and time consuming at the beginning 
of the implementation but will evolve towards more sampling and become more 
efficient after several years of implementation. 



 

 

   
  

 
   

  

 
   

  
  

  
 

  
  

  
 

    
   

  

     

 
     
   

   
  

   
   

 
 

      
    

     

 
      

    
 

    
  

 
     

   

   
   

  

      
     

 

         
     

        

• The repeatability of the automated method (FRPDA) is higher than the 
reproducibility of the manual survey in identifying transverse cracks and lower in 
terms of other crack types. This means that the bias of the automated routine in 
identifying longitudinal and corner cracks can vary from run to run. It is worth to 
note that the repeatability of the automated results is comparable to the 
reproducibility of semi-automated results for longitudinal and corner cracking. 
The fact that both automated (FRPDA) and semi-automated surveys show lower 
repeatability for longitudinal and corner cracks could be due to the variations in 
image quality and vehicle wander from run to run. In another independent effort, 
Fugro has recently developed a code that can be used to remove some quality 
issues (including the typical streaks) from LRIS images. This code is currently a 
beta version and needs further acceptance testing before public release. 

• The bias of the automated routine in identifying longitudinal cracks and corner 
cracks can vary from section to section depending on the exceptional 
circumstances that could result in false positives or missed cracks (Figure 41). 
Thus, a systematic quality control process is required. 

There are several gaps that have been identified after the development and evaluation 
of the FRPDA in Task 3, which are listed in Table 36. 

Table 36. Remaining Gaps at Conclusion of Task 3 

Number Remaining Gap Recommended Solution 

1 
Very straight longitudinal cracks might be 
rated as longitudinal joints 

Implement a data collection protocol 
to avoid lane stripes in the middle of 
images, Manual QC and 
intervention, these situations are not 
frequent 

2 
Partially faded, or non-straight and jagged 
longitudinal lane stripes in the middle of the 
lane might be rated as longitudinal cracks 

3 
Skewed joints cannot be detected (even 
though they are not the predominant design 
anymore) 

Manual QC and intervention, these 
situations are not frequent 

4 
Still some run to run variation (on different 
images of same section) 

Implement a data collection protocol 
to avoid significant wander and 
variation between images 

5 shattered slabs are not rated successfully 
Revisit the algorithm, test other 
alternatives 

6 Not rating spalling of crack and joint edges Manual intervention in the short 
term, collect 3D data and use 
machine learning in the long-term 7 Not rating patching 
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Based on these observations, the following recommendations are provided for FDOT to 
consider with respect to the annual condition surveys of rigid pavements: 

• Use the developed automated algorithm (FRPDA) to automatically detect and 
identify the transverse, longitudinal, and corner cracks. Use a semi-automated 
routine to identify other distress types (e.g. shattered slabs, spalling, and 
patching) that have not been identified using the algorithm. This semi-automated 
routine should also be used for quality control of the results (specially to address 
the lower precision and repeatability in identifying longitudinal cracks). 

• Develop a systematic procedure for implementing the results of this study for 
collecting, processing, and integrating pavement images; conducting image 
filtering; crack detection; and finally, crack classification and rating. This 
systematic procedure needs to also include a quality control and quality 
assurance protocol for each step. 

• Following implementation of this automated distress survey procedure, further 
improvements to the automated algorithm can be designed based on further 
evaluations on actual surveys. These improvements can be implemented to 
enhance automated distress results and reduce the need for human intervention. 

• If possible, using a 3D imaging technology can also significantly improve the 
results of crack detection and crack classification and rating. In the absence of 
3D data, some distress types such as patching, and spalling cannot easily be 
detected. Spalling of cracks and joints are more pronounced in 3D images, 
because the technology darkens the areas that are lower than the nominal 
pavement surface. In addition, the 3D texture data can assist in recognizing the 
changes in pavement surface type, which can potentially automate identification 
of patched areas. 

With proper implementation of the developed automated routine and a systematic 
quality control procedure, the annual condition evaluation for rigid pavements can 
become more effective, efficient, reliable, and safe. 
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CHAPTER 4 – LRIS FEASIBILITY ON FLEXIBLE PAVEMENTS 

Under Task 4, Fugro analyzed the viability of using 2D LRIS images to detect, quantify 
and classify cracks in flexible pavements. Fugro processed 2D LRIS images and data to 
be used in software evaluation. Fugro identified the potentials and the limitations of 2D 
pavement image technology for flexible pavements. The results from the analysis and 
recommendations are documented in this chapter. 

Task 4 was subdivided into four (4) subtasks: 

1) Data Collection was conducted by FDOT staff using their 2D LRIS equipment 

2) Data Processing, including preparation and importing of LRIS data into the data 
viewing system, crack detection, and distress identification 

3) Evaluation of the automatically detected cracks and identified distresses 
compared to the reference survey 

4) Potentials and Limitations of the LRIS Technology for crack detection and 
distress identification 

This chapter is organized in five sections. Section 4 provides a report on a data 
collection conducted by FDOT staff. Section 4.2 explains the data processing and data 
analysis details. Section 4.3 explains the evaluation of the automated distress survey 
results on 2D LRIS images and the corresponding potentials and limitations. Section 4.4 
includes conclusions and recommendations. 

4.1 Data Collection 

The 2D images were collected on 12 representative flexible pavement test sections by 
FDOT staff. Data collection for this task was completed in May 2017. This section 
describes what types of data were collected, the equipment used for collection, and 
where data was collected. 

4.1.1 Collected Data Elements 

All collected data is referenced geographically and linearly to FDOT’s inventory based 
on the provided Location Referencing System (LRS). The collected data include the 
following: 

158 



 

 

    

  

   

  

   

  

    

      
  

  
 

    

 

  

▪ 2D pavement images using the Laser Road Imaging System (LRIS) 

▪ Pavement longitudinal profile using an Inertial Profiler System (IPS) 

▪ Pavement transverse profile using the Laser Rut Measurement System (LRMS) 

▪ Differential Global Positioning System (GPS) data 

▪ Distance Measuring Instrument (DMI) data integrated with GPS data 

4.1.2 Data Collection Equipment 

The 2D images and data were collected using the LRIS equipment manufactured by 
INO/Pavemetrics and integrated on an International Cybernetics Corporation (ICC) 
high-speed profiler host vehicle (Figure 56). It should be noted that as part of a separate 
purchase order, Fugro collected 3D images and data from the same locations using the 
LCMS equipment manufactured by INO/Pavemetrics and integrated on Fugro’s 
Automatic Road Analyzer (ARAN) host vehicle. For more information on that effort, 
please refer to the Purchase Order Report included in Appendix I. 

Figure 56. FDOT LRIS Equipment 
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4.1.3 Testing Locations 

Similar to Phase I of this project, 12 representative flexible pavement test sections 
(Table 37) were selected by FDOT staff for Phase II evaluations. These representative 
test sections were selected in a manner that would include the key distress types and 
severity levels that are frequently encountered on Florida highways. 

Table 37. Representative Flexible Pavement Test Sections 

Index County ID Road City Lane Direction BMP EMP Length 

1 02050000 SR 44 Crystal River R2 East 0.000 0.604 0.604 

2 02050000 SR 44 Crystal River L2 West 0.000 0.604 0.604 

3 11010000 SR 44 Leesburg R2 East 0.000 1.592 1.592 

4 11100000 SR 19 Umatilla R2 North 3.816 4.906 1.090 

5 11002000 SR 44 Leesburg R2 East 1.183 2.276 1.093 

6 11002000 SR 44 Leesburg R2 East 3.184 4.514 1.330 

7 11080000 SR 19 Howey in the Hills R1 North 0.000 0.925 0.925 

8 18020000 SR 50 Polk City R1 East 5.356 6.421 1.065 

9 26050000 SR 24 Gainesville L2 South 3.367 6.095 2.728 

10 26050000 SR 24 Gainesville L2 South 6.095 7.670 1.575 

11 10190000 SR 400 / I-4 Tampa R3 East 11.098 12.332 1.234 

12 10190000 SR 400 / I-4 Tampa R3 East 20.407 21.476 1.069 

4.2 Data Processing 

This section provides a brief overview of the methodology behind some of the key 
processing steps conducted and any project specifications unique to this project. 

4.2.1 Import Data 

The LRIS data collected by FDOT staff had to be imported into a Vision database to be 
able to display and analyze the data in the Vision software. First, the quality of the data 
files needed to be evaluated since this data was not collected using the Fugro ARAN 
vehicles and were not always compatible with the Vision software. 

Data Review 

The purpose of this procedure is to review the contents of the data collected by the ICC 
Equipment provided by Florida DOT. This will review the existing information as well as 
look for needed information for importing the collected data to Fugro's Vision software. 
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File Type File Naming Rule File Name Example 

Image File xxxx_img_3.csv 02050L2_Img_3.csv 

GPS File xxxx.G01 02050L2.G01 

Reference File xxxx.N01 02050L2.N01 

Section File Xxxx_six_01.csv 02050L2_six_01.csv 

The data provided by FDOT included nine folders, and each folder were named in the 
following format: ‘County ID_Route Name_Pavement Type_Start Mile Post-End Mile 
Post’. For example, a folder named 02050_SR44_AC_0-0.604 includes data collected 
for test section 1 (out of 12), for which county ID is ‘02050000’, route name is ‘SR44’, 
pavement type is asphalt concrete, start mile post is 0.0 and end mile post is 0.604. 

The data collected for any adjacent sections (start point of one section is the end point 
of another) and any reverse sections (start points, and end points are the same but 
collection directions are opposite) are stored in the same folder. 

Each folder includes two sub folders: Images and Profiler. The ‘Images’ folders hold all 
pavement images collected for the corresponding test sections, while the ‘Profiler’ 
folders provide information such as distance stamp of each image, and GPS 
coordinates recorded during the data collection. 

After examination all files in the ‘Profiler’ folder, four files are identified as required for 
importing data to Vision database. Table 38 shows these files. 

11. Image File: This file contains information, such as Distance stamp, GPS 
coordinates, county ID and file path of pavement images collected by the LRIS 
equipment. This file is stored in csv (comma-separated values) format in the file 
folder. 

12.GPS File: This file provides more detailed GPS coordinates information of each 
pavement image collected. The GPS coordinates are updated every 0.2 seconds 
of UTC time. This file is stored in G01 format in the file folder. 

13.Reference File: This file contains measurement information that are referenced 
from other files in the same folder. 

14.Section File: This file includes section information, such as County ID, Route 
name, mile post of start points and end points of each section. This file is stored 
in csv format in the file folder. 

Table 38. Four Types of FDOT ICC Vehicle Files Used in Importing Process 
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Year 
├── By County 
│ └── County Name 

├── Pavement Type 
│ └── Collection Name 

└── Images 
└── MDR 

└── xxxx_img_3.csv 
└── xxxx.G01 
└── xxxx.N01 
└── xxxx_six_01.csv 

└── ROW Images 
└── Vision Output 

  

 
 

    
  
     
   
   
    
    
    
    
    
    

2017-2018 
├── By County 
│ └── 50 Gadsdent 

├── Flexible 
│ └── 50000340 

└── Images 
└── MDR 

└── 02050L2_img_3.csv 
└── 02050L2.G01 
└── 02050L2.N01 
└── 02050L2_six_01.csv 

└── ROW Images 
└── Vision Output 

  

  

  
  

Standard Folder Structure 

After thorough discussions, a new folder structure and file naming rules were agreed 
between FDOT and Fugro as the standard folder structure. The purpose for this 
standard folder structure is to minimize future need for changes in the SQL code that 
imports FDOT data into Fugro’s Vision software. Figure 57 shows the standard folder 
structure and Figure 58 shows an example. 

Figure 57. Agreed Folder Structure 

Figure 58. Folder Structure Example 

Data Preprocessing Tool 

During this stage, the raw data collected by ICC equipment are cleaned (remove 
redundancies), standardized, and transformed by the developed Java based data 
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preprocessing tool. The Java tool first renames the Image Information files, GPS files, 
reference files and section files to ensure: 1) files for the same sections have the same 
file name, and 2) files for the different sections have different file names, then separates 
the Image Information files and GPS files into one file per sub-section according to the 
section boundaries that have been provided by FDOT staff. This pre-processing has 
been described in Appendix M. 

Import Processed data to Vision Database 

During this stage, the pre-processed data is imported into a Vision database. First, a 
blank Vison database is created using the DBGen tool provided in the Vision software 
package (Figure 59). Database objects such as tables, views, stored procedures, 
functions are loaded in the new created blank database, according to the database 
template in the DBGen tool. 

Figure 59. Fugro DBGen Software Interface for Creating Blank Vision Databases 

Then, the pre-processed data are uploaded into the Vision database with the developed 
SQL scripts, included in Appendix M of this report. Key information such as distance 
stamp, GPS coordinates, image file names are extracted from pre-processed data and 
loaded into the corresponding tables. With the data successfully integrated into the 
Vision database, the Vision software can connect to the database and display various 
information about road sections, locations and pavement images (Figure 60). Figure 61 
is the database diagram illustrating the basic parts of tables, fields, key fields, and 
relationships in the Vision database. 
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   Figure 60. Fugro Vision Interface Showing the Imported Sections 

164 



 

 

 

   

    

   
   

  
 

  

Figure 61. Vision Database Basic Tables and Relations 

Identified Errors in Data Files 

Sample data sets were provided by FDOT for assuring and checking the quality of 
developed Java app and SQL code. If all the above steps were closely followed, no 
exceptions happened during data importing stage, while some errors occurred when 
operating the automated joint detection processor in Vision software. The root cause of 
errors was investigated, and it was found that all these errors were caused by certain 
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issues in the provided data files. Two typical errors have been identified in the provided 
data, which are documented here to avoid them in future: 

1. Wrong start mile post and end mile post: In some examples, the same start and 
end mile posts were recorded for multiple rows in the saved data files, as seen in 
the example below (Figure 62). 

Figure 62. Typical Error in Mile Post Data 

2. Invalid length of test section: The length of test section should be longer than 
LRIS image height, which is 6.11 meter, approximately 0.004 mile. In some data 
files, the recorded length was less than this minimum. 

4.2.2 Segmentation 

Segmentation is the method of ensuring the data collected by the ICC equipment 
matches the geographic and linear references set up by FDOT. The segmentation 
process is completed to match the true start and stop locations of the road section to 
ensure that the collected data represents the exact location expected by FDOT. The 
matching of information was completed using Fugro’s Vision and utilizing site 
information provided by FDOT. 

Stationing for all routes was adjusted using a method called “rubber-banding”, to match 
stationing provided by FDOT. All data collected prior to the start of the route are 
removed and the chainage of the beginning of the route is set to the FDOT value for 
that landmark. Chainages for all other landmarks on the route are adjusted to match 
length and location information provided by FDOT. In the “rubber-banding” process, 
data between each set landmark may be stretched or compressed accordingly to 
ensure station chainages match up. 

166 



 

 

  

  
  

   
  

   
 

   

    
 

  
  

  
  

  
  

   

  
   

  
   

  
  

   

    
 

  
   

   
   

  
    

 

4.2.3 Distress Data Analysis Process 

The actual software development effort for this project was carried out during Task 6 of 
Phase II, and therefore at this stage of the analysis, the existing Fugro Vision software 
was used due to its availability with the integrated images and data. Therefore, the 
following software descriptions are the Vision software descriptions and not the 
descriptions for the FDOT customized application at this point of the project. Fugro 
Vision software includes an automated distress data analysis application, which 
involves the following main routines: 

4. Lane Detection: during this step, lane boundaries are automatically detected and 
marked as blue lines on the pavement images. 

5. Defect Detection: also called “Crack Detection,” during which any linear defects 
on pavement surface is detected and marked with lines. 

6. Defect Classification: during this step, all the detected linear defects are 
classified into one of the three categories of longitudinal defects, transverse 
defects, and other (which will eventually be rated as alligator or block cracking) 
defects according to some criteria for defect angle and density, which can be 
changed by the user. 

7. Distress Rating: during this final step, the software assigns a distress type and 
severity to each of the classified defects according to a distress schema defined 
by the user based on their experience. The user needs to select one or more 
criteria from a series of criteria such as angle, longitudinal and transverse extent, 
density, width, and others for each distress type and severity. Once the schema 
is established, this schema can be applied for network-level data collection. 

Distress Schema Specification 

The performance of crack detection, classification and rating is highly dependent on a 
well-defined distress schema. The setting up of distress schema includes creation of 
Distress Type, Distress Severities, Crack Ranges, Detection Profile, Classification 
Profile, Road Zones and Rating Profile (Figure 63). In this project, the distress schema 
was setup according to the specified criteria for each distress type in the FDOT Flexible 
Pavement Condition Survey Handbook (2017). Once the schema is setup and saved, 
this schema can be applied for network-level data collection. The following segments 
describe how the details of the distress schema are setup. 

The Vision software provides two options for distinguishing distresses by zone location: 

167 



 168 

 

  
    

   
    

 
  

    
     

 

      
  

 
  

 

     
  

1. In the distress schema, only one distress type would be setup for both wheel 
path (WP) and outside wheel path (OP), but then they could be separated using 
a SQL code on the database based on the location information (Figure 63). This 
option is more flexible as it does not require reprocessing if it is decided to 
change the width of wheel path zones in the future. Specifically, if the images are 
going to be rated manually or if the automated distress needs manual QC and 
correction, this option is recommended. It is extremely tedious for the manual 
rater to draw separate distresses for the wheel path and non-wheel path areas 
(option 2).  In this stage of the project, option number 1 was used for establishing 
the reference survey. 

2. In the distress schema, separate distress types could be setup for WP and OP 
areas (Figure 64). This option is recommended when no manual correction of the 
automated process is needed. In this stage of the project, option number 2 was 
used for the automated distress survey. 

Figure 63. Vision Distress Schema Editor Interface with One Distress Type for Both Wheel Path 
and Outside Wheel Path Zones (Option 1) 
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Figure 64. Vision Distress Schema Editor Interface with Separate Distress Types Defined for 
Wheel Path and Outside Wheel Path Zones (Option 2) 

Distress Type and Severity 

Distress types are defined under the ‘Distresses’ tab and the severities under the 
‘Severities’ tab. Then, each distress type is assigned the possible severity options. 
FDOT’s Flexible Pavement Condition Survey Handbook (2017) includes the following 
distress types and severities: 

15.Single Cracks (linear length, feet), Class 1B or Class II or Class III 

16.Branch Cracks (linear length, feet), Class 1B or Class II or Class III 

17.Block Cracks (area, sq. feet), Class II or Class III 

18.Alligator or Fatigue Cracks (area, sq. feet), Class II or Class III 

19.Patching (area, sq. feet), no severity levels 

20.Raveling (area, sq. feet), Light or Moderate or Severe 

During the distress rating process, these distress types are identified and quantified 
individually and then they are added up to generate the total amount of cracking in each 
one of the Class 1B, Class II, and Class III cracks. All linear distress types are recorded 
in two groups of longitudinal and transverse to differentiate their orientation and facilitate 



 

 

 
 

   
 

  
  

     
  

 

     
   

  
    

 

  
    

   
  

    
 

  
  

 

     
 

    

 

  
 

 

quality control, but they are added up for each distress type (for example, branch cracks 
or single cracks) following the survey. 

Following the distress survey, two categories of distress will be recorded for each of 
these distress types: within the wheel paths (CW), and outside the wheel paths (CO). 
For automated survey results, this differentiation was made in the schema setup (option 
2). For the reference survey, this differentiation was conducted using a SQL code 
(option 1). This is required for the final calculation of the amount of distress in each 
class within and outside the wheel paths, because the deduct values are higher for 
distresses within the wheel paths. 

The total area for patching and raveling is added to the total amount of Class III cracks. 
The details of each distress type and severity are recorded to keep a permanent record 
that facilitates quality control and quality assurance initiatives. All the summation 
happens on the recorded data in the SQL database. 

Crack Range 

Under the ‘Cracks’ tab in the Distress Schema Editor, a coloring scheme is defined for 
identification of the detected cracks/defects on the pavement image according to crack 
width (Figure 65). The following crack ranges were determined for this project as they 
correspond to the severity levels identified in the FDOT manual: 

1. Small cracks with crack width less than 3.18 mm are identified with blue color 
lines (later assigned to Class 1B category in distress rating) 

2. Medium cracks with crack width equal to or greater than 3.18 and less than 6.35 
mm are identified with yellow color lines (later assigned to Class II category in 
distress rating) 

3. Large cracks with crack width equal to or greater than 6.35 mm are identified with 
a red color lines (later assigned to Class III category in distress rating) 

The “Max Width” in Figure 65 means “less than” and the “Min Width” indicates “equal to 
or greater than”. As previously noted, this is NOT the FDOT customized application. At 
this stage, we are using the existing Vision software to compare 2D versus 3D data. 
The FDOT customized application will be developed during Task 6 (development). Also 
patching and raveling are “distresses” and NOT “cracks”. This menu is ONLY showing 
cracks. After the distresses are identified in the “rating” process, patching and raveling 
can be added. 
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Following the crack detection process, the detected cracks are displayed on top of the 
pavement images with the colors corresponding to their width. As shown in Figure 65, 
the Cracks menu also allows selection of specific coloring scheme for the classification 
categories of Longitudinal, Transverse, Alligator, Block, and Unclassified categories. 
Following the classification process, each class of cracks are identified on top of 
pavement images using the corresponding colors. These colors help with quality control 
of the detection and classification process. 

Figure 65. Cracks Menu in the Distress Schema Editor 

The default crack color displayed in the user interface shows the width range of the 
crack. For example, the widths of cracks in green color are less than or equal to 
3.18 mm. The colors can also be changed to represent the type of crack using the drop 
menu as shown in Figure 66. 

Figure 66. Changing the Colors of the Displayed Cracks 

The same color cannot be used for cracks of the same type or same width ranges, but 
there are no conflicts if the same color is used for ‘Range’ and ‘Type’. 

Detection and Classification Profiles 

Under the ‘Profiles’ tab in the Distress Schema Editor, the control parameters for the 
crack detection and classification processes are determined. The software typically 
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shows the default values for these control parameters that have been set based on 
empirical experience. In the Task 2 report for this project, various control parameters for 
the detection of cracks from 2D images and for the classification of detected cracks into 
transverse and longitudinal categories were introduced and the impacts on software 
performance of changing each control parameter were explained in detail. Figure 67 
shows the ‘Profiles’ tab, which allows for customization of the control parameters for the 
crack detection and classification processes. 

Figure 67. Detection and Classification Profiles in the Distress Schema Editor 

Vision provides two alternative automated crack detection algorithms to choose from 
when running this process on 2D images: 

1. WiseCrax Crack Detection: This automated crack detection algorithm was 
developed by Fugro and used in Phase I of this project. This algorithm detects 
cracks based on image pixel intensities. For details of this methodology please 
refer to Task 2 report. 

172 



 

 

   
  

  

  
  

    
   

  

  
   

 
   

  

   

   

     

  
  

        
 

 

 

  
   

   
    

 

        
     

 

   

   

     
      

    
      

      

 

    

2. Fugro Machine Learning Crack Detection: This machine learning automated 
crack detection algorithm was recently developed by Fugro engineers, based on 
a large database of semi-automated evaluation of 2D images. 

The Fugro machine learning based 2D crack detection algorithm has been tested on 
numerous pavement surface images and its corresponding control parameters have 
been optimized in the latest version of Vision software. As a result, it is recommended 
that the detection parameters are not changed. Due to superior performance on multiple 
recent statewide projects, the machine learning algorithm was used for this analysis. 

In the classification step, there are several parameters that can be changed to improve 
the classification results (Table 39). For this phase of the project, eight classification 
profiles using eight different control parameter sets were used, and the final 
classification profile was selected based on the best results among these profiles. 

Table 39. Classification Parameter Settings 

Parameter Description Value Used 

Classification Enabled Enables classification TRUE 

Separate Seal Classification Classifies sealed cracks separately FALSE 

Degree Angle 

Angle threshold differentiating between 
longitudinal and transverse defects, this 
is the angle for the best fit line across the 
crack nodes 

45 

Density 

The density threshold beyond which 
there are enough cracks within a tile to 
count the tile area as alligator cracking 
area and not individual cracks. 

1.5 

Tile Height (pixels) Tile used for calculating the density of 400 

Tile Width (pixels) the alligator or block categories 200 

Group Tile Height (pixels) 

Tile used for grouping defects together 
(see Figure 68). Cracks that fall within 
these grouping tiles and are of the same 

50 

Group Tile Width (pixels) 
classification will be grouped together to 
make one crack set or group of cracks. 10 
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Figure 68. Group Tile Height and Width 

The tuning of the classification control parameters was conducted by changing the 
parameters one by one and comparing the one classification result against the other. 
Figure 69 shows a comparison of the classification results when changing the density 
threshold that defines when cracks become alligator cracks. To compute crack density, 
the bounding box of a crack is divided into grids of tiles of user input size. If the density 
threshold is increased, there will be less distresses classified as alligator cracking. 
Figure 69 shows a comparison of classification results when changing the dimensions 
of the Tile used for calculating the density of the alligator or block categories. It is 
obvious that the larger the tile size, the smaller the density of the cracks. As a result, if 
the density threshold is fixed but the tile size is increased, there will be less distresses 
classified into alligator category. In this example, the crack set are rated as alligator 
when density threshold is 1.5. When the density threshold is increased to 2.0, this crack 
set is rated as longitudinal crack, which is actually not true. This parameter was tested 
on three sections which contained a larger amount of alligator cracking, and finally 
selected 1.5 as the optimum density threshold. 
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Density threshold=1.5 Density threshold=2 

Figure 69. Comparison of Classification Control Parameter Settings: Density 

Tile Height= 400, Tile Width= 200 Tile Height= 400, Tile Width= 400 

Figure 70. Comparison of Classification Control Parameter Settings: Tile Height and Width 
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During the classification, the detected cracks are grouped into crack sets based on their 
proximity to each other. The distances between each crack bounding box are checked; 
if the horizontal distance between two adjacent bounding boxes is smaller than the 
group tile width and the longitudinal distance between the boxes is smaller than group 
tile height, then the two cracks are merged into one crack set. Each crack set will be 
rated as one distress. Figure 71 shows a comparison of the classification results when 
changing the dimensions of the Group Tile used for grouping defects together (see 
Figure 68). 

Group Tile Height: 50 
Group Tile Width: 10 

Group Tile Height: 50 
Group Tile Width: 50 

Figure 71. Comparison of Classification Control Parameter Settings: Group Tile Height and 
Width 

Road Zone 

Road zone describes the portion of the road that is in the wheel paths and what is 
outside the wheel paths. The road zones were customized according to the Florida DOT 
specification of each wheel path being three feet wide (the FHWA HPMS Field Manual 
of December 2016 specifies one meter) and the center zone being three feet (0.91 
meters) wide (Figure 72 and Figure 73): 

1. Left Exterior: 0 meters offset from the Left Edge to -1.365 meters offset from the 
Center 



 

 

    

  

  

  
 

 

   

2. Left Wheel Path: -1.365 to -0.455 meters offset from the Center 

3. Center: -0.455 to 0.455 meters offset from the Center 

4. Right Wheel Path: 0.455 to 1.365 meters offset from the Center 

5. Right Exterior: 1.365 meters offset from the Center to 0 meters offset from the 
Right Edge 

Figure 72. Wheel Path Designation in FDOT Flexible Distress Handbook (2017) 
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Figure 73. Road Zone Settings 

Rating Profile 

The Rating Profile is used for assigning a distress type and severity to each of the 
detected and classified surface defects. This profile contains several components 
including profile name, profile description and rating rules. The rating rules configuration 
include distress rule set up and severity rule set up. While the Distress Rules specify 
classification of crack, the road zone, and distress metrics to be calculated, the Severity 
Rules determine detailed constraints on distresses that will be rated into each severity. 

Distress Rules are setup based on the following: 

1. Crack Classification: following detection and classification, all cracks are 
classified into Longitudinal, Transverse, Alligator, or Block. As previously noted, 
there are two options for distinguishing distresses by zone location. Table 40 and 
Table 41 show the distress types that were considered for this project and their 
corresponding crack classification for option 1 and option 2, respectively. As it 
was noted before, these distress types are used for documenting the distresses 
in a permanent record to facilitate quality control. 

Table 40. Distress Types and Corresponding Crack Classification and Severity Levels (option 1 
corresponding to Figure 63 used for the reference survey) 

Distress Name Crack Classification Severity Levels 

SingleCrack_L Longitudinal 1B, II, III 

SingleCrack_T Transverse 1B, II, III 

BranchCrack_L Longitudinal 1B, II, III 

BranchCrack_T Transverse 1B, II, III 

BlockCrack Block II, III 

AlligatorCrack Alligator II, III 

Raveling NA III 

Patching NA III 
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Table 41. Distress Types and Corresponding Crack Classification and Severity Levels (option 2 
corresponding to Figure 64 used for automated results) 

Distress Name Crack Classification Severity Levels 

SingleCrack_L_WP Longitudinal 1B, II, III 

SingleCrack_L_OP Longitudinal 1B, II, III 

SingleCrack_T_WP Transverse 1B, II, III 

SingleCrack_T_OP Transverse 1B, II, III 

BranchCrack_L_WP Longitudinal 1B, II, III 

BranchCrack_L_OP Longitudinal 1B, II, III 

BranchCrack_T_WP Transverse 1B, II, III 

BranchCrack_T_OP Transverse 1B, II, III 

BlockCrack_WP Block II, III 

BlockCrack_OP Block II, III 

AlligatorCrack_WP Alligator II, III 

AlligatorCrack_OP Alligator II, III 

Raveling_WP NA III 

Raveling_OP NA III 

Patching_WP NA III 

Patching_OP NA III 

2. Lane Type: Used only with option 2 (Table 41 and Figure 64), this refers to the 
road zones to be included in the process of identifying a selected Distress Type. 
For wheel path distresses, the ‘Left Wheel Path’ and ‘Right Wheel Path’ zones 
created in the ‘Road Zone’ menu of the Schema Editor can be selected. For non-
wheel path distresses, the ‘Left Exterior’, ‘Center’, and ‘Right Exterior’ zones 
created in the ‘Road Zone’ menu of the Schema Editor are selected. For the 
reference survey in which manual correction of the automated results was 
required, this feature was disabled and instead wheel path and non-wheel path 
distresses were recorded in the same distress type and separated using an SQL 
code on the database (option 1). In this manner, if the road zone widths change 
in the future, the data can easily be reprocessed and there would be no need for 
conducting the manual distress rating again. 

3. Metric: These include metrics to be reported for a selected Distress Type after 
automated identification and quantification. The following metrics were selected 
in the created rating rules. They will be calculated and recorded in the Vision 
Database. 

1) Crack Count - Number of Cracks that make up a Crack Group 

2) Crack Area - Area that contains all Cracks (all cracks in Crack Group) 

3) Crack Length - Actual length along all cracks in a Crack Group 



 

 

  
 

   
  

     

     
 

   
  

  
   

   

     

   

        

       

      
  

   

    

   

       
 

 
    
 

  

4) Crack Extent - Longitudinal length of cracks in a Crack Group (Length in y-
axis) 

5) Transverse Extent - Horizontal length of cracks in a Crack Group (Length 
in x-axis) 

6) Width - Width of Crack (Average width of cracks in Crack Group) 

7) Diagonal - Length from bottom left to top right of every distress bounding 
box 

Severity Rules are setup based on the following (In current version of Vision software, 
the unit used in parameter settings is meter): 

1. Crack Width: a crack width range is used as a constraint for selected severity 
levels in this project as demonstrated in Table 42. 

Table 42. Crack Width Range 

Severity Level Crack Width Range (mm) 

Class 1B Less than 3.18 

Class II Greater than or equal to 3.18 and less than 6.35 

Class III Greater than or equal to 6.35 and less than 1000 

2. Crack Length: a minimum extent of 0.3 meter (1.0 ft) is used as a constraint for 
identifying distresses (this was selected based on past experience): 

a. Transverse Extent is used for transverse single and branch cracks 

b. Longitudinal Extent is used for longitudinal single and branch cracks 

c. No extent limitation was considered for alligator or block cracks 

3. Road Zone: Used only with option 2 (Table 41 and Figure 64), this refers to the 
road zones to be included in the process of rating a selected Distress Severity. 
For wheel path distresses, the ‘Left Wheel Path’ and ‘Right Wheel Path’ zones 
created in the ‘Road Zone’ menu of the Schema Editor can be selected. For non-
wheel path distresses, the ‘Left Exterior’, ‘Center’, and ‘Right Exterior’ zones 
created in the ‘Road Zone’ menu of the Schema Editor are selected. This results 
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in only the portion of detected cracks within specified zones to be included in 
each severity rating. This was only used for the fully automated survey. For 
example, Figure 74 shows that Distress number 195 shows longitudinal cracking 
in the wheel path and Distress number 196 shows the adjacent longitudinal 
cracking outside the wheel path. Similarly, Distress number 197 shows alligator 
cracking in the wheel path, while Distress number 198 indicates the adjacent 
alligator cracking outside the wheel path. 

Figure 74. Automatically Separated Wheel Path and Non-Wheel Path Distress Rating 

Automated Pavement Distress Identification 

Fugro Vision software includes batch processors for automated lane detection, crack 
detection, classification and rating as identified in Table 43. These batch processors can 
be executed individually or all together. The JPEG Crack Detection Processor is Fugro’s 
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solution for detecting surface defects using machine learning algorithms on 2D or 3D 
pavement images. 

Table 43. Batch Processor 

Batch Processor Function 

JPEG Lane Detection Processor Lane Detection 

JPEG Crack Detection Processor Crack Detection from 2D or 3D Images 

Classification Processor Classification 

Rating Processor Rating 

JPEG Lane Detection Processor 

After this processor is completed, the lane boundary is shown as blue vertical lines in 
the user interface. Also, the location of detected lane is recorded in the Vision database. 

JPEG Crack Detection Processor 

After this processor is completed, cracks are detected from pavement images and are 
shown in the ‘Range color’ in the user interface. The crack information, such as Type, 
Chainage, Offset (in), Crack Length (ft), Crack Width, Cracks (count), Sealed Count, 
Crack Density (%), Crack Angle (degree), and Crack Depth (in) is listed in the ‘Cracks’ 
table (Figure 75). All the cracks are categorized as ‘Unclassified’ as they are still not 
classified yet at this stage. 

Figure 75. Crack Table 
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Classification Processor 

After this processor is completed, the cracks are classified and grouped into crack sets. 
The Crack table is updated to Crack Set table (Figure 76). Each Crack Set includes one 
or more cracks. 

Figure 76. Crack Set Table 

Rating Processor 

During the rating procedure, crack sets are rated. Severity levels and types are 
assigned to distresses. 

Semi-Automated Pavement Distress Identification 

A Fugro rater conducted a semi-automated rating on one run of the images for the 12 
test sections using 3D LCMS images that were collected on the same test sections and 
imported into the Vision software. Then another Fugro rater reviewed the results of the 
first rater to reach consensus on the reference survey (“Ground Truth”). During this 
procedure, linear distresses and area distresses (boxes) are manually drawn on top of 
the collected pavement images. The results of the crack detection process, including 
the color-coded cracks were used by raters as guidance to assign severity levels based 
on crack width. 

Due to the lack of range images and ROW video data, the LRIS data is inappropriate to 
be used for creating a reference close to ground truth. The following examples have 
been provided to demonstrate the superiority of the 3D LCMS data over 2D LRIS data 
for generating the reference survey. In Example 1 (Figure 77), cracks can be missed if 
the detection is solely dependent on the intensity image. In Example 2 (Figure 78), the 
patching boundary can be falsely rated as transverse crack, if there is no ROW image 
(Figure 79). 
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LCMS Intensity Image LCMS Range Image 

Figure 77. Demonstrating the Reason for Using 3D Images for Reference Survey: Example 1 
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LCMS Intensity Image of Patching LCMS Range Image of Patching 

Figure 78. Demonstrating the Reason for Using 3D Images for Reference Survey: Example 2 

Figure 79. ROW Image of Patching Area 



 

 

    
       

        
   

   

  
    

 
 

   
 

   
    

   

      

      

      

      

      

      

      

      

      

      

      

      

    
  

  

It is noted that LRIS data are collected in the order of county ID, while the Section ID in 
the reference LCMS data are sorted in the order of site ID. Table 44 documents the 
relation between the session IDs in the reference database and the LRIS database to 
avoid confusion. To facilitate the data comparison between 2D database and 3D 
reference database, this information was imported as a table into the 2D database. 

Table 44. Relation Between the 2D Database and the 3D Reference Database 
Site ID ID Session in 

Reference 
Database 

Section ID in LRIS 
Database 

ID Session Section 
ID in LRIS Database 

Run1 Run2 Run2 

1 15 1 1 2 3 

2 19 2 4 5 6 

3 24 7 19 20 21 

4 38 9 25 26 27 

5 31 5 13 14 15 

6 34 6 16 17 18 

7 44 8 22 23 24 

8 45 10 28 29 30 

9 13 12 34 35 36 

10 14 11 31 32 33 

11 49 3 7 8 9 

12 55 4 10 11 12 

As shown in Figure 80, the Vision Pavement rating module allows the analyst to 
simultaneously view both the ROW and pavement images while marking and rating 
pavement distresses. This feature facilitates the semi-automated distress identification. 
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Figure 80. Vision Pavement Rating Module for Semi-Automated Distress Survey 

The two stages for creating reference data are introduced in Section 4.3.2. 

4.3 Evaluation of the LRIS Technology for Crack Detection and 
Distress Identification 

In this chapter of the report, the results of crack detection and distress identification 
using the 2D LRIS images are evaluated. The 2D data collection was conducted by 
FDOT using their LRIS equipment and the data were analyzed by Fugro staff during 
Task 4 of this project. The following will describe the success metrics, the reference 
values, and the results, which will be analyzed to conclude on feasibility of using 2D 
LRIS technology in identification and quantification of flexible pavement distresses. 

4.3.1 Success Metrics 

The three principal success metrics of any process are effectiveness, efficiency, and 
reliability. In the context of automated distress identification, effectiveness can be 
expressed in terms of accuracy of the crack detection software when compared to a 
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reference baseline. Accuracy is a qualitative term referring to whether there is 
agreement between a measurement made on an object and its true (target or reference) 
value. Bias is a quantitative term describing the difference (or error) between the 
average of measurements made on the same object and its true value. 

While systematic errors identified in the bias can be calibrated out, such evaluations 
must address the random errors as well. The average results may be quite comparable, 
but individual results can deviate significantly. Efforts must be made to control these 
deviations to produce results which can ultimately be classified as reliable. Reliability of 
automated distress surveys is often expressed in terms of precision. Precision is a 
qualitative term that can describe the degree of repeatability of a measurement value on 
the same sample, or consistency in accuracy of measurement on different samples. 
Coefficient of variation of actual measurement values on the same sample is a 
quantitative estimate of repeatability. Standard deviation of error (standard error) is a 
quantitative estimate of consistency. Accuracy and precision (or the corresponding 
quantitative estimates: bias, variance, and standard error) ultimately define how 
effective and reliable a system is as described in greater detail below. The efficiency of 
the system is typically measured by the time it takes to conduct these measurements. 

With respect to automated condition evaluations, the success metrics could be 
considered for two aspects of the process, first for the detection of individual surface 
defects (cracks), and second for the identification and quantification of the distresses in 
a distinct section. 

The following are the success metrics used for evaluating the crack detection results: 

• True Positives: length of correctly detected cracking 

• False Positives: length of detected cracking that don’t exist in the reference 
survey 

• False Negatives: length of missed cracking 

• Crack Validity: an indicator to be calculated as the ratio of the correctly detected 
cracks (true positives) to the total detected cracks (true positives and false 
positives). This statistic indicates the percentage of the detected cracks that was 
actually present in the reference survey, thereby expressing the validity of the 
cracks detected by algorithms. 
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𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦 (%) = 100 × = 100 × 

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

• Crack Sensitivity (or Recall): a parameter to be calculated as the ratio of the 
correctly detected cracks to the total actual cracks existing on the pavement 
surface (true positives and false negatives). This statistic represents the 
percentage of the cracks in the reference survey that was detected by the 
automated method, thereby expressing the sensitivity of the algorithms to 
existing cracks. 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) = 100 × = 100 × 

𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑎𝑐𝑘𝑠 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

• Crack Detection Accuracy: based on average normalized error (bias) of 
automatically detected crack length compared to the reference. Accuracy (%) = 
100 – Bias (%) 

• Crack Detection Repeatability: based on coefficient of variation (COV) of 
detected crack length among three runs (independent of the reference and 
averaged among the sections). Repeatability (%) = 100 – COV (%) 

• Crack Detection Consistency: based on coefficient of variation (COV) of crack 
detection accuracy among 12 test sections. Consistency (%) = 100 – [Standard 
Deviation of Accuracy (%) / Average Accuracy (%)] 

• Crack Detection Efficiency: based on the time required for the automated crack 
detection. Efficiency (second per foot) = time for cracking detection divided by the 
total length 

Based on the overall cumulative amount of each distress among different test sections 
and multiple runs, the success metrics used to evaluate the feasibility of using 2D 
images are: 

1. Distress Identification Accuracy: based on average error (bias) with respect to 
the reference distress survey values for each distress type. Accuracy (%) = 100 – 
Bias (%) 

2. Distress Identification Repeatability: based on coefficient of variation (COV) of 
automatically identified distresses among three runs for each distress type 
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(independent of the reference and averaged among the sections). Repeatability 
(%) = 100 – COV (%) 

3. Distress Identification Consistency: based on coefficient of variation (COV) of 
distress identification accuracy among 12 sections for each distress type. 
Consistency (%) = 100 – [Standard Deviation of Accuracy (%) / Average 
Accuracy (%)] 

4. Distress Identification Efficiency: based on the time required for the automated 
distress survey. Efficiency (second per foot) = time for cracking detection, 
classification, and rating divided by the total length. 

4.3.2 Reference Rating or “Ground Truth” 

Both Crack Detection Reference and Distress Identification Reference were created for 
this evaluation based on the 3D LCMS data that were collected as part of Purchase 
Order No. PR10026557 for this research project (see Appendix I): 

1. Crack Detection Reference: the Pavemetrics LCMS crack detection routine was 
used to generate a baseline crack map and then a Fugro data technician 
reviewed all the images in one run of the 12 test sections and modified the crack 
maps. New cracks were added for missed cracks, false positives were deleted, 
and some cracks with wrong extent were modified to reflect the actual cracks that 
can be seen on the 3D intensity and range (depth) images and with assistance 
from the ROW images. 

2. Distress Identification Reference: as it was explained in the semi-automated 
distress survey part, a reference survey was created by one Fugro engineer and 
another Fugro technician reviewed the results to reach a consensus for the 
reference survey. This reference survey was created using the 3D images 
because they provide both intensity and range (depth) views, along with the 
ROW images. Therefore, comprehensive sources of data are available in the 3D 
database for creating this reference survey. 

4.3.3 2D Crack Detection Results 

Table 45 shows the true positives, false positives, false negatives, validity, and 
sensitivity of the automated crack detection using Fugro’s machine learning algorithm 
on 2D images. This table indicates that only about 25 percent of the automatically 
detected cracks from 2D images were actually present on the pavement surface 
(Validity). Also, only about 18 percent of the cracks in the ground truth were 
automatically detected from 2D images (Sensitivity). 
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In Table 45, the yellow highlighted cells indicate significant false positives (more than 
50% of the reference) and the orange colored cells indicate significant amounts of 
missed cracks (more than 50% of the reference). It is evident that in Sections number 3, 
7, and 9, there is a significant number of false positives. This is due to two reasons. 
First, some patching area boundaries and Automated Vehicle Counter (AVC) loops and 
Weigh-In-Motion (WIM) devices being falsely detected as cracks. Second, the amount 
of cracking in the semi-automated reference survey for these three sections is lower 
compared to other sections and as a result, the errors seem higher. From Table 45, it is 
also evident that the 2D method has missed a significant amount of the cracks and only 
detected about 18 percent of the existing cracks in the reference. 

Table 45. Verification of Crack Detection on 2D images Using Fugro Machine Learning Algorithm 

Test 
Section 

Ground 
Truth (ft) 

Crack Detection Results 
Crack 
Validity 
(%) 

Crack 
Sensitivity 
(%) 

True 
Positives 
(ft) 

False 
Positives 
(ft) 

False 
Negatives (ft) 

1 22,944.22 1,162.61 3,337.93 21,781.61 25.83 5.07 

2 26,741.89 824.98 3,727.55 25,916.91 18.12 3.08 

3 132.74 42.55 16,471.86 90.19 0.26 32.06 

4 14,823.69 3,659.58 4,199.93 11,164.11 46.56 24.69 

5 68,726.86 6,226.68 10,005.31 62,500.18 38.36 9.06 

6 112,892.60 7,139.73 10,005.56 105,752.87 41.64 6.32 

7 809.34 523.47 13,969.35 285.87 3.61 64.68 

8 27,185.46 5,184.47 13,606.25 22,000.99 27.59 19.07 

9 3,993.09 807.72 19,550.12 3,185.37 3.97 20.23 

10 36,631.86 1,718.52 12,621.25 34,913.34 11.98 4.69 

11 30,517.80 3,507.70 6,274.08 27,010.10 35.86 11.49 

12 29,327.95 3,003.47 3,539.88 26,324.48 45.90 10.24 

24.97 17.56 

In addition to the crack detection verification results in Table 45, other crack detection 
success metrics including normalized error, average error (bias), variation between 
multiple runs (repeatability), and variation among 12 test sections (consistency) of the 
automated crack detection algorithms from 2D images have been listed in Table 46. 

The three test sections number 3, 7, and 9 have been highlighted in yellow to indicate 
the sections that have the greatest number of false positives. The bias has been 
provided as the average normalized crack detection error both on all the test sections 
and excluding the three outliers. When excluding the outliers, Table 46 indicates that 
the accuracy (100 - Bias) of the automated crack detection from 2D images is only 
about 32 percent. 
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The automated detection from 2D images has demonstrated a sufficiently high run-to-
run repeatability. Ten out of twelve sections have more 90 percent agreement among 
runs, while the average repeatability of all 12 sections is about 93 percent. The 2D 
crack detection is showing poor consistency of results on different sections, as it has 
about 39 percent agreement in crack detection accuracy among 12 sections. 

Table 46. Accuracy, Repeatability, and Consistency of Crack Detection based on 2D Images 

Test 
Section 

Ground 
Truth (ft) 

Detected Crack Length Normalized Error 100 - AVG 
ABS Error 

(%) 

Repeatabilit 
y (%) Run 1 

(ft) 
Run 2 

(ft) 
Run 3 (ft) 

Run1 
(%) 

Run2 
(%) 

Run3 
(%) 

1 22,944.2 4,500.5 4,564.0 4,090.5 -80.4 -80.1 -82.2 19.1 94.1 

2 26,741.9 4,552.5 3,864.7 3,843.5 -83.0 -85.6 -85.6 15.3 90.1 

3 132.7 16,514.4 14,055.8 15,632.5 12341.2 10489.0 11676.8 -11402.3 91.9 

4 14,823.7 7,859.5 7,699.6 7,906.2 -47.0 -48.1 -46.7 52.8 98.6 

5 68,726.9 16,232.0 13,279.2 10,427.5 -76.4 -80.7 -84.8 19.4 78.2 

6 112,892.6 17,145.3 18,010.4 17,739.2 -84.8 -84.0 -84.3 15.6 97.5 

7 809.3 14,492.8 13,748.8 14,703.7 1690.7 1598.8 1716.8 -1568.7 96.5 

8 27,185.5 18,790.7 19,884.4 19,572.2 -30.9 -26.9 -28.0 71.4 97.1 

9 3,993.1 20,357.8 19,751.2 20,089.8 409.8 394.6 403.1 -302.5 98.5 

10 36,631.9 14,339.8 14,077.4 11,809.3 -60.8 -61.6 -67.8 36.6 89.6 

11 30,517.8 9,781.8 9,506.5 9,133.1 -67.9 -68.8 -70.1 31.0 96.6 

12 29,328.0 6,543.4 6,448.3 6,702.6 -77.7 -78.0 -77.2 22.4 98.0 

Bias (%) 

Bias Excluding Outliers (%) 

Accuracy (%) = 100 - Absolute Bias 

Consistency (%) = 100 - COV(Accuracy) 

1079.8 93.3 

-68.5 

31.5 

38.8 

4.3.4 2D Distress Identification Results 

In this section, the results of automated distress identification (performance of 
classification and rating algorithm) from 2D images are evaluated. As it was 
demonstrated in the previous section, the crack detection from 2D images is missing a 
significant amount of cracking and as a result, there is a significant negative bias in the 
distress identification results for the 2D methodology. 

It should also be noted that the automated algorithm used crack angle to differentiate 
between longitudinal and transverse cracks, and crack density in a given area to 
differentiate between single linear cracks and an area of alligator cracking. Therefore, 
the error compared to ground truth is estimated by comparing the total amount of 
automatically identified longitudinal and transverse cracks to the sum of the single and 
branch cracks manually identified in the reference survey. Similarly, the total amount of 
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automatically identified alligator cracking is compared to the sum of the alligator and 
block cracks manually identified in the reference survey. 

Evaluation of Automatically Identified Longitudinal, Transverse, and Alligator Cracking 
from 2D LRIS Images 

Table 47 shows the success metrics for automatically identifying Longitudinal cracks 
from 2D images. In this table, test sections where there was minimal amount of 
longitudinal cracking in the reference survey, have been highlighted as outliers. 
Excluding the outliers, the automated distress identification from 2D images has 
demonstrated about 46 percent accuracy in identifying longitudinal cracking. The results 
show a negative bias indicating less automatically identified longitudinal cracks from 2D 
images, compared to the reference survey. However, the 2D results show a significantly 
higher amount of longitudinal cracking identified compared to the reference survey in 
the three outlier test sections where the reference survey showed lower cracking. 

On average, there is about 89 percent run-to-run agreement among the three runs in 
the length of automatically identified longitudinal cracks from 2D images. There is about 
45 percent section-to-section agreement among the 12 sections in the normalized error 
(compared to the reference survey) in automatically identifying the length of longitudinal 
cracks from 2D images. 

Table 47. Accuracy, Repeatability, and Consistency of Longitudinal Cracks based on 2D Images 

Test 
Section 

Ground 
Truth 

(ft) 

Automatically Identified 
Longitudinal Cracks 

Normalized Error 100 - AVG 
ABS Error 

(%) 

Repeatabilit 
y (%) Run 1 

(ft) 
Run 2 

(ft) 
Run 3 

(ft) 
Run1 
(%) 

Run2 
(%) 

Run3 (%) 

1 3,596.8 1,310.3 1,260.2 1,126.8 -63.6 -65.0 -68.7 34.3 92.3 

2 2,138.4 921.8 794.5 813.3 -56.9 -62.8 -62.0 39.4 91.8 

3 9.8 5,845.5 3,380.4 3,256.0 59608.6 34428.9 33158.0 -42298.5 64.9 

4 2,744.9 2,492.6 2,629.6 2,541.8 -9.2 -4.2 -7.4 93.1 97.3 

5 8,468.6 5,782.1 4,822.6 3,559.0 -31.7 -43.0 -58.0 55.8 76.4 

6 9,148.4 4,937.9 5,869.4 5,263.9 -46.0 -35.8 -42.5 58.6 91.2 

7 481.8 1,812.0 1,629.8 1,967.1 276.1 238.3 308.3 -174.2 90.6 

8 7,717.2 3,996.3 4,238.6 4,446.6 -48.2 -45.1 -42.4 54.8 94.7 

9 807.5 1,454.5 1,181.4 1,254.1 80.1 46.3 55.3 39.4 89.1 

10 6,599.3 3,914.4 3,497.8 2,383.0 -40.7 -47.0 -63.9 49.5 75.8 

11 10,103.9 1,817.9 1,921.7 2,195.5 -82.0 -81.0 -78.3 19.6 90.1 

12 19,775.8 1,030.8 979.4 1,151.6 -94.8 -95.0 -94.2 5.3 91.6 

Bias (%) 

Bias Excluding Outliers (%) 

Accuracy (%) = 100 - Absolute Bias 

Consistency (%) = 100 - COV(Accuracy) 

3520.3 89.0 

-54.4 

45.6 

44.7 

Table 48 shows the success metrics for automatically identifying Transverse cracks 
from 2D images. In this table, test sections where there was minimal amount of 
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transverse cracking in the reference survey, have been highlighted as outliers. 
Excluding the outliers, the automated distress identification from 2D images has 
demonstrated about 24 percent accuracy in identifying transverse cracking. The results 
show a negative bias indicating less automatically identified transverse cracks 
compared to the reference survey. 

On average, there is about 91 percent run-to-run agreement among the three runs in 
the length of automatically identified transverse cracks from 2D images. There is about 
6 percent section-to-section agreement among the 12 sections in the normalized error 
(compared to the reference survey) in automatically identifying the length of transverse 
cracks from 2D images. 

Table 48. Accuracy, Repeatability, and Consistency of Transverse Cracks based on 2D Images 

Test 
Section 

Ground 
Truth 

(ft) 

Automatically 
Identified Transverse 

Cracks 
Normalized Error 

Repeatability 
(%) 

Run 1 
(ft) 

Run 2 
(ft) 

Run 3 
(ft) 

Run1 
(%) 

Run2 
(%) 

Run3 
(%) 

100 - AVG 
ABS Error 

(%) 

1 276.9 30.6 29.1 30.5 -89.0 -89.5 -89.0 10.8 97.2 

2 273.0 51.0 52.4 55.6 -81.3 -80.8 -79.6 19.4 95.5 

3 10.9 0.0 0.0 0.0 -100.0 -100.0 -100.0 0.0 100.0 

4 256.7 17.4 18.2 18.6 -93.2 -92.9 -92.8 7.0 96.7 

5 109.4 65.5 66.4 63.1 -40.1 -39.3 -42.3 59.4 97.4 

6 157.2 68.6 73.1 71.6 -56.3 -53.5 -54.5 45.2 96.8 

7 16.5 4.7 1.0 2.3 -71.6 -93.7 -86.1 16.2 30.6 

8 965.3 42.6 41.0 39.6 -95.6 -95.8 -95.9 4.2 96.4 

9 21.6 115.1 124.4 123.3 433.1 476.0 470.8 -360.0 95.8 

10 2,306.4 22.5 18.9 12.8 -99.0 -99.2 -99.4 0.8 72.8 

11 170.7 99.3 90.2 93.0 -41.8 -47.1 -45.5 55.2 95.1 

12 590.6 101.4 106.8 64.1 -82.8 -81.9 -89.2 15.4 74.4 

Bias (%) 

Bias Excluding Outliers (%) 

Accuracy (%) = 100 - Absolute Bias 

Consistency (%) = 100 - COV(Accuracy) 

-33.9 91.4 

-75.8 

24.2 

5.6 

Table 49 shows the success metrics for automatically identifying Alligator cracks from 
2D images. In this table, test sections where there was zero amount of alligator cracking 
in the reference survey, have been highlighted as outliers. Excluding the outliers, the 
automated distress identification from 2D images has demonstrated about 0.01 percent 
accuracy in identifying alligator cracking. 

The results show a significant amount of negative bias, indicating that the 2D distress 
identification has failed in identifying areas with alligator cracking. This is mainly due to 
the large amount of missed cracking in 2D crack detection, which in turn results in 
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cracking areas with such low density that cannot be identified by the computer as 
alligator cracking areas. 

On average, there is about 16 percent run-to-run agreement among the 3 runs in the 
automatically identified alligator cracking area from 2D images. There is about -140 
percent section-to-section agreement among the 12 sections in the normalized error 
(compared to the reference survey) in automatically identifying the area of alligator 
cracking from 2D images. 

Table 49. Accuracy, Repeatability, and Consistency of Alligator Cracks based on 2D Images 

Test 
Section 

Ground 
Truth (Sq 

Ft) 

Automatically Identified 
Alligator Cracks 

Normalized Error 100 - AVG 
ABS Error 

(%) 

Repeatability 
(%) Run 1 

(Sq Ft) 
Run 2 
(Sq Ft) 

Run 3 
(Sq Ft) 

Run1 
(%) 

Run2 
(%) 

Run3 
(%) 

1 5,846.8 0.0 0.0 0.0 -100.0 -100.0 -100.0 0.0 100.0 

2 9,482.9 14.2 0.0 0.0 -99.8 -100.0 -100.0 0.05 -73.2 

3 0.0 0.0 0.0 0.0 100.0 

4 3,100.2 0.2 0.0 0.0 -99.9 -100.0 -100.0 0.0 -73.2 

5 18,795.1 0.1 0.0 0.0 -100.0 -100.0 -100.0 0.0 -73.2 

6 27,372.5 0.0 0.0 0.0 -100.0 -100.0 -100.0 0.0 100.0 

7 0.0 0.0 0.0 0.0 100.0 

8 4,223.7 0.0 0.0 0.0 -100.0 -100.0 -100.0 0.0 100.0 

9 0.0 0.0 0.0 0.0 100.0 

10 6,567.4 0.0 0.0 0.0 -100.0 -100.0 -100.0 0.0 -73.2 

11 1,533.7 0.2 0.2 0.01 -99.9 -99.9 -100.0 0.01 34.3 

12 900.1 0.0 0.0 0.0 -100.0 -100.0 -100.0 0.0 100.0 

Bias (%) 

Bias Excluding Outliers (%) 

Accuracy (%) = 100 - Absolute Bias 

Consistency (%) = 100 - COV(Accuracy) 

-99.9 15.7 

-99.9 

0.01 

-139.8 

The Vision software records the amount of time that each batch processor had spent on 
each test section to conduct an automated survey. The automated detection, 
classification, and rating took about 26 seconds per image frame for the 2D images. 
The main contributor to slower speed is the crack detection time and the classification 
and distress identification processes take only about 0.05 seconds per image frame. 

Evaluation of Automatically Identified Wheel Path and Non-Wheel Path Cracking from 2D 
LRIS Images 

In this section, the semi-automated reference rating results were converted to cracking 
within the wheel path (WP) and outside the wheel path (OP) using a SQL code (see 
option 1 in Section 4.2.3). The automated distress identification results were already 
available in WP and OP format, because the distress schema was setup accordingly 
(see option 2 in Section 4.2.3). The total amount of cracking within the wheel paths 
(CW) was calculated by adding the longitudinal, transverse, and alligator cracking 
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areas. The longitudinal and transverse cracking areas were calculated by multiplying 
their length by one foot, as specified in the FDOT Flexible Pavement Condition Survey 
Handbook (2017). 

Table 50 and Table 51 show the automated distress identification results for CO and 
CW distresses from 2D images, respectively. The accuracy in determining the CO 
distresses from 2D images is about 33 percent. The run-to-run repeatability in 
determining the CO distresses from 2D images is about 86 percent. The section-to-
section consistency in determining the CO distresses from 2D images is about 34 
percent. 

Table 50. Accuracy, Repeatability, and Consistency of Cracking Outside Wheel Paths (CO) Based 
on 2D Images 

Test 
Section 

Ground 
Truth (Sq 

Ft) 

Automatically Identified 
Cracking 

Normalized Error 100 - AVG 
ABS Error 

(%) 

Repeatability 
(%) Run 1 

(Sq Ft) 
Run 2 
(Sq Ft) 

Run 3 
(Sq Ft) 

Run1 (%) Run2 (%) Run3 (%) 

1 2,269.16 413.16 332.64 276.57 -81.79 -85.34 -87.81 15.02 79.85 

2 2,929.56 326.82 267.14 349.21 -88.84 -90.88 -88.08 10.73 86.51 

3 11.98 5,845.47 3,380.38 3,255.96 48,693.5728,116.8627,078.30 -34529.58 100.00 

4 3,452.35 1,675.19 1,837.38 1,755.16 -51.48 -46.78 -49.16 50.86 95.38 

5 13,550.714,981.47 3,890.31 2,891.53 -63.24 -71.29 -78.66 28.94 73.34 

6 15,456.963,289.52 3,959.84 3,622.93 -78.72 -74.38 -76.56 23.45 90.75 

7 296.23 1,807.72 1,626.94 1,962.51 510.24 449.22 562.50 -407.32 90.66 

8 4,232.96 2,919.43 3,178.08 3,411.57 -31.03 -24.92 -19.40 74.88 92.23 

9 249.79 1,369.37 1,063.21 1,164.95 448.21 325.64 366.37 -280.07 87.00 

10 6,584.24 3,900.46 3,461.47 2,344.54 -40.76 -47.43 -64.39 49.14 75.21 

11 4,653.28 1,678.48 1,732.75 2,033.89 -63.93 -62.76 -56.29 39.01 89.45 

12 11,403.25 990.18 940.88 1,061.73 -91.32 -91.75 -90.69 8.75 93.91 

Bias (%) 

Bias Excluding Outliers (%) 

Accuracy (%) = 100 - Absolute Bias 

Consistency (%) = 100 - COV(Accuracy) 

2909.81 86.29 

-66.58 

33.42 

34.07 

The accuracy in determining the CW distresses from 2D images is about nine percent. 
The run-to-run repeatability in determining the CW distresses from 2D images is about 
91 percent. The section-to-section consistency in determining the CO distresses from 
2D images is about 0.4 percent. 
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Table 51. Accuracy, Repeatability, and Consistency of Cracking Within Wheel Paths (CW) Based 
on 2D Images 

Test 
Section 

Ground 
Truth (Sq 

Ft) 

Automatically Identified 
Cracking 

Normalized Error 100 - AVG 
ABS Error 

(%) 

Repeatability 
(%) Run 1 

(Sq Ft) 
Run 2 
(Sq Ft) 

Run 3 
(Sq Ft) 

Run1 (%) 
Run2 
(%) 

Run3 (%) 

1 7,451.30 927.65 956.62 880.79 -87.55 -87.16 -88.18 12.37 95.85 

2 8,964.78 660.09 579.74 519.69 -92.64 -93.53 -94.20 6.54 87.99 

3 8.74 0.00 0.00 0.00 -100.00 -100.00 -100.00 0.00 100.00 

4 2,649.44 835.01 810.36 805.19 -68.48 -69.41 -69.61 30.83 98.05 

5 13,822.31 866.24 998.70 730.53 -93.73 -92.77 -94.71 6.26 84.50 

6 21,221.131,717.08 1,982.63 1,712.50 -91.91 -90.66 -91.93 8.50 91.43 

7 202.05 9.02 3.91 6.91 -95.54 -98.06 -96.58 3.27 61.17 

8 8,673.24 1,119.50 1,101.42 1,074.67 -87.09 -87.30 -87.61 12.67 97.95 

9 579.29 200.31 242.65 212.42 -65.42 -58.11 -63.33 37.71 90.02 

10 8,888.91 36.51 55.22 51.26 -99.59 -99.38 -99.42 0.54 79.31 

11 7,155.08 238.93 279.39 254.64 -96.66 -96.10 -96.44 3.60 92.08 

12 9,863.21 142.03 145.32 153.92 -98.56 -98.53 -98.44 1.49 95.83 

Bias (%) 

Bias Excluding Outliers (%) 

Accuracy (%) = 100 - Absolute Bias 

Consistency (%) = 100 - COV(Accuracy) 

-89.68 91.44 

-90.80 

9.20 

0.38 

4.3.5 Results Analysis 

False Positive Analysis 

It is evident that in Sections number 3, 7, and 9, the 2D method has demonstrated a 
significant number of false positives (more than 50% compared to the reference). This is 
due to two reasons: 

First, some road lane markings are falsely identified as cracks. The existing Vision road 
lane detection system detects the lane marking boundaries as vertical lines and records 
x coordinates of these detected lines in the database. All cracks of which x coordinates 
are less than or equals to x coordinate of left lane, or greater than or equal to x 
coordinate of right lane are not considered for distress rating. However, in some 
pavement images, the lane marking may not be completely vertical. The image pixels 
within the detected lanes can be falsely identified as crack pixel due to its high contrast 
with the adjacent pixels (see Figure 81). 



 

 

  
    

   

      

Detected lane boundaries and cracks Lane boundaries identified as cracks 

Figure 81. Lane boundaries identified as cracks 

Second, patching boundaries, pavement markings, joints of brick paving are other 
typical causes of false positives. See Figure 82 for an example. 
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Figure 82. Other Features Falsely Detected as Cracks 

False Negative Analysis 

The significant amount of missed cracking has resulted in poor accuracy of the 2D 
technology in identifying transverse and alligator cracking distress types. This type of 
false negative arises for two reasons: 

First, the sensitivity of crack detection algorithm is significantly impacted by the lighting 
condition when the pavement images are collected. In a lower lighting condition, the 
contrast between crack pixels and surrounding pavement surface pixels is reduced, 
therefore, small cracks are difficult to be detected (Figure 83). 
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Pavement Surface Detected Cracks 

Figure 83. Low Contrast Between Crack and Surrounding Pixels Resulting in Missed Cracks 

Second, the crack detection algorithm may also fail to detect bright cracks on dark 
pavement surface (Figure 84) and cracks of thick width. 



 

 

 

    

   

  

  

   

 

   
    

 
  

Figure 84. White Alligator Cracks on Dark Pavement 

4.3.6 Potentials and Limitations of the LRIS Technology 

The 2D LRIS technology has the following potentials: 

1. The LRIS equipment is more affordable than the 3D LCMS equipment. 

2. The run-to-run repeatability of crack detection from 2D images is acceptable. 

However, there are several important limitations of the 2D LRIS technology: 

1. The accuracy of crack detection from 2D images is very low (31 percent), as 
evidenced by the crack detection algorithm only detecting 18 percent of the 
cracks that were in the reference survey. Also, only 25 percent of the cracks 
detected from the 2D images were actually present in the reference survey. 
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2. The section-to-section consistency of crack detection from 2D images is very 
low. 

3. Even excluding some outliers, significant amount of missed cracking has resulted 
in poor accuracy of the 2D technology in identifying cracking distress types. 

4. When the pavement surface is damp, the area around the crack edges become 
darker in the 2D images and as a result, the crack detection algorithms result in 
exaggerated crack width measurements based on pixel intensities. This issue 
negatively impacts severity rating of cracking distresses. 

4.4 Conclusion and Recommendations 

This chapter described the efforts undertaken in Task 4 of this FDOT research project to 
evaluate the feasibility of the 2D LRIS technology for crack detection and distress 
identification. The findings of this effort can be summarized as follows: 

1. While the results of 2D crack detection were comparable from run to run, there 
were a significant number of missed cracks when compared to the ground truth. 

2. While the run-to-run repeatability of the 2D technology was acceptable in 
identifying the length of longitudinal and transverse cracks in most cases, the 
accuracy compared to the ground truth and section-to-section consistency of the 
2D technology was very poor in identifying any type of cracking. 

Based on the noted evaluation results, it is recommended that alternative technologies 
are considered for detection of cracks and the corresponding identification and 
quantification of flexible pavement surface distresses. 
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CHAPTER 5 – FLEXIBLE PAVEMENT APPLICATION DESIGN 

Task 5 of this research project included an evaluation of the existing survey methods, a 
gap analysis of the existing automated software, and the development of design 
recommendations for addressing identified gaps. This chapter is organized into five 
sections. Following this introduction, Section 5 describes the test sections used 
throughout the flexible pavement survey evaluation and software design process. 
Section 5.2 and Section 5.3 describe the manual windshield survey and the existing 
automated software results, respectively. The results of the two survey methods are 
compared in Section 5.4.  Last, the gap analysis and design considerations for the 
automated flexible pavement distress identification software are described in Section 
5.5. 

Please note the following reference phrases in this chapter: 

• “Vision 3.1”: this refers to Fugro’s Vision 3.1 software, which includes a machine 
learning algorithm for crack detection and an automated routine for distress 
classification and rating. This existing automated software was evaluated in 
Task 5 and the existing gaps were identified so that the software development 
activities in Task 6 could address these gaps. 

• “crack detection”: this refers to the process of locating and marking the 
pavement surface defects from the collected imagery. 

• “crack classification”: this refers to the process of classifying each detected 
crack into a specific crack type and assigning a severity level to it. 

• “reference survey”: this refers to the semi-automated surveys conducted on one 
run of the collected pavement images, which serve as benchmarks when 
evaluating the automated software results. There are two reference surveys: one 
serving as benchmark for crack detection and one for crack classification and 
severity rating. 

5.1 Representative Test Sections 

The evaluation of the existing two distress survey methods included a comparison of the 
overall cumulative quantities of various distress types found in the existing FDOT 
manual windshield survey and a readily available existing automated software (Vision 
3.1). To conduct this evaluation, FDOT engineers identified a set of 12 representative 
test sections that are each at least a standard evaluation length (0.1-mile-long) and 
contain several of the flexible pavement distresses in them. Table 16 and Figure 85 
show the selected 12 flexible pavement sections. 
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Table 52. Selected 12 Flexible Pavement Test Sections 

NO COUNTY SECTION ID ROUTE DIR LANE BMP EMP LNGTH 

1 Baker 02050000 SR44 E R2 0 0.604 0.604 

2 Baker 02050000 SR44 W L2 0 0.604 0.604 

3 Collier 11010000 SR44 E R2 0 1.592 1.592 

4 Collier 11100000 SR19 N R2 3.816 4.906 1.09 

5 Collier 11002000 SR44 E R2 1.183 2.276 1.093 

6 Collier 11002000 SR44 E R2 3.184 4.514 1.33 

7 Collier 11080000 SR19 N R1 0 0.925 0.925 

8 Flagler 18020000 SR50 E R1 5.356 6.421 1.065 

9 Hendry 26050000 SR24 S L2 3.367 6.095 2.728 

10 Hendry 26050000 SR24 S L2 6.095 7.67 1.575 

11 Clay 10190000 SR400 E R3 11.098 12.332 1.234 

12 Clay 10190000 SR400 E R3 20.407 21.476 1.069 

Figure 85. Selected 12 Flexible Pavement Test Sections 

5.2 Manual Windshield Survey 

Three FDOT raters conducted a manual windshield distress survey of the 12 test 
sections according to the FDOT protocol. Each rater conducted the manual distress 
survey separately in a separate vehicle and according to the FDOT Flexible Pavement 
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Condition Survey Handbook (2017). The average, standard deviation, and coefficient of 
variation (COV) of each distress type at each severity level found on each test section 
has been documented in Appendix J. 

A summary of the overall agreement among raters is presented in Table 53. The 
summary statistics show that there was a low level of agreement for any individual 
distress and severity. Some test sections exhibited minimal amounts of a particular 
distress type, and variation among raters for distress types with small quantities led to 
high values of COV and low levels of agreement. The results also show a higher level of 
agreement among the three raters when adding the quantities of class IB, class II, and 
class III cracks. This demonstrates the additional variability that is introduced to the 
survey when assigning distress severities to particular distress types. 

Table 53. Overall Agreement Among Raters in Manual Windshield Survey (See Appendix J for 
Details) 

Distress Type 

Agreement Among Raters in Total Distress Amount, 100 -
COV (%) 

CW (Wheel Path Cracking) 
CO (Cracking Outside Wheel 
Paths) 

Class IB -6% -2% 

Class II 11% 3% 

Class III 3% 10% 

Class IB + Class II + 
Class III 

46% 34% 

Raveling -19% 1% 

Patching 7% 0% 

5.3 Automated Distress Survey Using Vision 3.1 

In this chapter of the report, the results of crack detection and crack classification and 
severity rating using 3D pavement images are evaluated. The 3D data collection was 
conducted by Fugro using the Automatic Road Analyzer (ARAN) Laser Crack 
Measurement System (LCMS) equipment and the data were analyzed by Fugro staff 
using the readily available existing automated software (Vision 3.1) as part of the 
required activities for Purchase Order (PO) 10026557. For further information on the 
automated data collection and processing methodology, please refer to the final PO 
report in Appendix I. The following sections will describe the success metrics, the 
reference values, and the evaluation results. 

5.3.1 Success Metrics 

In the context of automated distress identification, effectiveness can be expressed in 
terms of accuracy of the software results when compared to a reference baseline, which 



 

 

  
     

      
 

  
   

 

   
    

   
 

    

   

  

   

     
  

 

  
 

 

 

  
 

   
 

  

 
 

 

 

  
 

can be quantified by bias or average normalized error. Reliability of automated distress 
surveys is often expressed in terms of precision. Precision is a qualitative term that can 
describe the degree of repeatability of a measurement value on the same sample, or 
consistency in accuracy of measurement on different samples. Coefficient of variation of 
actual measurement values on the same sample is a quantitative estimate of 
repeatability. Standard deviation of error (standard error) is a quantitative estimate of 
consistency. The efficiency of each method is typically measured by the time it takes to 
conduct these measurements. 

With respect to automated condition evaluations, the success metrics could be 
considered for two aspects of the process, first for the detection of individual surface 
defects (cracks), and second for the identification and quantification of the distresses in 
a distinct section. 

The following are the success metrics used for evaluating the crack detection results: 

• True Positives: length of correctly detected cracks 

• False Positives: length of detected cracks that don’t exist in the reference survey 

• False Negatives: length of missed cracks 

• Crack Validity: This statistic indicates the percentage of the detected cracks that 
was actually present in the reference survey, thereby expressing the validity of 
the cracks detected by algorithms. 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦 (%) = 100 × = 100 × 

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

• Crack Sensitivity (or Recall): This statistic represents the percentage of the 
cracks in the reference survey that was detected by the automated method, 
thereby expressing the sensitivity of the algorithms to existing cracks. 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) = 100 × = 100 × 

𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑎𝑐𝑘𝑠 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
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• Crack Detection Accuracy: This statistic is evaluated based on average 
normalized error (bias) of automatically detected crack length compared to the 
reference. Accuracy (%) = 100 – Bias (%) 

• Crack Detection Repeatability: This statistic is evaluated based on coefficient of 
variation (COV) of detected crack length among three runs (independent of the 
reference and averaged among the sections). Repeatability (%) = 100 – COV (%) 

• Crack Detection Consistency: This statistic is evaluated based on coefficient of 
variation (COV) of crack detection accuracy among 12 test sections. Consistency 
(%) = 100 – [Standard Deviation of Accuracy (%) / Average Accuracy (%)] 

• Crack Detection Efficiency: This statistic is evaluated based on the time required 
for the automated crack detection. Efficiency (second per foot) = time for cracking 
detection divided by the total length 

The following are the success metrics used for evaluating the crack classification and 
severity rating results based on the overall cumulative amount of each crack type 
among different test sections and multiple runs: 

1. Crack Classification Accuracy: This statistic is evaluated based on average error 
(bias) with respect to the reference distress survey values for each crack type. 

Accuracy (%) = 100 – Bias (%) 

2. Crack Classification Repeatability: This statistic is evaluated based on coefficient 
of variation (COV) of automatically identified cracking among three runs for each 
crack type (independent of the reference and averaged among the sections). 

Repeatability (%) = 100 – COV (%) 

3. Crack Classification Consistency: This statistic is evaluated based on coefficient 
of variation (COV) of crack classification accuracy among 12 sections for each 
crack type. 

Consistency (%) = 100 – [Standard Deviation of Accuracy (%) / Average Accuracy (%)] 
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4. Crack Classification Efficiency: This statistic is evaluated based on the time 
required for the automated distress survey. 

Efficiency (second per foot) = time for cracking detection, classification, and rating 
divided by the total length. 

5.3.2 Reference Surveys 

Two reference surveys were created for this evaluation: 

1. Crack Detection Reference: the Pavemetrics LCMS crack detection algorithm 
was used to generate a baseline crack map and then a Fugro data technician 
reviewed all the images in one run (run number 1 out of the three collected runs) 
of the 12 test sections and modified the crack maps. False negatives (missed 
cracks) were mapped, false positives were deleted, and cracks with incorrect 
extent (length or area) were modified to reflect the actual cracks that can be seen 
on the 3D intensity and range (depth) images and with assistance from the ROW 
images. 

2. Crack Classification Reference: a reference distress survey was manually 
created by one Fugro engineer using the collected images, and another Fugro 
technician reviewed the results to reach a consensus for the reference survey. 

The crack detection reference was used to evaluate the effectiveness of the crack 
detection algorithm and the crack classification reference was used to evaluate the 
effectiveness of the distress classification and rating routine. 

5.3.3 Evaluation Limitations 

The evaluation was conducted considering the following limitations of this analysis: 

1. The 12 test sections were selected as representative of the actual pavement 
surfaces found across Florida. With such a small sample, it is possible that not all 
the actual pavement network is represented in this study. Every effort was made 
to select a representative sample. However, the budgetary and schedule 
limitations of this project would not allow for collection and processing of data 
across a wider network. 

2. Vision 3.1 as it stands does not exactly differentiate between the crack types as 
defined in the FDOT Flexible Pavement Condition Survey Handbook (2017), 
because those definitions were originally intended for human raters and not for 
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computers. Vision 3.1 uses crack angle to differentiate between longitudinal and 
transverse cracks, and crack density in a given area to differentiate between 
single linear cracks and an area of alligator cracking. Therefore, the error 
compared to the reference is estimated by comparing the total amount of 
automatically identified longitudinal and transverse cracks to the sum of the 
single and branch cracks manually identified in the reference survey. Similarly, 
the total amount of automatically identified alligator cracking is compared to the 
total area of the alligator cracks manually identified in the reference survey. 

3. This study is mainly focused on cracking distresses and patching and raveling 
were not considered in this evaluation. The 3D technology provides pavement 
surface macro-texture measurements which could potentially be used for 
identifying raveling. However, these texture measurements need to be calibrated 
to corresponding areas of raveling identified by experienced raters. 

5.3.4 Evaluation of Automatically Detected Crack Quantities 

Table 54 shows the true positives, false positives, false negatives, validity, and 
sensitivity of the automated crack detection using the Vision 3.1 (machine learning 
algorithm) on 3D images. This table includes the crack detection results on run number 
1 of the 3 runs. This table indicates that on average, about 75 percent of the 
automatically detected cracks were actually present on the pavement surface (Validity). 
Also, on average, about 89 percent of the cracks in the reference crack map were 
automatically detected from 3D images (Sensitivity). 

In Table 54, the yellow highlighted cells indicate outlier test sections with significant 
false positives (more than 50% of the reference). It is evident that in sections number 3, 
7, and 9, Vision 3.1 has demonstrated a significant amount of false positive. This is due 
to two reasons. First, some patching area boundaries and Automated Vehicle Counter 
(AVC) loops and Weigh-In-Motion (WIM) devices being falsely detected as cracks. 
Second, the amount of cracking in the reference survey for these three sections is lower 
compared to other sections and as a result, the errors seem higher. Excluding sections 
3, 7, and 9, crack detection validity is about 91 percent and crack detection sensitivity is 
approximately 91 percent. 

In addition to the crack detection verification results in Table 54, other crack detection 
success metrics including accuracy, consistency, and repeatability of Vision 3.1 are 
illustrated in Figure 86. When excluding the outlier sections (sections 3, 7, and 9), the 
accuracy (100 - Bias) of Vision 3.1 in crack detection is about 99 percent. The run-to-
run repeatability exhibited 97 percent agreement among runs. Vision 3.1 is showing 
high consistency of results on different sections, about 95 percent agreement in crack 
detection accuracy among 12 sections. 
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Table 54. Verification of Crack Detection on 3D images Using Vision 3.1 

Test 
Section 

Reference (ft) 

Crack Detection Results 
Crack 

Validity 
(%) 

Crack 
Sensitivity 

(%) 

True 
Positives 

(ft) 

False 
Positives 

(ft) 

False 
Negatives 

(ft) 

1 22,944.22 18,464.62 2,762.11 4,479.60 86.99 80.48 

2 26,741.89 24,873.49 1,217.80 1,868.40 95.33 93.01 

3 132.74 126.10 824.84 6.64 13.26 94.99 

4 14,823.69 12,015.20 1,429.99 2,808.49 89.36 81.05 

5 68,726.86 65,286.40 3,453.19 3,440.46 94.98 94.99 

6 112,892.60 102,199.75 11,059.70 10,692.85 90.24 90.53 

7 809.34 687.92 1,820.47 121.42 27.42 85.00 

8 27,185.46 23,990.87 2,097.65 3,194.59 91.96 88.25 

9 3,993.09 2,881.59 6,082.98 1,111.50 32.14 72.16 

10 36,631.86 38,825.92 1,803.39 (2,194.06) 95.56 105.99 

11 30,517.80 27,386.58 4,025.66 3,131.22 87.18 89.74 

12 29,327.95 28,174.06 3,057.05 1,153.89 90.21 96.07 

Total Average 74.55 89.36 

Average Excluding Sections 3, 7, and 9 91.31 91.12 

Figure 86. Crack Detection Success Metrics for Vision 3.1 

To better demonstrate the capability of 3D technology in detecting surface cracks, two 
example locations have been selected. Figure 87 and Figure 88 show the 3D crack 
detection results for the two example locations. 
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Figure 87. Example LCMS Intensity (left), Range (center), and Detected Crack Map (right) 

Figure 88. Example LCMS Intensity (left), Range (center), and Detected Crack Map (right) 

5.3.5 Evaluation of Automatically Classified Cracking Quantities 

In this section, the results of Vision 3.1 in terms of crack classification are evaluated. 
Vision 3.1 records the amount of time that each batch processor had spent on each test 
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section to conduct an automated survey. The automated crack detection, crack 
classification, and severity rating took about 6 seconds per image frame for the 3D 
images. The majority of the processing time is consumed during the crack detection 
time. The classification and severity rating processes take only about 0.05 seconds per 
image frame. These time records have been achieved with an Intel Core i5 3.3GHz 
CPU and an 8GB RAM, with a Windows 10 64-bit operating system. 

Evaluation of Automatically Identified Longitudinal, Transverse, and Alligator Cracking 

In this section, the evaluation is conducted based on the amount of automatically 
identified Longitudinal, Transverse, and Alligator cracking. It should be noted that Vision 
3.1 uses crack angle to differentiate between longitudinal and transverse cracks, and 
crack density in a given area to differentiate between single linear cracks and an area of 
alligator cracking. Therefore, the normalized error compared to the reference survey is 
estimated by comparing the total amount of automatically identified longitudinal or 
transverse cracks to the sum of single and branch cracks (manually identified in the 
reference survey) that are positioned longitudinally or transversely. Similarly, the total 
amount of automatically identified alligator cracking is compared to the sum of alligator 
and block cracks manually identified in the reference survey. 

Figure 89 shows the success metrics for automatically identifying Longitudinal cracks. 
Excluding the outlier sections (test sections with minimal amount of longitudinal cracking 
in the reference survey: sections 3, 7, and 9), the automated longitudinal cracking 
identification has demonstrated about 93 percent accuracy. The results show a positive 
bias (on average +7%; see PO 10026557 Report in Appendix I for details) indicating 
more automatically identified longitudinal cracks compared to the reference survey. 

Figure 89. Longitudinal Cracking Success Metrics for Vision 3.1 

212 



 

 3D Transverse Cracking Identification 

100 90.24 89.84 

Accuracy (%) Consistency (%) Repeatability (%) 

73.80 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

 

 

 
 

  

  
 

  
    

     
 

 
   

  

 

   

 
 

    
  

  
  

  
  

 

On average, there is about 97 percent run-to-run repeatability in the length of 
automatically identified longitudinal cracks. There is about 81 percent section-to-section 
consistency in the accuracy in automatically identifying the length of longitudinal cracks. 

Figure 90 shows the success metrics for automatically identifying Transverse cracks. 
Excluding the outlier sections (test sections with minimal amount of transverse cracking 
in the reference survey: sections 3, 7, and 9), the automated transverse cracking 
identification have demonstrated about 90 percent accuracy. The results show a 
negative bias (on average -10%; see PO 10026557 Report in Appendix I for details) 
indicating less automatically identified transverse cracks compared to the reference 
survey. On average, there is about 90 percent run-to-run repeatability in the length of 
automatically identified transverse cracks. There is about 74 percent section-to-section 
consistency in the accuracy in identifying transverse cracking. 

Figure 90. Transverse Cracking Success Metrics for Vision 3.1 

Figure 91 shows the success metrics for automatically identifying Alligator cracks. 
Excluding the outlier sections (test sections free of alligator cracking: sections 3, 7, and 
9), the automated alligator cracking identification has demonstrated about 95 percent 
accuracy. The results show a negative bias (on average -5%; see PO 10026557 Report 
in Appendix I for details) indicating less automatically identified alligator cracks 
compared to the reference survey. On average, there is about 93 percent run-to-run 
repeatability in the automatically identified alligator cracking areas. There is about 68 
percent section-to-section consistency in the accuracy in automatically identifying the 
area of alligator cracks. 
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Figure 91. Alligator Cracking Success Metrics for Vision 3.1 

Evaluation of Automatically Identified Wheel Path and Non-Wheel Path Cracking 

In this section, the reference rating results were converted to cracking within the wheel 
path (CW) and outside the wheel path (CO) using a SQL code. The total amount of 
cracking within the wheel paths (CW) was calculated by adding the longitudinal, 
transverse, and alligator cracking areas. The longitudinal and transverse cracking areas 
were calculated by multiplying their length by one foot, as specified in the FDOT 
Flexible Pavement Condition Survey Handbook (2017). 

Figure 92 shows Vision 3.1 results for CW distresses from 3D images. The accuracy in 
determining the CW distresses is about 92 percent. The results show a negative bias 
(on average -7%; see PO 10026557 Report in Appendix I for details) indicating less 
automatically identified CW cracks compared to the reference survey. The run-to-run 
repeatability in determining the CW distresses is about 97 percent. The section-to-
section consistency in determining the CW distresses is about 84 percent. 

Figure 93 shows Vision 3.1 results for CO distresses from 3D images. The accuracy in 
determining the CO distresses is about 89 percent. The results show a negative bias 
(on average -10%; see PO 10026557 Report in Appendix I for details) indicating less 
automatically identified CO cracks compared to the reference survey. The run-to-run 
repeatability in determining the CO distresses is about 96 percent. The section-to-
section consistency in determining the CO distresses is about 85 percent. 
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Figure 92. Wheel Path Cracking (CW) Success Metrics for Vision 3.1 

Figure 93. Outside Wheel Path Cracking (CO) Success Metrics for Vision 3.1 



 

 

   

  
    

   
   

    
  

 

  

 
 

  
 

   

 
 

 

     

    

     

       

  
 

   

    

   
 

   
    

 
  

 
   

    
   

   

Automatically Identified Cracking Summary 

Table 55 provides the summary statistics for the automated distress survey results 
using Vision 3.1 on 3D images. As it is evident from this table, the average accuracy 
compared to the reference survey and the run-to-run repeatability of Vision 3.1 in 
identifying cracking distress types are above 90% in almost all cases. One reason for 
the high accuracy and repeatability is that cracks from all severity levels are categorized 
in the same group based on crack type. However, there is less consistency in Vision 3.1 
results across the multiple test sections, especially regarding alligator cracking. 

Table 55. Summary Statistics for Vision 3.1 Results from 3D Images 

Distress 
Accuracy 
(%) 

Section-To-
Section 
Consistency (%) 

Run-To-Run 
Repeatability 
(%) 

Longitudinal Cracking 92.86 81.23 97.02 

Transverse Cracking 90.24 73.80 89.84 

Alligator Cracking 94.55 68.46 93.23 

Wheel Path Cracking (CW) 92.51 83.93 97.22 

Non-Wheel Path Cracking 
(CO) 

89.62 84.81 96.19 

5.3.6 Evaluation of Automatically Rated Crack Severities 

Vision 3.1 was used to automatically rate the crack severities for each of the 12 test 
sections. Vision 3.1 uses average crack width measurement to determine crack 
severities according to the FDOT Flexible Pavement Condition Survey Handbook 
(2017). Figure 94, Figure 95, and Figure 96 compare Vision 3.1 results to those of the 
reference survey for severity levels 1B, II, and III, respectively (note: vertical axis ranges 
vary). Class IB are hairline cracks that are less than or equal to ⅛ inch (3.18 mm) wide, 
Class II are cracks greater than ⅛ inch (3.18 mm) and less than or equal to ¼ inch (6.35 
mm) wide, and Class III are cracks greater than ¼ inch (6.35 mm) wide. Note that the 
extent of Class1B cracks is the sum of the length of single and branch cracks. But the 
extent of the Class II and Class III cracks is the sum of the area of single, branch, and 
alligator cracks, where the single and branch cracks are assumed to have a width of 
one foot. 
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Figure 94. Severity Level 1B Rating Results for Vision 3.1 

Figure 95. Severity Level II Rating Results for Vision 3.1 

The figures demonstrate that Vision 3.1 rates the majority of cracks as severity level II. 
It should be noted that the manual assignment of severity levels in the reference survey 
is always more subjective than classification of cracks into single, branch, and alligator 
distress types. This is because it is easier to visually differentiate between single, 
branch, and alligator cracks than it is to visually differentiate between various crack 
widths. In the reference survey, the rater can use the measurement tool in Vision 3.1 to 
get familiar with the visual representation of various crack widths on the image. The 
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rater then relies on this visual representation to manually rate the severity levels of each 
identified cracking distress. 
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Figure 96. Severity Level III Rating Results for Vision 3.1 

5.4 Comparison of Different Survey Methods 

This section compares the results of the manual windshield surveys conducted by 
FDOT distress raters, Vision 3.1 on 3D images, and the reference survey described in 
Section 5.3.2. The results compared in this section include percent wheel path cracking 
(CW) and percent non-wheel path cracking (CO). While patching and raveling are 
typically included in the total cracking percentages, Vision 3.1 results presented do not 
include patching or raveling. The outlier test sections discussed previously (sections 3, 
7, and 9) were excluded from this analysis as well. 

5.4.1 Success Metrics 

The following are the success metrics used for comparing different survey methods 
based on the overall cumulative amount of each crack type among different test 
sections and multiple runs: 

1. Crack Classification Accuracy: This statistic is evaluated based on average error 
(bias) with respect to the reference distress survey values for each crack type. 

Accuracy (%) = 100 – Bias (%) 
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2. Manual Windshield Survey Reproducibility: This statistic is evaluated based on 
coefficient of variation (COV) of manually identified cracking among three raters 
for each crack type (independent of the reference and averaged among the 
sections). 

Reproducibility (%) = 100 – COV (%) 

3. Automated Crack Classification Repeatability: This statistic is evaluated based 
on coefficient of variation (COV) of automatically identified cracking among three 
runs for each crack type (independent of the reference and averaged among the 
sections). 

Repeatability (%) = 100 – COV (%) 

4. Crack Classification Consistency: This statistic is evaluated based on coefficient 
of variation (COV) of crack classification accuracy among 12 sections for each 
crack type. 

Consistency (%) = 100 – [Standard Deviation of Accuracy (%) / Average Accuracy (%)] 

5.4.2 Comparison Results on Overall Section Cracking Quantities 

Table 56 and Table 57 show the success metrics for the manual windshield survey and 
Vision 3.1, respectively, compared to the reference survey for the total amounts of CW 
and CO cracking (all severities) in each section. 

Table 56. Comparison of Manual Windshield Survey Rating to the Reference Survey 

Metric CW CO 

Accuracy (%) 70.51 68.82 

Section-To-Section Consistency 
(%) 

98.48 98.61 

Rater-To-Rater Reproducibility 
(%) 

50.71 37.36 
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Metric CW CO 

Accuracy (%) 92.51 89.62 

Section-To-Section Consistency 
(%) 

99.85 99.85 

Run-To-Run Repeatability (%) 97.22 96.19 

    
    

  

  

 
    

       
   

 

  
    

  
  

  

Table 57. Comparison of Vision 3.1 Rating to the Reference Survey 

Figure 97 compares the accuracy of the two rating methods as calculated by 100 minus 
the absolute value of bias (%). 

Figure 97. Comparison of Different Methods in terms of Accuracy 

The results indicate that Vision 3.1 is relatively more successful in detecting and 
identifying the extent of CW cracking (accuracy 93%) compared to CO cracking 
(accuracy of 90%). The accuracy of Vision 3.1 for both CW and CO cracking (93% and 
90%, respectively) is higher than that of the manual windshield survey (71% and 69%, 
respectively).  

Figure 98 shows a comparison among the methods in terms of consistency as 
calculated by 100 minus the coefficient of variation of accuracy among 12 test sections. 
The manual windshield survey is showing a slightly lower consistency compared to 
Vision 3.1. However, both methods show high consistency among the test sections, 
excluding the outliers (sections 3, 7, and 9). 
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Figure 98. Comparison of Different Methods in terms of Consistency 

Figure 99 compares the reproducibility of the manual windshield survey to the 
repeatability of Vision 3.1 using 100 minus the coefficient of variation of distress 
amounts among the three raters/runs. Vision 3.1 is showing much higher repeatability 
among multiple runs when compared to the reproducibility among multiple raters in the 
manual windshield survey. 

Figure 99. Comparison of the Reproducibility of Manual Windshield Survey to the Repeatability 
of Vision 3.1 Results 



 

 

     

  
  

 

  

   

  
 

    
 

   
 

 

   
    

   
  

 
  

   
    

   
  

  

  
  

 
 

 
    

 
 

5.5 Gap Analysis and Design Considerations 

In this section of the report, the gaps in the performance of Vision 3.1 are identified. In 
addition, a potential design consideration is offered as the solution to address each 
identified gap. 

5.5.1 Identified Gaps 

Based on the results of Vision 3.1 evaluations on 3D images, it is evident that Vision 3.1 
has an adequate performance in detecting pavement surface cracks, but it is not 
performing well regarding classification and rating of the detected cracks into 
corresponding distress types and severities according to the FDOT Flexible Pavement 
Condition Survey Handbook (2017). Regarding crack detection, it should be noted that 
on three test sections (number 3, 7, and 9), the total length of false positives was more 
than 50% of the length of actual existing cracks in the reference. But the length of actual 
existing cracks in the reference was itself very low. 

Setup Parameters 

To utilize the classification and rating functions of Vision 3.1, many parameters must be 
input by the user. The reason for this was that by design, this software was supposed to 
have the flexibility to be used on a variety of pavement surfaces in various conditions 
across the world. A wide range of setup parameters could not only introduce 
inconsistency to results if different parameters are selected by different users, but it 
could also make the analysis seem overly complicated and challenging. Fugro will 
develop a batch processor for FDOT crack classification and rating, which will require a 
minimal number of setup parameters. Additionally, the batch processor will eliminate 
the need to establish a distress schema in Vision 3.1 since the batch processor would 
be tailored to the FDOT distress identification protocol. 

Crack Classification Issues 

Vision 3.1 classifies crack types based on a table of coordinates for each crack node. 
Vision 3.1 uses the table to determine the crack angle to differentiate longitudinal from 
transverse cracks and uses density of cracking in a given area to identify alligator 
cracking areas. While the software displays a crack map on the user interface, the crack 
map is not used for distress classification purposes. Fugro will develop a crack map, 
which can be used for the distress classification process. 

Vision 3.1 does not include the “Branch Crack” crack type, and it does not have the 
capability of classifying branch cracks. Using a crack map, single and branch crack 
distress types can be identified based on geometric properties in addition to crack 
angle. Also, alligator cracking can be detected using characteristics other than crack 
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density. Developing a crack map will enable new algorithms to increase the accuracy 
and consistency of distress classification. 

While there may be potential to improve the block cracking classification capabilities of 
Vision 3.1, block cracking will not be included in FDOT automated classification 
processors. Due to a limited amount of block cracking across Florida highways, there 
are currently no test sections that exhibit sufficient block cracking, with which to 
evaluate automatic results. 

Crack Severity Rating Issues 

As illustrated in Section 5.3.6, the automatically rated crack severities do not align well 
with the severities determined using the reference survey. Since distress severities are 
primarily dependent on crack width, the crack width determined using Vision 3.1 is likely 
insufficient for effectively rating distress severities according to the FDOT protocol. 
Fugro will improve the crack width detection algorithm to improve the automatic rating 
results. 

5.5.2 Recommended Design Solutions 

Table 58 summarizes the identified gaps in Vision 3.1 and corresponding recommended 
solutions. Based on this gap analysis, the following development efforts will be 
considered for Task 6 of this project. The algorithm logic design is briefly explained for 
each development effort. 

Table 58. Identified Gaps and Recommended Solutions 

Number Gap in Vision 3.1 Recommended Solution 

1 Numerous setup parameters 
Develop batch processor with minimal 
setup parameters 

2 

Distress classification based on 
crack angle and density has 
issues with classifying alligator 
cracks 
Vision 3.1 cannot classify branch 
cracks 

Develop crack map for use during 
distress classification 
Develop methodology to classify 
alligator cracks based on closed cells 
Develop methodology to classify 
branch cracks based on joint pixels 

3 
Block crack classification is not 
available 

No recommendation due to lack of test 
sections which exhibit block cracking 

4 Inaccurate distress severity rating 
Develop improved crack width 
algorithm for distress severity rating 
purposes 
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Batch Processor Development 

A batch processor is designed to be developed as a plugin for Vision 3.1. The batch 
processor shall include the improvements described below and developed in Task 6 of 
this project. The batch processor shall be tailored to the FDOT distress rating protocol. 

Crack Map 

1. Create a binary image using the detected crack node coordinates in which 
white pixels represent cracks and all other pixels are black based. 

2. The binary image includes redundant information which can be reduced 
using the following morphological processes (see Figure 100): 

i. Resizing: keeps the essential information but improves the 
processing speed by reducing the size and number of pixels. 

ii. Dilation: enlarges the boundaries of regions of white pixels. This 
process reduces the size of gaps within each region, and some 
gaps are filled completely to establish closed crack cells that can be 
categorized as alligator cracking. 

iii. Skeletonizing: reduces the white regions in the binary image to a 
skeletal remnant that preserves the extent and connectivity of the 
original.  The thickness of features in the skeleton is one pixel. 

Figure 100. Example Showing Resizing, Dilation, and Skeletonizing to Create Crack Map 
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Alligator Cracking Classification 

The crack map is analyzed to locate all regions in which the cracks have formed a 
closed cell. Connected closed-cell regions are combined into a bounding box which 
represents the area of alligator cracking (see Figure 101). 

Figure 101. Example Showing Extraction of Alligator Cracking Areas from the Crack Map 

Single and Branch Cracking Classification 

Any cracks in the crack map that do not fall within alligator cracking bounding boxes are 
considered linear or branch cracks (see Figure 102). 

Branch cracks will be distinguished from linear cracks based on the number of adjoining 
pixels. In a skeletonized image, there are three types of pixels: 

i. End pixels which have one adjoining pixel 

ii. Center pixels which have two adjoining pixels 

iii. Joint pixels which have more than two adjoining pixels 
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    Develop Improved Crack Width Algorithm 

   
 

A branch crack is an element in the crack map with at least one joint pixel (see Figure 
103). 

Figure 102. Example Showing Extraction of Single and Branch Cracks from the Crack Map 

Figure 103. Joint Pixels and Branch Cracks 

1. Create a binary image using the range image, which includes the 3D depth data. 
The crack map and binary image developed in the classification development 



 

 

   
 

   
  

  

 

effort was based on the intensity image and contain crack locations, but they do 
not contain width information. 

i. Pre-process the range image using contrast stretching and histogram 
equalization techniques. The grayscale range image will produce a better binary 
image if it exhibits high contrast rather than low contrast (see Figure 104). 

Figure  104. Example  Preprocessing of 3D Range Image   

ii.  Extract the  binary image  from the pre-processed range image  using an edge-
detection  thresholding  algorithm.   

iii.  Remove extraneous information  from the binary image. The  binary image will 
contain white pixels which do  not correspond  to cracks that were detected or 
included on the crack map. The crack map can be overlaid on the range binary  
image to keep only white pixels which correspond  to  a detected crack (see  
Figure 105).  
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Figure 105. Example Development of Enhanced Crack Map for Crack Width Determination 

2. Determine crack width using the range binary image. 

i. Overlay the bounding boxes from the classification results onto the range binary 
image. 

ii. Sum the number of white pixels within each bounding box. 

Number of white pixels 
iii. Average crack width for each bounding box = 

Crack length 



 

 

      
  

  
  

     
   

      
     

  
    

     
    

   

   

  
   

  
  

  

   
  

   
   

     
   

   

   

   
   

  
 

    
 

CHAPTER 6 – FLEXIBLE PAVEMENT APPLICATION DEVELOPMENT 
AND VALIDATION 

Task 6 of this research project included the development of the FDOT Flexible 
Pavement Distress Application (FFPDA) according to the algorithm design, which was 
devised during Task 5 for addressing identified gaps. This chapter is organized into four 
sections. Following this introduction, Section 6.1 summarizes the algorithm design and 
the application development efforts. Section 6.2 describes the experiment design for 
validation of the developed application. Section 6.3 presents the results of the validation 
experiment. Finally, Section 6.4 summarizes the results and provides pertinent 
recommendations for implementation of the developed application in future data 
collection and processing activities. In addition, Appendix L provides a Reference 
Manual for FDOT staff to conduct automated distress identification using the developed 
application and perform quality control on the results. 

Please note the following reference phrases in this report: 

• “Vision 3.1”: this refers to Fugro’s Vision 3.1 software, which includes a machine 
learning algorithm for crack detection and an automated routine for distress 
classification and rating. This existing automated software was evaluated in 
Task 5 and the existing gaps were identified so that the software development 
activities in Task 6 could address these gaps. 

• “crack detection”: this refers to the process of locating and marking the 
pavement surface defects from the collected imagery. 

• “crack classification”: this refers to the process of classifying each detected 
crack into a specific crack type and assigning a severity level to it. 

• “reference survey”: this refers to the semi-automated survey conducted on one 
run of the collected pavement images, which serves as a benchmark when 
evaluating the automated software results. 

6.1 Application Development 

Based on the results of Vision 3.1 evaluations in Task 5, it was evident that Vision 3.1 
had an adequate performance in detecting pavement surface cracks, but it was not 
performing well regarding classification and rating of the detected cracks into 
corresponding crack types and severities according to the FDOT Flexible Pavement 
Condition Survey Handbook (2017). Table 59 summarizes the identified gaps and 
corresponding recommended solutions. Based on this gap analysis that was performed 
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in Task 5, the following development efforts were conducted for Task 6 of this project. 
The algorithm logic design is briefly explained for each development effort. 

Table 59. Identified Gaps and Recommended Solutions 

Number Gap Recommended Solution 

1 Numerous setup parameters 
Develop batch processors with minimal 
setup parameters 

2 

Crack classification based on 
crack angle and density has 
issues with classifying Alligator 
cracks 

Develop improved crack map for use 
during crack classification 
Develop methodology to classify 
Alligator cracks based on closed cells 

3 Inability to classify Branch cracks 
Develop methodology to differentiate 
Branch cracks from Single cracks 
based on joint pixels 

4 

Single and Branch cracks in 
proximity of each other and 
Alligator cracks are classified 
separately 

Develop methodology to group cracks 
that are in proximity to each other 

5 

Vision 3.1 requires wheel path 
and non-wheel path cracks to be 
defined in the distress schema 
ahead of distress survey 

Develop methodology to automatically 
differentiate wheel path cracks from 
non-wheel path cracks after automated 
survey and manual QC 

6 
Block crack classification is not 
accurate enough 

No recommendation due to lack of test 
sections which exhibit Block cracking 

7 Inaccurate crack severity rating 
Develop improved crack width 
algorithm for distress severity rating 
purposes 

8 
Need to output summary data in 
the FDOT protocol format 

Develop batch processor to summarize 
the results of automated survey and 
manual QC in output file 

6.1.1 Batch Processor Development 

Two batch processors were developed as plugins for Vision 3.1: 

1. ‘FDOT Flexible Pavement Distress Application (FFPDA)’ which takes the results 
of automated crack detection as an input, classifies the cracks as single, branch, 
and alligator, and then assigns a severity level of 1B, II, or III based on crack 
classification and width. This processor addresses gaps number 1, 2, 3, 4, 5, and 
7. 
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2. ‘FDOT Flexible Pavement Rating Results Summary’ which takes the results of 
FFPDA and any QC (manually drawing or modifying distresses on the images), 
differentiates wheel path from non-wheel path cracks, and summarizes all the 
distress information into comma separated value (csv) files. This processor 
addresses gap number 8. 

The batch processors include the improvements described below and developed in 
Task 6 of this project. The batch processors are tailored to the FDOT distress rating 
protocol. This built-in customization will eliminate the need for numerous setup 
parameters and user-defined distress schemas. 

6.1.2 Improved Crack Map Development 

The following steps describe how the FFPDA algorithm was developed to generate an 
improved crack map based on the automated crack detection results: 

1. Create a binary image using the detected crack node coordinates, in 
which white pixels represent cracks and all other pixels are black (see first 
image from left in Figure 106) 

2. The binary image includes redundant information, which can be reduced 
using the following morphological processes (see Figure 106): 

i. Resizing: keeps the essential information but improves the 
processing speed by reducing the size and number of pixels. 

ii. Dilation: enlarges the boundaries of regions of white pixels. This 
process reduces the size of gaps within each region, and some 
gaps are filled completely (Szeliski 2010). 

Figure 106. Example Showing Resizing, Dilation, and Skeletonizing to Create Improved Crack 
Map 



 

 

     
  

 
      

 

    

   
  

   

  
 

  
  

 
 

 

   

    
    

  
 

   
   

    
  

The dilation operator takes two pieces of data as inputs. The first is the binary image 
(crack map) which is to be dilated. The second is a (usually small) set of coordinate 
points known as a structuring element (also known as a kernel). It is this structuring 
element (see Figure 107 for example) that determines the precise effect of the dilation 
on the input image. 

The mathematical definition of dilation for binary images is as follows: 

Suppose that X is the set of Euclidean coordinates corresponding to the input binary 
image, and that K is the set of coordinates for the structuring element. 

Let Kx denote the translation of K so that its origin is at X. 

Then, the dilation of X by K is simply the set of all points in X such that the intersection 
of Kx with X is non-empty. 

As an example of binary dilation, suppose that the structuring element is a 3×3 square, 
with the origin at its center, as shown in Figure 107. Note that in this and subsequent 
diagrams, foreground (white) pixels are represented by 1's and background (black) 
pixels by 0's. 

Figure 107. A 3×3 Square Structuring Element 

To compute the dilation of a binary input image by this structuring element, each of 
the background (black) pixels in the input image is considered in turn. For each 
background pixel (called the input pixel), the structuring element is superimposed on top 
of the input image, so that the origin of the structuring element coincides with the input 
pixel position. If at least one pixel in the structuring element coincides with a foreground 
(white) pixel in the image underneath, then the input pixel is set to the foreground 
(white) value. If all the corresponding pixels in the image are background, however, the 
input pixel is left at the background value. 
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For the example 3×3 structuring element in Figure 107, the effect of this operation is to 
change any black pixels that have a neighboring white pixel to the white color. Such 
pixels must lie at the edges of white regions, and so the practical upshot is that 
foreground regions grow (and holes inside a region shrink). 

iii. Skeletonizing: reduces the white regions in the binary image to a 
skeletal remnant that largely preserves the extent and connectivity 
of the original region. The thickness of any linear feature in the 
skeleton is one pixel. The skeleton of the binary image is acquired 
using the Zhang-Suen Thinning Algorithm (Zhang and Suen 1984). 
The details of this algorithm are described as following: 

The algorithm operates on all white pixels P1 that can have eight neighbors. The 
neighbors are arranged in a clock-wise sequence as indicated in Figure 108. Obviously, 
the boundary pixels of the image cannot have the full eight neighbors. 

Figure 108. The Pixel Arrangement in the Zhang-Suen Thinning Algorithm 

Define {A(P1)} = the number of transitions from black to white, (0 to 1) when moving in 
the clock-wise sequence P2 to P3 to P4 to P5 to P6 to P7 to P8 to P9 back to P2. (Note 
the extra P2 at the end - it is circular). 

Define {B(P1)} = The number of white pixel neighbors of P1 = (sum(P2 .. P9)) 

Step 1: All pixels are tested and pixels satisfying all the following conditions 
(simultaneously) are set to black: 

1) The P1 pixel is white and has eight neighbors 

2) {2 ≤ B(P1) ≤ 6} in other words, P1 has between 2 to 6 white pixel 
neighbors 

3) A(P1) = 1 in other words, there is only one transition from black to white 
when moving in the clock-wise sequence above 
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4) At least one of P2 and P4 and P6 is black 

5) At least one of P4 and P6 and P8 is black 

Step 2: All pixels are tested again and pixels satisfying all the following conditions 
(simultaneously) are set to black: 

1) The pixel is white and has eight neighbors 

2) {2 ≤ B(P1) ≤ 6} in other words, P1 has between 2 to 6 white pixel 
neighbors 

3) A(P1) = 1 in other words, there is only one transition from black to white 
when moving in the clock-wise sequence above 

4) At least one of P2 and P4 and P8 is black 

5) At least one of P2 and P6 and P8 is black 

Iteration: Steps one and two are repeated until image pixels are no longer changed 

Figure 106 shows the results of the three morphological processes of resizing, dilation, 
and skeletonizing on an example pavement image. 

6.1.3 Alligator Cracking Classification 

The improved crack map is analyzed to locate all regions in which the cracks have 
formed a closed cell. Connected closed-cell regions are combined into a bounding box 
which represents the area of alligator cracking (see Figure 109). 
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Figure 109. Example Showing Extraction of Alligator Cracking Areas from the Crack Map 

The locations of closed cells are acquired by Contour Hierarchy Analysis (Suzuki and 
Abe 1985). Contours can be explained simply as a curve joining all the continuous 
points (along the boundary), having the same color or intensity. In some cases, some 
contours are inside other contours; the outer ones are called parents and inner ones are 
called children. This way, contours in an image have some relationship to each other. 
And we can specify how one contour is connected to another, is it a child of some other 
contour, or is it a parent. Representation of this relationship is called the Hierarchy. 

Consider the example image shown in Figure 110. Contour lines 2 and 2a denote the 
external and internal contours of the outermost box. Here, contours 0, 1, and 2 are 
external or outermost. We can say, they are in hierarchy-0 or simply they are in the 
same hierarchy level. Next comes contour 2a. It can be considered as a child of contour 
2 (or in opposite way, contour 2 is parent of contour 2a). So, let contour 2a be in 
hierarchy-1. A closed cell is an indication of alligator cracking and closed cells are 
detected if a contour has at least one child (for example, contour 2). In the case of 
multiple contours inside each other, the outermost parent contour defines the 
boundaries of the alligator cracking area. 



 

 

 

   

   

  
  

    
 

    

  

  

      

Figure 110. Schematic Description of Contour Hierarchy Analysis 

6.1.4 Single and Branch Cracking Classification 

Any cracks in the crack map that do not fall within alligator cracking bounding boxes are 
considered single or branch cracks (see Figure 111). 

Branch cracks were distinguished from single cracks based on the number of adjoining 
pixels. In a skeletonized image, there are three types of pixels: 

i. End pixels which have one adjoining pixel 

ii. Center pixels which have two adjoining pixels 

iii. Joint pixels which have more than two adjoining pixels 

A branch crack is defined as an element in the crack map with at least one joint pixel 
(see Figure 112) if the branch stemming from that joint pixel is longer than 1 foot. 
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Figure 111. Example Showing Extraction of Single and Branch Cracks from the Crack Map 

Figure 112. Joint Pixels and Branch Cracks 

6.1.5 Wheel-Path and Non-Wheel-Path Cracking 

During the classification, the cracks are assigned with different crack types: alligator, 
branch or single. The cracks are then further classified into wheel-path cracks and non-
wheel-path cracks based on the location across the lane width, more specifically, its x 
coordinate. 



 

 

       
 

  
    

   
 

 

   

 

For any identified distress, if the corresponding bounding boxes crossed any boundaries 
of the five road zones shown in Figure 113 (and defined in the 2017 FDOT Flexible 
Pavement Condition Survey Handbook), those bounding boxes were cropped into 
multiple sub-boxes as shown in Figure 114. The original bounding boxes can span 
multiple road zones, but these final sub-boxes can only exist in one road zone. In this 
manner, the identified cracking can be divided between wheel-path and outside wheel-
path zones. 

Figure 113. FDOT Defined Road Zones Across the Lane Width 
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Figure 114. Cropping Bounding Box into Sub-Boxes According to Road Zone 

6.1.6 Bounding Box Grouping 

Three types of groupings are performed on the bounding boxes (cropped sub-boxes). If 
the minimum longitudinal (y) distance between an alligator cracking bounding box and a 
branch cracking bounding box is less than or equal to 1ft, they are merged as one 
alligator cracking bounding box. Similarly, if the minimum y distance between a branch 
cracking bounding box and a single crack bounding box is less than or equal to 1ft, they 
are merged as one branch cracking bounding box. Also, if the minimum y distance 
between an alligator cracking bounding box and a single crack bounding box is less 
than or equal to 1ft, they are merged as one alligator cracking bounding box. Figure 115 
shows an example of the results of bounding box grouping. 

Crack bounding boxes are finalized in this step, cracks in the same crack bounding 
boxes are grouped as one crack set. After width information is assigned to these crack 
sets, crack sets are converted to distresses. 
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Figure 115. Grouped Bounding Box 

6.1.7 Improved Crack Width Identification 

There was a need to improve the estimation of crack width to improve the accuracy of 
the software in assigning severity levels to cracks. The crack map and binary image 
developed in the classification development effort contain crack locations, but they do 
not contain width information. The following explains the development efforts to create a 
binary image using the range image (which includes the 3D depth data), and the 
estimation of crack width: 

1. Pre-process the range image using contrast stretching and histogram equalization 
techniques. The grayscale range image will produce a better binary image if it 
exhibits high contrast rather than low contrast (see Figure 116). 
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Equalized 
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Figure 116. Example Preprocessing of 3D Range Image 

i. Contrast Stretching: Often called normalization, this is a simple image 
enhancement technique that attempts to improve the contrast in an image by 
`stretching' the range of intensity values it contains to span a desired range of 
values, e.g. the full range of pixel values that the image type concerned allows 
(Kaur and Choudhary 2012). 

Before the stretching can be performed, it is necessary to specify the upper and lower 
pixel value limits over which the image is to be normalized. Often these limits will just be 
the minimum and maximum pixel values that the image type concerned allows. For 
example, for 8-bit gray level images, the lower and upper limits might be 0 and 255. Call 
the lower and the upper limits a and b respectively. 

The contrast stretching algorithm then scans the image to find the lowest and highest 
pixel values currently present in the image. Call these c and d. Then each pixel P is 
scaled using the following function: 
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Values below 0 are set to 0 and values above 255 are set to 255. 

ii. Histogram Equalization: is a method that improves the contrast in an image, to 
stretch out the intensity range (Szeliski 2010). In Figure 116, the pixels in the 
intensity histogram of the center image seem clustered around the middle of the 
available range of intensities. What Histogram Equalization does is to stretch out 
this range. The tails of this histogram indicate the underpopulated intensities. 
After applying the equalization, the histogram for the image on the right shows 
that pixels in the resulting image have intensities that are more evenly distributed 
across the spectrum. 

2. Extract the binary image from the pre-processed range image using a 
Multi-Threshold Maximum Entropy Algorithm (Apro et al. 2011). The 
Maximum Entropy is an automatic thresholding (classification) method 
where the optimal threshold value (for differentiating pixels in two classes 
of cracks and non-cracks) can be found by maximizing the entropy 
(minimizing the homogeneity) of the resulting classes. This thresholding 
technique is called a bi-level approach, where a unique threshold value is 
defined to differentiate the two classes. The bi-level thresholding 
techniques give satisfactory results on the images with clear foreground-
background differentiation. But for the segmentation of complex images, a 
multi-thresholding approach is more suitable. A multi-thresholding 
technique converts the different types of regions of the image into regions 
having the optimal number of grey-level pixels. 

Suppose that h(i) is a value in a normalized histogram. Typically, i takes integer values 
from 0 to 255 (for 8-bit depth images). h(i) is the number of pixels that have the intensity 
i. It is assumed that h(i) is normalized, meaning the total area under the frequency 
distribution histogram is equal to 1: 

The entropy of black (background) pixels is defined as: 
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The entropy of white (foreground) pixels is defined as: 

The optimal threshold can be selected by maximizing the sum of foreground and 
background entropies as: 

The above formula for optimal threshold value (bi-level thresholding) can be extended to 
multi-level thresholding of an image. Assuming that there are n thresholds dividing the 
original image into n+1 classes, the optimal thresholds {T1 , T2 , …, Tn } are chosen by 
maximizing the sum of entropies as follows 

where: 

In this project, the n is set to be 2. In other words, two thresholding values are obtained 
and applied to the pre-processed range image. The pre-processed gray-scale range 
images are converted to binary images (see Figure 117). 

3. Remove extraneous information from the binary image. The binary image 
will contain white pixels which do not correspond to cracks that were 
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detected or included on the crack map. The width of the cracks in the 
skeletonized crack map (see Figure 106) is increased from one to 20 
pixels, and then this crack map is overlaid on the pre-processed binarized 
image from step 3 to keep only white pixels in the binary image that 
correspond to detected cracks (see Figure 117). 

Figure 117. Example Development of Enhanced Crack Map for Crack Width Determination 

4. Determine crack width using the final range binary image (see Figure 
117). 

i. Overlay the bounding boxes from the classification results onto the 
range binary image. 

ii. Sum the number of white pixels within each bounding box. The 
width of each pixel in the LCMS image is very close to 1 mm. 

iii. Average crack width in millimeter for each bounding box = 
Number of white pixels 

Crack length (mm) 



 

 

  

   
  

  
   

   

  
  

  
 

  

    

    
  

  

   

  
  

  

  
 

   
   

  

    
 

   
  

6.1.8 Improving Crack Severity Level Assignment 

If the average crack width for a branch cracking area is less than or equal to ⅛ inch 
(3.18 mm) wide, that area would be assigned a Class 1B severity level. However, during 
the manual distress workshop conducted with the FDOT raters, it was discovered that if 
the same area had a lot of branching (no closed cells that would indicate alligator 
cracking), then the FDOT raters would bump its severity level to Class II. 

Since the automated software is supposed to replace the manual windshield survey for 
the annual pavement condition survey (PCS), it was decided that this practice needs to 
be incorporated into the software. Therefore, the following algorithm was developed in 
this regard: 

1. If a crack group is classified as branch cracking, and 

2. the average crack width is less than or equal to ⅛ inch (3.18 mm), and 

3. in every 10 feet of the crack length, there are at least 5 branches of 
minimum 1 foot each, 

4. then the cracking is assigned as Class II. 

6.2 Validation Experiment Design 

The following sections will describe the experiment test sections, the success metrics, 
the reference values, and the evaluation limitations. 

6.2.1 Experiment Test Sections 

To conduct this validation experiment, FDOT engineers identified a set of 12 
representative test sections that are each at least a standard evaluation length (0.1-
mile-long) and contain several of the flexible pavement distresses in them. Table 52 and 
Figure 85 show the selected 12 flexible pavement sections. 

6.2.2 Manual Windshield Survey 

Three FDOT raters conducted a manual windshield distress survey of the 12 test 
sections according to the FDOT protocol. Each rater conducted the manual distress 
survey separately in a separate vehicle and according to the FDOT Flexible Pavement 
Condition Survey Handbook (2017). 
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6.2.3 Automated Survey 

The 3D data collection was conducted by Fugro using the Automatic Road Analyzer 
(ARAN) Laser Crack Measurement System (LCMS) equipment and the data were 
analyzed by Fugro staff using the readily available Vision 3.1 software. The ARAN 
collected 3 repeated runs on each of the 12 test sections. Surface defects were 
detected using the machine learning algorithm in Vision 3.1. Then the FFPDA batch 
processor developed in Task 6 was used to classify and rate the detected cracks 
according to the FDOT Flexible Pavement Condition Survey Handbook (2017). 

6.2.4 Success Metrics 

The following are the success metrics used for evaluating the crack classification and 
severity rating results based on the overall cumulative amount of each crack type 
among different test sections and multiple runs: 

1. Crack Classification Accuracy: This statistic is evaluated based on average error 
(bias) with respect to the reference distress survey values for each crack type. 

Accuracy (%) = 100 – Bias (%) 

2. Manual Windshield Survey Reproducibility: This statistic is evaluated based on 
coefficient of variation (COV) of manually identified cracking among three raters 
for each crack type (independent of the reference and averaged among the 
sections). 

Reproducibility (%) = 100 – COV (%) 

3. Automated Crack Classification Repeatability: This statistic is evaluated based 
on coefficient of variation (COV) of automatically identified cracking among three 
runs for each crack type (independent of the reference and averaged among the 
sections). 

Repeatability (%) = 100 – COV (%) 

4. Crack Classification Consistency: This statistic is evaluated based on coefficient 
of variation (COV) of crack classification accuracy among 12 sections for each 
crack type. 

Consistency (%) = 100 – [Standard Deviation of Accuracy (%) / Average Accuracy (%)] 
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5. Crack Classification Efficiency: This statistic is evaluated based on the time 
required for the automated distress survey. 

Efficiency (second per foot) = time for crack detection, classification, and rating divided 
by the total length. 

6.2.5 Reference Survey 

A reference distress survey was manually created by one Fugro engineer using the 
collected images from one automated run (run number 1), and another Fugro technician 
reviewed the results to reach a consensus for the reference survey. This reference 
survey was used to evaluate the effectiveness of the crack classification and rating 
routine. 

6.2.6 Evaluation Limitations 

The evaluation was conducted considering the following limitations of this analysis: 

1. The 12 test sections were selected as representative of the actual pavement 
surfaces found across Florida. With such a small sample, it is possible that not all 
of the actual pavement network is represented in this study. Every effort was 
made to select a representative sample. However, the budgetary and schedule 
limitations of this project would not allow for collection and processing of data 
across a wider network. For example, there were not a significant amount of 
block cracking present in the selected sections. 

2. This study is mainly focused on cracking distresses; patching and raveling were 
not considered in this evaluation. 

6.3 Validation Experiment Results 

The results of the validation experiment are presented according to the experiment 
design described in the previous section. The amount of cracking automatically 
identified using FFPDA after the development effort is compared to that using Vision 
3.1, the manual windshield survey by FDOT raters and the semi-automated reference 
survey by Fugro staff. The automated results are averaged among the three runs and 
the manual results are averaged among the three raters. The automated results were 
for cracking found between the lanes after lane detection. No manual quality control 
was conducted after the automated runs. 
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6.3.1 Automatically Identified Crack Types 

In this section, the evaluation is conducted based on the amount of automatically 
identified Single, Branch, and Alligator cracking. The following results are for cracking in 
all 5 road zones between the lane markings. FDOT raters report only the predominant 
crack type and severity in CW and CO, when performing the PCS windshield survey. 
Therefore, a direct comparison of their results to the automated results could not be 
conducted for crack type. 

Figure 118  shows the  amount of  automatically identified Single cracks in each of the 12  
sections, compared to  the reference survey. Compared to Vision 3.1, FFPDA has 
resulted in less amount of identified single cracking. This is because  Vision 3.1 was not  
capable of classifying branch cracks and was identifying all branch cracks as single 
cracks.  

Figure 118. Comparison of Automatically Identified Single Cracks to Reference Survey 

Figure 119 shows the amount of automatically identified Branch cracks on each of the 
12 sections, compared to the reference survey. Vision 3.1 was not capable of identifying 
branch cracking but FFPDA has identified branch cracks at a relatively lower extent 
compared to the reference survey. 
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Figure 119. Comparison of Automatically Identified Branch Cracks to Reference Survey 

Figure 120 shows the amount of automatically identified Alligator cracks on each of the 
12 sections, compared to the reference survey. Compared to the reference and the 
Vision 3.1, FFPDA has resulted in higher amount of identified alligator cracking. This is 
because of the grouping mechanism that was devised in FFPDA to group cracking 
areas that are in proximity to each other. The grouping mechanism was incorporated to 
better match the practice of FDOT manual raters. 

Figure 120. Comparison of Automatically Identified Alligator Cracking to Reference Survey 



 

 

   

   
   

     

 
    

   
     

    

   
  

 
  

 
  

 
  

 

   
  

  
  

 
  

   
  

6.3.2 Automatically Rated Crack Severities 

Both Vision 3.1 and FFPDA use average crack width measurements to determine crack 
severities according to the FDOT Flexible Pavement Condition Survey Handbook 
(2017). However, FFPDA has an improved methodology as described in Section 6.1.7. 

Class IB are hairline cracks that are less than or equal to ⅛ inch (3.18 mm) wide, Class 
II are cracks greater than ⅛ inch (3.18 mm) and less than or equal to ¼ inch (6.35 mm) 
wide, and Class III are cracks greater than ¼ inch (6.35 mm) wide. Note that the extent 
of Class1B cracks is the sum of the length of single and branch cracks. But the extent of 
the Class II and Class III cracks is the sum of the area of single, branch, and alligator 
cracks, where the single and branch cracks are assumed to have a width of one foot. 

It should be noted that the manual assignment of severity levels in the reference survey 
is always more subjective than classification of cracks into single, branch, and alligator 
crack types. This is because it is easier to visually differentiate between single, branch, 
and alligator cracks than it is to visually differentiate between various crack severities. In 
the reference survey, the rater can use the measurement tool in Vision 3.1 to get 
familiar with the visual representation of various crack widths on the image. The rater 
then relies on this visual representation to manually rate the severity levels of each 
identified cracking distress. This is very similar to the subjectivity observed in the 
manual windshield survey results. For the manual windshield survey, the cracking area 
is averaged among the three raters for each crack type. 

Figure 121, Figure 122, and Figure 123 compare the automatically rated results to those 
of the manual windshield survey and the reference survey for Class 1B, Class II, and 
Class III cracks, respectively (note: vertical axis ranges vary). FFPDA has resulted in a 
higher amount of Class 1B cracking compared to Vision 3.1, which compares better 
against the reference survey. On the other hand, FFPDA has resulted in a lower amount 
of Class II cracking compared to Vision 3.1, which compares very well against both the 
reference survey and the manual windshield survey results. FFPDA has also improved 
the amount of identified Class III cracking compared to Vision 3.1. 
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Figure 121. Comparison of Automatically Identified Class 1B Cracks to the Manual Windshield 
and Reference Surveys 

Figure 122. Comparison of Automatically Identified Class II Cracks to the Manual Windshield and 
Reference Surveys 
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Figure 123. Comparison of Automatically Identified Class III Cracks to the Manual Windshield 
and Reference Surveys 

Overall, the performance of the FFPDA is acceptable compared to the reference and 
the manual windshield survey regarding Class 1B and Class II cracks. But the same 
cannot be stated regarding Class III cracks. The caveat in all these comparisons is that 
the FFPDA has a more systematic methodology for measuring crack width and 
assigning severity levels compared to the subjective visual methodology of the manual 
windshield survey and the semi-automated reference survey. 

6.3.3 Automatically Identified Wheel Path and Non-Wheel Path Cracking 

In this section, the rating results were converted to cracking within the wheel path and 
outside the wheel path according to the FDOT Flexible Pavement Condition Survey 
Handbook (2017). Figure 124 and Figure 125 show a comparison of the automated 
Vision 3.1 and FFPDA software to the manual windshield and reference surveys for 
wheel path and non- wheel path cracking, respectively. 
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Figure 124. Comparison of Automatically Identified Wheel Path Cracking to the Manual 
Windshield and Reference Surveys 
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Figure 125. Comparison of Automatically Identified Non- Wheel Path Cracking to the Manual 
Windshield and Reference Surveys 

6.3.4 Comparison of Different Rating Methods 

This section compares the results of the manual windshield surveys conducted by 
FDOT distress raters, the fully automated distress surveys using Vision 3.1 and FFPDA, 



and the semi-automated reference survey described in Section 5.3.2, according to the 
success metrics described in Section 6.2.4. The results compared in this section include 
percent wheel path cracking (CW) and percent non-wheel path cracking (CO). The 
outlier test sections with minimal amount of cracking (sections 3, 7, and 9) were 
excluded from this analysis. 

Figure 126 compares the accuracy of the three rating methods of manual windshield, 
automated Vision 3.1, and automated FFPDA, compared to the reference survey. 
FFPDA is showing a lower accuracy compared to Vision 3.1, but it is closer to the 
manual windshield results. This is mainly because of the grouping mechanism that was 
developed in Task 6 for the automated results to better reflect the practice of the FDOT 
raters in the field. 
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Figure 126. Comparison of Different Methods in terms of Accuracy 

Figure 127 compares the bias of the three rating methods. Compared to the reference 
survey, FFPDA over-estimates CW and under-estimates CO. The bias of FFPDA 
compared to the reference survey is in the same direction as the manual windshield 
survey for CW but in the opposite direction for CO. Vision 3.1 has a bias in the opposite 
direction of the manual windshield survey results for both CW and CO. Since the bias of 
FFPDA is positive for CW and negative for CO, this means that the total amount of 
cracking identified by FFPDA is closer to the reference survey compared to the Vision 
3.1 or the manual windshield survey results. 

This means that compared to the reference survey, FDOT manual raters tend to over-
estimate cracking, while FFPDA tends to over-estimate cracking in the wheel path 
zones (CW) and under-estimate cracking outside of the wheel path zones (CO). Wheel 
path cracking is an indication of fatigue in the pavement structure, and it has a higher 
importance compared to non-wheel path cracking in overall pavement condition 
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evaluation. FFPDA and manual windshield methods show better agreement in terms of 
wheel path cracking compared to non-wheel path cracking. 

Figure 127. Comparison of Different Methods in terms of Bias 

Figure 128 shows a comparison among the methods in terms of section-to-section 
consistency of the results. All three methods are comparable in this regard. 

Figure 128. Comparison of Different Methods in terms of Consistency 

Figure 129 compares the reproducibility of the manual windshield method to the 
repeatability of the two automated software, independent of the reference survey. The 
automated methods are showing much higher repeatability among multiple runs when 
compared to the reproducibility among multiple raters in the manual rating method. 
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Figure 129. Comparison of Different Methods in terms of Repeatability/Reproducibility 

6.3.5 Comparison of FFPDA to Manual Windshield Survey 

Since the ultimate objective of developing FFPDA is to replace the existing manual 
windshield surveys for the annual pavement condition survey (PCS), this section will 
compare the results of the two methods in terms of decision making. In this section, the 
rating results were converted to crack rating according to the FDOT Flexible Pavement 
Condition Survey Handbook (2017). In this evaluation, the raveling and patching areas 
were ignored, because the focus of the study was on cracking areas. 

Figure 130 shows a comparison of FFPDA crack rating results to the results of the 
manual windshield survey. The box plots show the statistics for all runs on each of the 
12 test sections. The X signs show the mean of the 3 runs/raters and the circles show 
the median of them. Except for section number 9, in all other test sections, the FFPDA 
shows no variation in crack rating values among the 3 runs. For the sections where the 
FFPDA shows no variation in crack rating values, the X sign for the mean, the circle for 
the median, and the box limits are in the same location. In contrast, in almost all 
sections, there is variation in crack rating values among the 3 raters. Due to the 
subjectivity of visual raters in assigning severity levels to the visible cracks (measuring 
crack width with the naked eye from a moving vehicle), such variability in the crack 
rating found in the manual windshield survey is expected. 
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Figure 130. Comparison of FFPDA to Manual Windshield Survey Crack Rating Statistics 
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Figure 131 shows a comparison of the crack rating averaged among the 3 raters for the 
manual windshield survey and averaged among the 3 runs for the FFPDA results. On 
average, FFPDA and the manual windshield survey show acceptable agreement in 
terms of the overall crack rating. 

Figure 131. Comparison of FFPDA to Manual Windshield Survey Crack Rating Averages 



 

 

     

 
 

  

    
    

      

   
 

   

   
 

    
  

  
  

 

  

   
 

 
 

 

   
 

     

 
 

6.4 Summary and Recommendations for Implementation 

Task 6 of this project involved development of the FFPDA to address the gaps that were 
discovered in Task 5, and validation of the FFPDA results according to the experiment 
design. The following conclusions can be made: 

1. FFPDA demonstrates higher repeatability compared to the manual windshield 
survey. This was expected due to the subjectivity of the manual windshield 
survey (i.e. visual rating with the naked eye from a moving vehicle). 

2. FFPDA demonstrates higher accuracy compared to the manual windshield 
survey. Accuracy is measured according to the bias compared to the reference 
survey and is a relatively subjective metric in this case. 

3. FFPDA and the manual windshield survey have similar section-to-section 
consistency in the rating results. 

4. FFPDA results showed better agreement with the manual windshield survey 
results than the previously tested Vision 3.1 software. This is because the 
FFPDA addressed the issues with Branch cracking, Alligator cracking, and 
severity level assignment that were found with Vision 3.1. 

5. FFPDA and manual windshield methods have more agreement in terms of wheel 
path cracking compared to non-wheel path cracking. 

6. The manual raters are often documenting more cracking compared to the 
reference survey in both the wheel paths and outside the wheel paths. However, 
the FFPDA is finding more cracking compared to the reference survey in the 
wheel paths and less cracking compared to the reference survey in non-wheel 
path zones. 

According to the observations in the software validation results, the following are the 
recommendations for implementation: 

1. Use FFPDA on a larger database of highway sections to determine if there are 
any systematic errors in software results. Use the semi-automated rating (manual 
rating of pavement images) to QC the results of FFPDA and potentially discover 
any remaining systematic errors. 

259 



 

 

 

   
   

  
    

  
    

 
  

  
   

2. Using the larger database of representative test sections, compare the results of 
FFPDA and the manual windshield ratings to determine a calibration equation 
between the two methodologies. This equation can be used to transform the 
FFPDA cracking results to a similar scale as the manual windshield results to 
ensure smooth pavement deterioration trends before and after implementation of 
an automated approach. In the long term, the deduct values for the combined 
condition index might need to be revisited as a result of this exercise. 

The semi-automated rating method should also be used to determine pavement areas 
affected by raveling and patching. The developed software can automatically add these 
semi-automated rating results to the automated cracking results of FFPDA and provide 
the final combined condition index for every pavement section. 
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CHAPTER 7 – AUTOMATED APPLICATION IMPLEMENTATION 

Task 7 of this research project involved technical support to implement the validated automated 

distress identification applications for both rigid and flexible pavements into the annual Pavement 

Condition Survey (PCS) process. This implementation was completed during two phases: 

1. Phase I: after completion of Task 3, Fugro provided support to implement the validated 

FDOT Rigid Pavement Distress Application (FRPDA) 

2. Phase II: after completion of Task 6, Fugro provided support to implement the validated 

FDOT Flexible Pavement Distress Application (FFPDA) 

This document is organized into five sections. Following this introduction, Section 7.1 summarizes 

the implementation activities for FRPDA. Section 7.2 describes the implementation activities 

conducted for FFPDA. Section 7.3 presents a suggested data quality management program. 

Finally, Section 7.4 summarizes the efforts and provides pertinent recommendations for future 

data collection and processing activities. 

7.1 Implementation Activities for FDOT Rigid Pavement Distress 

Application (FRPDA) 

This section of the report summarizes the activities conducted for implementation of the FRPDA 

into the annual PCS process. 

7.1.1 Data Collection 

The sample data for identification and quantification of distresses for rigid pavements was 

collected using the FDOT multi-purpose survey vehicle (MPSV), which is equipped with the Laser 

Road Imaging System (LRIS). In Task 2, Fugro staff conducted an investigation to determine 

whether the collected two-dimensional (2D) pavement images are of acceptable quality for crack 

detection and how FDOT can potentially measure various image quality indicators in future. As a 

result, Fugro developed a Hardware Maintenance Protocol to be used by FDOT staff in order 

to ensure long term image quality and consistency. This protocol was submitted as an appendix 

to the Task 2 Report. 

During Task 2 of this research project, a two-day distress raters’ class was organized for both 
existing FDOT raters and appropriate Fugro staff on August 25 to 26, 2015. The class included 

both classroom as well as field training exercises. The main objective of this workshop was for 

Fugro to understand how FDOT raters conduct rigid pavement condition surveys, and how some 

of the involved decisions on distress type, extent, and severity can be quantified for the automated 

algorithm to match FDOT raters' decisions. Based on the meeting discussions and the results of 

the field exercise, several notes were recorded for consideration in the quantification process 

required for software development. FDOT staff might discuss these notes to potentially include 

them for further clarity of the handbook. 
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7.1.2 Data Processing 

Fugro developed a workflow to load the collected 2D LRIS images into the Vision software tool 

used for this research project. This workflow has two fundamental elements: 

1. Location and format of the collected data 

2. Structured Query Language (SQL) code that fetches data from the stored location and 

puts it in the required database format to be used by Vision software 

This workflow was first submitted as Appendix G of the Task 2 Report. The latest version of this 

workflow is documented in Appendix A of this report. If the fundamental elements of this workflow 

are followed, LRIS data following the same format and structure can be imported into Vision 

software using this workflow. 

In addition, Fugro developed the FRPDA User’s Guide for image filtering, crack detection, joint 

detection, and crack classification and rating. This guide was delivered in Appendix A of the Task 

3 Report. Appendix C of the Task 3 Report was a software installation guide. 

At the conclusion of Phase I, Fugro held a meeting on February 22, 2017 at FDOT State Materials 

Office (SMO), during which the developed software (FRPDA version 1.0) and corresponding 

recommendations were demonstrated to FDOT staff. In addition, the software was installed and 

tested on several desktop computers for FDOT staff to use and test. On June 8, 2017, a hands-

on FRPDA training class was held in a computer instruction room at the FDOT SMO. 

7.1.3 Data Analysis and Reporting 

In Appendix B of the Task 3 Report, Fugro provided a guide to use basic Vision functions for 

viewing images and manual rating of the pavement images. This semi-automated distress survey 

was recommended for quality control of the automated results and for adding other non-cracking 

pavement surface distress types such as spalling, surface deterioration, and patching. 

After running the FRPDA, the results of joint detection and cracking identification are stored in 

comma-separated values (csv) files. The contents of these files can easily be used to develop 

reports in a meaningful format to be used for pavement management and treatment design 

purposes. 

7.1.4 Data Quality Management 

Chapter 4 of this document provides a suggested framework for data quality management. 

7.2 Implementation Activates for FDOT Flexible Pavement Distress 

Application (FFPDA) 

This section of the report summarizes the activities conducted for implementation of the FFPDA 

into the annual PCS process. 
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7.2.1 Data Collection 

The sample data for identification and quantification of distresses for flexible pavements was 

collected using a Fugro Automatic Roadway Analyzer (ARAN) vehicle equipped with the three-

dimensional (3D) Laser Crack Measurement System (LCMS). At the time of the conclusion of this 

research project, FDOT had not purchased a 3D data collection system. However, FDOT had 

contracted the collection of the pavement condition data on Florida Interstate Highways to a Data 

Collection Contractor who operated an LCMS vehicle. 

On June 7 to 8, 2017, a two-day distress raters’ class was organized for both existing FDOT raters 
and appropriate Fugro staff. The class included both classroom as well as field training exercises. 

The main objective of this workshop was for Fugro to understand how FDOT raters conduct 

flexible pavement condition surveys, and how some of the involved decisions on distress type, 

extent, and severity can be quantified for the automated algorithm to match FDOT raters' 

decisions. 

7.2.2 Data Processing 

Fugro developed a workflow to load the 3D LCMS images and data collected by the Data 

Collection Contractor into the Vision software tool used for this research project. This workflow 

has two fundamental elements: 

1. Location and format of the collected data 

2. Structured Query Language (SQL) code that fetches data from the stored location and 

puts it in the required database format to be used by Vision software 

This workflow is documented in Appendix B of this report. If the fundamental elements of this 

workflow are followed, LCMS data following the same format and structure can be imported into 

Vision software using this workflow. In addition, a user interface was created for facilitating the 

application of this SQL code for data transfer (see details in Appendix B). 

In addition, Fugro developed the FFPDA Reference Manual for crack detection, and crack 

classification and rating. This guide was delivered as Appendix B of the Task 6 Report. This 

Reference Manual included a software installation guide and a Quick Start Guide. 

At the conclusion of Task 6, Fugro held a meeting on June 25 to 26, 2018 at FDOT SMO during 

which the developed software and corresponding recommendations were demonstrated to FDOT 

staff. In addition, the software was installed and tested on several desktop computers for FDOT 

staff to use and test. The testing by FDOT staff revealed some issues in Vision 3.4 that 

compromised the performance of FFPDA. Therefore, the FFPDA was revised to match Vision 

3.1, the most recent reliable version of the platform. 

7.2.3 Data Analysis and Reporting 

In the Reference Manual submitted as an appendix to the Task 6 Report, Fugro provided 

instructions to use a semi-automated distress survey for quality control of the automated results 

and for adding other non-cracking pavement surface distress types such as raveling and patching. 
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After running the FFPDA, the results of cracking identification and section crack rating are stored 

in csv files. The contents of these files can easily be used to develop reports in a meaningful 

format to be used for pavement management and treatment design purposes. 

7.2.4 Data Quality Management 

Chapter 4 of this document provides a suggested framework for data quality management. 

7.3 Data Quality Management Program 

This chapter presents a suggested data quality management program. FDOT staff may choose 

to adopt this program within their existing processes for quality management. 

7.3.1 Definitions 

The following are definitions of terms, abbreviations, and acronyms used in this quality 

management program. 

Table 60. Definition of Quality Terms 
Term Definition 

Quality 
The degree to which a set of inherent characteristics of a product or 

service fulfill requirements. 

Quality Standards 

Quantitative and qualitative characteristics of product or service that 

are used to determine the quality of each deliverable. Examples 

include accuracy, precision, resolution, etc. 

Accuracy 

Accuracy is a qualitative term referring to whether there is 

agreement between a measurement made on an object and its true 

(target or reference) value, indicating measurement effectiveness. 

Bias is a quantitative term describing the difference (or error) 

between the average of measurements made on the same object 

and its true value. 

Precision 

Precision is a qualitative term describing the degree of repeatability 

of a measurement value, indicating measurement reliability. 

Variance and standard deviation of error are quantitative estimates 

of precision. 

Resolution 
Data reporting format corresponding to measurement methodology 

and specific application by the user. 

Quality Management 
The overarching system of policies and procedures that govern the 

performance of quality control and acceptance activities. 

Quality Control 

A series of measurements and corresponding corrective actions to 

ensure that a desired level of quality is obtained for the developed 

product or service. 
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Quality Acceptance 
The criteria to confirm that the quality of the developed product or 

service is indeed acceptable for application by the user. 

Quality Assurance 

Reporting, training, and process improvement activities to increase 

the ability of the development process to fulfill quality requirements 

for the product or service being provided. 

7.3.2 Quality Management Approach 

A pavement performance Data Quality Management Program (DQMP) is recommended with the 

following objectives: 

▪ Evaluation and updates of data collection, processing, and reporting standards and 

protocols considering agency goals and objectives 

▪ Better compliance with data standards and protocols 

▪ Improved completeness, accuracy, and consistency of data 

▪ Increased data credibility within the organization 

▪ Cost savings from more appropriate data-driven treatment recommendations 

▪ Increased accuracy of budget need determinations 

▪ Better integration with other internal agency data 

▪ Compliance with FHWA MAP-21/FAST Act requirements 

The FHWA Practical Guide for Quality Management of Pavement Condition Data Collection 

(Pierce et al. 2013) was consulted in the development of this DQMP. At a minimum, every quality 

management system shall include: 

▪ Quality standards, including data collection, processing, and reporting methodology 

▪ Routine data quality control (QC) measures, checklists, and criteria 

▪ Error tracking and resolution system 

▪ Periodic quality assurance (QA) procedures to ensure the data collection and processing 

system is producing data conforming to the quality standards 

▪ Quality acceptance and reporting 

▪ Identification of roles and responsibilities 

FDOT collects highway inventory and condition data using internal resources to the furthest extent 

possible. In addition, FDOT procures services from qualified Data Collection Contractors when 

the need arises. Regardless of the in-house or contracted data collection approach, quality 

management is administered by the FDOT staff. FDOT may require the Data Collection 

Contractors to submit a Quality Control Plan which complies with and complements this DQMP. 

The flow chart in Figure 132 demonstrates the various aspects of the quality management 

approach. The quality standards, roles, and responsibilities should be set in the DQMP. For in-

house collection, quality control shall be conducted by FDOT staff. For contracted collection, the 
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Data Collection Contractor should conduct quality control activities according to the submitted 

Quality Control Plan. FDOT staff shall review the QC results and conduct quality acceptance 

audits. The whole quality management process and findings should be documented through the 

quality reporting plan. All of the involved processes shall be reviewed according to the findings 

and any relevant process improvements shall be identified and implemented through continuous 

quality assurance. 

Quality Management 

Quality 

Standards 

Quality Roles & 

Responsibilities 

Quality Control Quality Acceptance 

Quality Reporting 

Quality 

Assurance 

Figure 132. Quality Management Approach 

The key activities, processes, and procedures for quality management of the pavement 

performance data are briefly described in Table 61, with more in-depth information provided in 

the sections that follow. 

Table 61. Contents of the Data Quality Management Program 

Data Collection 

Protocols and Quality 

Standards 

The data collection deliverables subject to quality review, 

protocols used to collect, and quality standards that are the 

measures used to determine a successful outcome for a 

deliverable. Deliverables are evaluated against these criteria 

before they are formally approved. 

Data Quality Control 

(QC) Measures 

The QC activities conducted by either FDOT staff (for in-house 

collection) or the Data Collection Contractor that monitor, provide 

feedback, and verify that the data collection deliverables meet the 

defined quality standards. 

Data Quality 

Acceptance Criteria 

The acceptance testing that will be used to determine if quality 

criteria are met and corrective actions that will be taken for any 

deliverables not meeting criteria. 
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Quality Assurance 

(QA) Plan 

The plan for training of the involved staff, and using the QC 

results for the improvement of corresponding data collection and 

QC processes. 

Quality Reporting 

Plan 

The documentation of key quality management activities, 

including QC log and acceptance log, and the format of the final 

quality management report. 

Roles and 

Responsibilities 
The quality-related responsibilities of the data collection team. 

7.3.3 Data Collection Protocols and Quality Standards 

The latest version of the FHWA Highway Performance Monitoring System (HPMS) Field Manual 

(December 2016) is to be used for the collection and processing of data that will be submitted to 

the FHWA. The HPMS Field Manual references various AASHTO protocols for calibration of 

equipment and collection of data. For non-HPMS data, the latest version of the FDOT Rigid 

Pavement Condition Survey Handbook (September 2017) and Flexible Pavement Condition 

Survey Handbook (October 2017) will be used for distress data. HPMS and non-HPMS data can 

be collected in-house or by the Data Collection Contractor at the discretion of FDOT. 

Deliverables, Protocols, and Quality Standards 

The data elements that need to be submitted to the FHWA HPMS for 0.1-mile segments are 

included in 

Table 62. This list includes the corresponding protocol for data collection and processing. The 

list also includes recommended quality standards for accuracy, precision, and resolution that need 

to be reviewed by FDOT staff to determine whether they are acceptable. 

The data elements beyond what is submitted to the HPMS and need to be collected for FDOT’s 
pavement management purposes are listed in Table 63. This list includes the corresponding 

protocol for data collection and processing, and the recommended quality standards for accuracy, 

precision, and resolution that need to be reviewed by FDOT staff to determine whether they are 

acceptable. 

In these tables, accuracy can be measured as the average error compared to reference values 

(normalized errors in percentage and absolute errors in corresponding measurement units), and 

precision can be estimated as the run-to-run repeatability out of 3 repeated runs (variation from 

mean of 3 repeated runs). Both accuracy and precision shall be evaluated on control sites, where 

reference values are documented according to a methodology approved by FDOT (see section 

on Reference Measurements). Precision shall also be evaluated on verification sites (see section 

on Control and Verification Sites). Accuracy and precision shall be evaluated based on a 95% 

confidence level; meaning 95% of the collected data needs to be within acceptable tolerance from 

the reference and from the mean of the repeat runs. In addition to checking the data on control 

and verification sites, the quality standards of accuracy and precision can also be used in a 

random blind sampling of every batch of data delivered for acceptance testing (see section 7.3.5). 
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In this case, the reference values used for evaluating accuracy can be the previous 

measurements on that test section. 

The recommended quality standards of accuracy and precision in 

Table 62 and Table 63 are based on the measurement resolution, and past experience in 

capabilities of current measurement technology. For example, the current automated survey 

technology has a higher rate of success in estimating the amount of cracking as opposed to non-

cracking surface defects; as a result, the quality standards set for cracking distress types are 

tighter than that set for non-cracking surface defects. In majority of the data elements, the quality 

standard set for precision is tighter than that set for accuracy. This is because reference values 

used for evaluating accuracy might be measured with a different technology, but precision is an 

estimate of the repeatability of multiple measurements with the same technology. 

Table 62. Recommended Protocols and Quality Standards for HPMS Data 

Deliverable Protocol 
Resolution & 

Reporting 

Accuracy 

(compared to 

reference) 

Repeatability 

(out of 3 

runs) 

International 

Roughness 

Index (IRI) 

Collection of 

Longitudinal Profile: 

AASHTO R57-14 

Quantification of IRI: 

AASHTO R43-13 

Nearest 1 inch per 

mile 

Report MRI (average 

of left and right IRI) a 

± 10% ± 5% 

Rut Depth 

Collection of 

Transverse Profile: 

AASHTO R88-18 

Rut Depth: 

AASHTO R87-18 

Nearest 0.01 inch 

Report average rut 

depth of two wheel 

paths a 

± 0.1 inches ± 0.05 inches 

Faulting 

Measurement and 

Quantification: 

AASHTO R36-17 

Nearest 0.01 inch 

Report average 

absolute faulting of 

all joints in the right 

wheel path, including 

zero values a 

± 0.1 inches ± 0.05 inches 

Percent 

Cracking 

Image Collection: 

AASHTO R86-18 

Cracking Estimation: 

AASHTO R85-18 

Nearest 1% 

Report Percent 

Cracking b,a 

The higher of 

± 25% or ± 5 

points in 

Percent 

Cracking 

The higher of 

± 15% or ± 3 

points in 

Percent 

Cracking 

Present 

Serviceability 

Rating (PSR) 

HPMS Field Manual, 

Agreement with 

FHWA Division 

Office on approach 

Nearest 0.1 point 

Report PSR from 0.1 

to 5.0 a 

± 0.5 points ± 0.5 points 
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Deliverable Protocol 
Resolution & 

Reporting 

Accuracy 

(compared to 

reference) 

Repeatability 

(out of 3 

runs) 

Horizontal 

Curvature 
HPMS Field Manual 

Horizontal curvature 

category 

Matching 

degree of 

curve from 

construction 

plans ± 0.3 

± 0.1 degree 

Grade HPMS Field Manual 
Vertical curvature 

category 

Matching 

grade from 

construction 

plans ± 0.3 

± 0.1 percent 

a Report one number for 0.1-mile segments, full extent, one lane, one direction. 

b AC: Total area of cracked wheel path divided by total section area; JPCP: Percentage of slabs 

with at least one transverse crack > 1/2 lane width; CRCP: Cracking (exclude transverse) area 

divided by total section area. 
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Table 63. Recommended Protocols and Quality Standards for FDOT Pavement Management Data 

Deliverable Protocol 
Resolution & 

Reporting 

Accuracy 

(compared 

to 

reference) 

Repeatability 

(out of 3 

runs) 

Pavement Condition Data: Flexible Pavements 

Cracking Confined 

to Wheel Paths 

FDOT 

Flexible 

Pavement 

Condition 

Survey 

Handbook 

(October 

2017) 

Percent of wheel path 

area affected at 3 

severity levels: Class 

1B, Class II, Class III 

± 10% ± 10% 

Cracking Outside of 

Wheel Paths 

Percent of non-wheel 

path area affected at 3 

severity levels: Class 

1B, Class II, Class III 

± 10% ± 10% 

Dominant Crack 

Type 

Alligator (A), Block (B), 

and Combination (C) 
N/A N/A 

Patching Confined to 

Wheel Paths b 

Percent of wheel path 

area affected 
± 25% ± 15% 

Patching Outside of 

Wheel Paths b 

Percent of non-wheel 

path area affected 
± 25% ± 15% 

Raveling Confined to 

Wheel Paths b 

Percent of wheel path 

area affected at 3 

severity levels: Light, 

Moderate, Severe 

± 25% ± 15% 

Raveling Outside of 

Wheel Paths b 

Percent of non-wheel 

path area affected at 3 

severity levels: Light, 

Moderate, Severe 

± 25% ± 15% 

Crack Rating 
Between 0 and 10 with 

a resolution of 0.5 

± 0.5 

points 
± 0.5 points 

Ride Rating 
Between 1 and 10 with 

a resolution of 0.1 

± 0.3 

points 
± 0.1 points 

Rut Depth Nearest 0.125 inches 
± 0.125 

inches 

± 0.125 

inches 

Rut Rating 
Between 0 and 10 with 

a resolution of 1 
± 1 point ± 1 point 

International 

Roughness Index 

(IRI) 

ASTM E1926 

Nearest 1 inch per mile, 

average of the left and 

right wheel paths 

± 10% ± 5% 

Ride Number (RN) ASTM E1489 

Between 0 and 5, 

Nearest 0.01, average 

of the left and right 

wheel paths 

± 10% ± 5% 



 

 

  
  

 

 

 

 

 

   

 

    

 

 

 

 

 

 

 

   

  
   

 

 

   

  
   

 
   

  
   

  

  

  

   

 

  

 

  

    

 
   

  
   

  
   

  
    

 
   

  

  

   

  

  

   
  

    
  

       

 
 

 

   

 

   

    

   

 

  

 

 

   

 

   
  

 
    

        

   
 

 

  

 
   

Deliverable Protocol 
Resolution & 

Reporting 

Accuracy 

(compared 

to 

reference) 

Repeatability 

(out of 3 

runs) 

Pavement Condition Data: Rigid Pavements 

Transverse Cracking 

FDOT Rigid 

Pavement 

Condition 

Survey 

Handbook 

(September 

2017) 

Count occurrence at 3 

severity levels 
± 10% ± 5% 

Longitudinal 

Cracking 

Count occurrence at 3 

severity levels 
± 10% ± 5% 

Corner Cracking 
Count occurrence at 3 

severity levels 
± 15% ± 10% 

Joint Condition b 

Partially Sealed or Not 

Sealed, representative 

severity within the rated 

section 

N/A N/A 

Surface 

Deterioration b 

Area extent at 2 severity 

levels 
± 25% ± 15% 

Spalling b 
Length extent at 2 

severity levels 
± 25% ± 15% 

Patching b 
Area extent at 2 severity 

levels 
± 25% ± 15% 

Pumping b 

percent within the 

rated section at 3 

severity levels 

± 25% ± 15% 

Shattered Slab b 
Number of affected 

slabs at 2 severity levels 
N/A N/A 

Fault Index (FI) Nearest 1 ± 2 ± 1 

Faulting 
AASHTO 

R36-17 

Nearest 0.03 (1/32) 

inch, report average 

absolute faulting of all 

joints in the right wheel 

path, including zero 

values 

± 0.1 

inches 
± 0.05 inches 

Slab Length N/A 
Approximate slab length 

in feet 
± 5% ± 5% 

Slab Count N/A Count slabs ± 5% ± 5% 

Cracked Slab Count 
HPMS Field 

Manual 

Number of affected 

slabs 
± 10% ± 5% 
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Deliverable Protocol 
Resolution & 

Reporting 

Accuracy 

(compared 

to 

reference) 

Repeatability 

(out of 3 

runs) 

General, Location, and Geometric Data 

Pavement Images 
AASHTO 

R86-18 

4096 pixels across 12 

feet lane width; able to 

collect 2 mm wide 

cracks at highway 

speeds 

Uniform illumination; color 

balanced and clear; proper 

image stitching 

Right of Way (ROW) 

Images 
N/A 

1920 x 1080 pixels; 

covering 120 degree 

viewing angle 

Free of distortion and over-

exposure; color balanced 

and clear; synchronized 

with other image/data; allow 

length and width 

measurements of assets 

GPS Coordinates N/A 
Nearest 0.0000001 

degree 
± 15 feet 

± 0.00001 

degrees 

GPS Elevation N/A Nearest 0.1 meter ± 0.1 meter ± 0.1 meter 

Chainage (LRS) N/A Nearest 0.001 mile 

± 15% 

compared 

to walking 

wheel 

± 5% 

PAVE_TYPE b 
HPMS Field 

Manual 

Asphalt, PCC, CRC, or 

Composite 

Matching 

FDOT 

Inventory 

data 

N/A 

Macrotexture ASTM E1845 

Nearest 0.001 inch 

Mean Texture Depth 

(MTD), RMS, and Error 

for each wheel path 

N/A ± 15% 

Friction Number 

ASTM E274 

ASTM E501 

ASTM E524 

Nearest 0.1 for each 

wheel path 
N/A N/A 

Cross Fall N/A Nearest 0.1 percent N/A ± 15% 

Horizontal Radius of 

Curvature 
N/A Nearest 1 meter N/A ± 15% 

Grade N/A Nearest 0.1 percent N/A ± 0.1 percent 

Edge Drop-off N/A 
Count occurrence and 

height to nearest 1 mm 
N/A ± 15% 

b Currently, these data elements can only be estimated by manual rating of the collected 

pavement images. 

272 



 

 

   

            

            

     

          

             

            

       

  

          

           

         

    

     

    

            

         

      

                

      

             

                

       

    

           

            

        

            

           

            

         

           

 

  

            

              

               

      

              

Reference or “Ground Truth” Measurement 

It is recommended to establish control sites (see Section on Control and Verification Sites) and 

collect reference data on them. The reference data should be collected on the control sites at 

least once every 2 years. 

For collecting reference sensor data (roughness, rut depth, faulting, grade, cross slope), the 

reference data can be collected with a certified equipment that matches the description of a 

reference profiler in AASHTO R56-14 Standard. Several commercial versions of these reference 

profilers are available through ICC, ARRB, and SSI companies. Fugro owns and operates an 

ICC version. 

The AASHTO R56-14 Standard was developed for certification of inertial profiling systems, and it 

contains guidelines for establishing a reference longitudinal profile using a reference profiler. This 

reference longitudinal profile can be used to quantify the reference values for IRI, RN, faulting, 

and grade data. 

The AASHTO R88-18 Standard for collecting transverse profile data also includes guidelines for 

collecting reference transverse profile data using a reference profiler with similar descriptions to 

that noted in the AASHTO R56-14 Standard. This reference transverse profile can be used to 

quantify the reference values for rut depth and cross slope data. 

The sensor data shall be collected with the reference profiler multiple times until 3 repeatable runs 

(the correlation of all data among the 3 runs is equal to or higher than 0.98) are achieved. Then 

one of those 3 repeatable runs would be used as reference. 

For horizontal curvature data, a sample of the HPMS sections that are categorized as D, E, or F 

can be used as control sections, on which construction plans are used as reference values. After 

this verification of curvature data in the base year, this sample data can be used as historical 

reference for the following years. 

For establishing reference distress data, it is recommended that at least 3 certified distress raters 

would first review the distress type, severity, and extent guidelines in the FDOT Rigid Pavement 

Condition Survey Handbook (September 2017) and Flexible Pavement Condition Survey 

Handbook (October 2017), and review example historical data. The raters would then conduct a 

semi-automated survey to identify distresses on pavement images. Following the semi-

automated survey, the raters will compare notes and arrive at a consensus for all distress types, 

severity, and extent to document the reference (“ground truth”) distress survey. 

On any site other than the control sites, the most recent accepted data should be used as 

reference measurements. 

Control and Verification Sites 

The recommended number and length of control and verification sites are listed in Table 64. The 

control sites are used for vehicle calibration checks and certification and shall be visited once 

every month (during data collection season), including the entry and exit controls. Additionally, in 

the event data collection vehicles or data collection components undergo repair or replacement, 

the affected system(s) will need to be recalibrated and then verified using the control sites. The 
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verification sites are used for weekly calibration checks during data collection and are planned to 

be scattered across the state to the extent possible to avoid traveling back and forth between a 

data collection district and the central office. The control sites can also be used for verification. 

The control and verification site data shall be shipped to the office to be compared against the 

reference data to evaluate accuracy. The reference data on the control sections should be 

collected at a 2-year frequency (see Section on Reference Measurement) and for the verification 

sites, the last cycle of data collection can be used as reference data. The repeatability among 3 

repeated runs on these sites will be used to evaluate precision. If multiple data collection vehicles 

are used, the verification sites need to be used for evaluating reproducibility of the sensor data 

across multiple vehicles. 

There are sites already established for Distance Measuring Instrument (DMI) calibration, which 

can be used as control and verification sections for sensor data. Ideally, these sites should have 

minimal surface distress to avoid complications in establishing reference sensor data. For flexible 

pavements, it is recommended to have two control sites, one smooth and one relatively rough to 

evaluate the accuracy and repeatability of the equipment on different ride quality situations. Due 

to the limited length of rigid pavements across Florida, only one control site is recommended. 

The control sections for distress data need to have an adequate amount of each distress type to 

the extent feasible. That is why the control sites for distress data and those for sensor data need 

to be separate. If the data collection crew (FDOT or Contractor) conduct daily quality control of 

the collected pavement images, there is no need for weekly verification of distress data and the 

monthly evaluation of accuracy and precision on the control sites will suffice. Therefore, no 

verification sites are recommended for distress data. 

Table 64. Planned Control and Verification Sites 

Site Purpose 
Pavement 

Type 
District Route Direction Length b 

Control and Verification Sites for Sensor Data 

Control/Verification AC District 2 TBD TBD 500 ft 

Control/Verification AC District 2 TBD TBD 500 ft 

Control/Verification PCC District 2 TBD TBD 500 ft 

Verification AC District 1 TBD TBD 500 ft 

Verification AC District 3 TBD TBD 500 ft 

Verification AC District 4 TBD TBD 500 ft 

Verification AC District 5 TBD TBD 500 ft 

Verification AC District 6 TBD TBD 500 ft 

Control Sites for Distress Data 

Control AC District 2 TBD TBD 500 ft 

Control PCC District 2 TBD TBD 1000 ft 

b 0.1-mile segments are typically adequate for both control and verification sections. The 

recommended length for the rigid distress control section is longer due to the limited density of 

observed distress on concrete pavements. 
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Equipment Calibration and Certification Protocols 

Table 65 lists the available national standards for calibration and certification of data collection 

equipment. National standards are under development for calibration and certification of some of 

the equipment. 

Table 65. Available Equipment Calibration and Certification Protocols 

Data Element 
Data Collection 

Equipment 

Equipment Calibration 

Protocol 
Comments 

Longitudinal 

profile 
Inertial profilers 

Collection System: 

AASHTO M328-14 

Equipment Certification: 

AASHTO R56-14 

National Standard 

Available 

Transverse 

profile 
Laser sensors 

AASHTO R48-10 or 

AASHTO R88-18 

National Standard Under 

Development 

Faulting of 

concrete joints 

Profilers or 3D 

images 
AASHTO R36-17 

National Standard Under 

Development 

Pavement 

distress 

2D or 3D imaging 

technology 
AASHTO R86-18 

National Standard Under 

Development 

For FDOT in-house data collection, the Data Collection Vehicle Provider is responsible for annual 

preventive maintenance, calibration, and certification of the equipment installed and integrated on 

the vehicle. The following is a general overview of the tasks conducted during annual vehicle 

certification, depending on the specific equipment integrated on the vehicle: 

• Central Data Acquisition Computer (CDAC) checkup and updates 

• Smart Video Controller (SVC) checkup and updates 

• AC BOX and DC BOX checkup and maintenance 

• Distribution Enclosure checkup and maintenance 

• Cables / Racks / Dog House / Miscellaneous checkup and maintenance 

• DMI checkup and calibration 

• Chassis / Generator / Inverter / Charger checkup and maintenance 

• Laser South Dakota Profiler (LSDP) and Texture sensor checkup, maintenance, and 

calibration (including static test, bounce test, and repeat runs for verification) 

• Laser Rut Measurement System (LRMS) checkup, maintenance, and calibration 

(including static test, cross-fall rolling test, dynamic repeat runs for verification) 

• Grade and pitch sensors checkup, maintenance, and calibration (including static and 

bounce tests and repeat runs for verification) 

• POSLV PCS (Position and Orientation System) checkup and software updates 

• Right-Of-Way (ROW) forward and backward cameras checkup and maintenance 
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• Pavement Laser Road Imaging System (LRIS) or Laser Crack Measurement System 

(LCMS) checkup, maintenance, and calibration 

For contracted data collection, the Data Collection Contractor shall be required to submit 

equipment calibration and certification information including a regular maintenance and testing 

program as part of their Quality Control Plan. 

Certification of Equipment Operators and Persons Performing Manual Data Collection 

Typically, the reference distress survey on the control sites would be conducted manually or semi-

automated (manual rating of collected images). FDOT shall hold workshops for the distress raters 

to collectively review the definitions and sample images and potentially conduct an exam rating 

to certify the distress raters. 

For FDOT in-house data collection, the equipment operators shall receive annual training and 

certification, a record of which shall be documented. This training shall include the following topics 

regarding vehicle operation: 

• Driver safety and proactive driving practice 

• Mechanical checkup and maintenance (refer to Data Collection Vehicle Provider) 

• Overall equipment operation (refer to Data Collection Vehicle Provider) 

• Daily/weekly/monthly equipment/sensor checks and preventive maintenance 

• DMI calibration and verification 

• Repeat runs and verification testing for sensor data 

For contracted data collection, the Data Collection Contractor should be required to submit current 

documentation indicating training and certification of equipment operators as part of their Quality 

Control Plan. Some of the pavement surface distress types may be manually identified on the 

collected images using desktop software (semi-automated survey). The Data Collection 

Contractor is responsible for training and certification of corresponding staff. 
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7.3.4 Data Quality Control Measures 

For in-house data collection, FDOT staff are responsible for quality control (QC) activities before, 

during, and after data collection. For contracted data collection, the conduct of QC procedures 

and measurements are the responsibility of the Data Collection Contractor. The QC steps are 

conducted according to the Quality Control Plan submitted by the Data Collection Contractor and 

approved by FDOT. Regardless of in-house or contracted data collection, the following includes 

the key procedures and corresponding frequency for data quality control measurements during 

three stages of data preparation. 

Quality Control Activities Conducted Before Data Collection 

These QC activities include calibration and periodic checks of data collection equipment and the 

first visit to the control sites. Table 66 includes an overview of these activities. In addition to the 

recommendations provided in Table 66, QC activities should be performed in accordance with 

equipment manufacturer recommendations. 

Table 66. Quality Control Activities Conducted Before Data Collection 

Deliverable 
Quality 

Expectations 
QC Activity Frequency 

Plan collection route Once, prior to data collection. 

Routing QC to match 

FDOT supplied info b 
Once, prior to data collection. 

Completeness 
Define equipment 

configuration b 
Once, prior to data collection. 

All 

Verify equipment 

configuration b 

Once, prior to collection. Also 

conducted after any equipment 

changes. 

Pavement 

Data Equipment calibration 

Once, prior to collection. Also 

conducted after any equipment 

changes. 

Accuracy and 

Repeatability 
DMI calibration 

Once, prior to data collection. 

Also conducted during and after 

data collection. 

Data collection and 

data processing 

personnel certification 

Once, prior to data collection. 

Distress 

and Sensor 

Data 

Accuracy and 

Repeatability 

Control sites 

measurements 

Once, prior to data collection. 

Also conducted during and after 

data collection. 

b These activities are only conducted for contracted data collection. 
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Quality Control Activities Conducted During Data Collection 

Table 67 lists the QC activities during data collection used to continuously monitor the data being 

collected and a schedule of daily/monthly checks. It also includes the monitoring of ambient 

conditions and corresponding actions to address issues. In addition to the recommendations 

provided in Table 67, QC activities should be performed in accordance with equipment 

manufacturer recommendations. 

Table 67. Quality Control Activities Conducted During Data Collection 

Deliverable 
Quality 

Expectations 
QC Activity Frequency 

Mechanical inspection Daily 

Safety/Efficiency 
Preventative maintenance program Annual 

Completeness 
Field activity report including the 

collection location info 

Daily for 

contracted and 

Weekly for in-

house 

All 

Pavement 

Data 

Subsystem checks (sensors, 

computers, software) 
Daily 

Accuracy 

Real-time quality monitoring 

(monitor images and data streams 

during collection) 

Daily 

End of day verification (review 

sample of data and images from 

day's collection) 

Daily 

DMI calibration Monthly 

Distress Control sites Monthly 

and Sensor 

Data 

Accuracy and 

Repeatability Verifications sites Weekly 

Quality Control Activities Conducted After Data Collection 

A list of QC activities after data collection is included in Table 68, including review and checking 

of data for completeness, reasonableness, logic, acceptable range, accuracy and precision. In 

addition to the recommendations provided in Table 68, QC activities should be performed in 

accordance with equipment manufacturer recommendations. 
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Table 68. Quality Control Activities Conducted After Data Collection 

Deliverable 
Quality 

Expectations 
QC Activity Frequency 

All 

Pavement 

Data 

Accuracy and 

Repeatability 
DMI calibration 

Once, after data 

collection is complete 

Accuracy 

Field collection comment 

review 
Each batch 

Location/GPS checks Each batch 

Data within 

acceptable range 
Range checks Each processing batch 

Completeness 

And 

reasonableness 

Completeness checks Each processing batch 

Pilot test delivery b Once, first 100 miles 

Segmenting chainage checks 

b 
Each batch 

Data analysis inventory/ 

locator checks (inventory 

information matches DOT 

specified information) b 

Each processing batch 

Database hierarchical 

relationship checks 
Each processing batch 

Pavement/ 

ROW 

Images 

Quality 
Image quality checks 

(brightness, contrast, clarity) 
Each weekly data import 

Logic Image sequence checks Each weekly data import 

Sensor 

Data 

Accuracy and 

Repeatability 
Control sites measurements 

After data collection is 

complete 

Distress 

Data 

Accuracy and 

Repeatability 
Control sites measurements Prior to distress rating 

Accuracy and 

Data within 

acceptable range 

Distress rating personnel 

certification 

Once, prior to data 

processing 

Distress year to year 

comparison 
Each distress batch 

Logic 

Data analysis pavement type 

check (pavement specific 

distresses are only rated on 

appropriate pavement types) 

Each processing batch 

b These activities are only conducted for contracted data collection. 

Note: A batch is a group of collected sections or miles that flows through a process at the same 

time. Rather than performing a complete process on each section individually, processes are 

performed on batches of many sections to improve efficiency. Each data batch should typically 

be delivered on a monthly basis or from each collection District. 
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Error Tracking and Resolution Procedure 

All identified issues and errors need to be documented in a QC Log (see Section 7.3.7), including 

the corresponding resolution. Tracking errors and resolutions using the QC Log will help identify 

resolution techniques for known frequently occurring errors. Errors could be systematic or 

random. This procedure is primarily concerned with systematic errors, which should mostly be 

identified through the QC measurements before, during, and after data collection. The QC Log 

needs to be submitted along with every data delivery batch to FDOT. 
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7.3.5 Data Quality Acceptance Criteria 

This chapter recommends procedures and criteria for FDOT acceptance of the data delivered 

either by FDOT staff or by the Data Collection Contractor for both HPMS and PCS purposes. 

FDOT staff shall conduct quality acceptance procedures which include data completeness, range, 

type, consistency, logic, and reasonableness checks. An overview of typical quality acceptance 

activities is provided in Table 69, which includes initial automated data checks, in-depth review of 

flagged data, and review of data distributions for HPMS delivery. 

Furthermore, it is recommended that FDOT staff conduct a 5% sampling and review of the 

pavement performance data in each delivery. A stratified random sampling approach is 

recommended, in which an equal number of samples would be randomly selected from different 

areas of the probability distribution curve for each data element. In this manner, pavement 

sections in poor, fair, and good conditions would be sampled at a uniform rate. The performance 

measures on these samples would be reviewed to be within an acceptable tolerance compared 

to the historic values. This sampling and review process shall only be fully implemented after 

final approval and allocation of corresponding resources. 

The data deliverables shall be submitted on a monthly basis, along with the results of the QC 

measurements for each delivery (QC Log). The SQL database of each delivery batch should not 

be larger than 4 terabytes (TB) to avoid slower data processing speeds caused by larger 

databases. FDOT staff shall review each delivery and report any inconsistencies in a preliminary 

Acceptance Log to the FDOT data collection staff or the Data Collection Contractor’s Project 
Manager for relevant action (correction, re-processing, or re-collection). After any re-submittal, 

FDOT will conduct a second review and issue an updated Acceptance Log, which indicates 

whether that data delivery batch can be accepted by FDOT. For a data delivery batch to be 

accepted by FDOT, it needs to pass all the requirements noted in Table 69. In addition, all the 

QC issues identified during the quality control measurements (QC Log) need to be resolved. 
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Table 69. Recommended Quality Acceptance Procedures and Criteria 

Quality Expectation 

Acceptance 

(Percent 

within the 

Limits) 

Acceptance Testing 

Action if 

Criteria Not 

Met 

Initial Automated Data Checks 

No blanks 100% 
Check for critical cells to not be 

blank 

Correction or 

Re-Collection 

Correct data type and 

format 
100% 

Data type (integer, string, etc.) 

and format check according to 

data dictionary 

Correction 

Data completeness 98% 

Matching FDOT supplied routing 

package to ensure all identified 

routes have been collected if 

possible 

Correction or 

Re-Collection 

Image completeness 98% 

Check every data record to have 

corresponding ROW and 

pavement images 

Re-Collection 

Accurate location 

information 
98% 

GPS coordinates within 

acceptable accuracy compared 

to FDOT values for each section; 

unique GPS coordinates for each 

data record (no duplicates); data 

alignment check 

Re-Collection 

Correct data according to 

surface type 
98% 

Collected data matching 

pavement type (e.g. no faulting 

on flexible pavements, etc.) 

Correction or 

Re-Process 

Individual data fields 

within acceptable range 
98% 

Check individual data values to 

be within acceptable range 

established by FDOT based on 

data measurement method and 

other logic checks 

Re-Collection 

Re-Process 

Combination of data 

fields within acceptable 

range 

95% 

Logic check of related data fields 

(e.g. sum of distresses to match 

section length or area 

Correction or 

Re-Process 

Review Flagged Data 

Reasonable IRI Data 98% 

Flag data with the following 

➢ Collection Speed < 40 

mph 

➢ IRI zero or null values 

➢ IRI value difference > 

30% from left to right 

wheel path 

Review and if 

not justified, 

send for 

Re-Collection 

or 

Re-Process 
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Quality Expectation 

Acceptance 

(Percent 

within the 

Limits) 

Acceptance Testing 

Action if 

Criteria Not 

Met 

Reasonable Rut Depth 

Data 
98% 

Flag data with Rut value 

difference > 30% from left to right 

wheel path 

Review and if 

not justified, 

send for Re-

Collection or 

Re-Process 

Reasonable Faulting 

Data 
98% 

Flag data with Fault value > 1 

inch for any wheel path 

Review and if 

not justified, 

send for Re-

Collection or 

Re-Process 

Reasonable Curve Data 98% 

Check curve data classified in 

categories D, E and F against 

construction plans 

Review and if 

not justified, 

send for Re-

Collection or 

Re-Process 

Review of Data Distribution for HPMS Delivery 

Reasonable Distribution 

of IRI Data 
98% 

Check distribution of IRI data 

according to historical network 

distributions. 

Review and if 

not justified, 

send for Re-

Collection or 

Re-Process 

Reasonable Distribution 

of Rut Depth Data 
98% 

Check distribution of rut depth 

data according to historical 

network distributions. 

Flag for verification if more than 

40% of sections have zero 

rutting. Flag for verification if 

more than 0.00% of sections 

have rutting > 1in. 

Review and if 

not justified, 

send for Re-

Collection or 

Re-Process 

Reasonable Distribution 

of Faulting Data 
98% 

Check distribution of faulting data 

according to historical network 

distributions. 

Flag for verification if more than 

90% of sections have zero 

faulting. Flag for verification if 

more than 0.00% of sections 

have faulting > 1 in. 

Review and if 

not justified, 

send for Re-

Collection or 

Re-Process 
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Quality Expectation 

Acceptance 

(Percent 

within the 

Limits) 

Acceptance Testing 

Action if 

Criteria Not 

Met 

Reasonable Distribution 

of Percent Cracking Data 
98% 

Check distribution of percent 

cracking data according to 

historical network distributions. 

Flag for verification if more than 

90% of sections have zero 

percent cracking. Flag for 

verification if more than 30% of 

sections have percent cracking 

between 0 and 1%. Flag for 

verification if more than 0.00% of 

sections have percent cracking 

more than 54%. 

Review and if 

not justified, 

send for Re-

Collection or 

Re-Process 

5% Random Sampling and Review Checks 

IRI data within 10% of 

historical values 
95% IRI sample data audits 

Re-Collection 

Re-Process 

Rut depth within 0.1 inch 

of historical values 
95% Rut depth sample data audits 

Re-Collection 

Re-Process 

Faulting data within 0.1 

inch of historical values 
95% Faulting sample data audits 

Re-Collection 

Re-Process 

Correct Lane Marking 100% 
Lane marking sample data 

review 

Correction or 

Re-Process 

Correct Joint Location 100% Joint location sample data review 
Correction or 

Re-Process 

Correct Crack Detection 98% 
Flag sections when more than 

20% cracking misdetection 
Re-Process 

Cracking Distress Types 

within 15% of historical 

values 

95% Distress sample data audits 
Re-Collection 

Re-Process 

Non-Cracking Distress 

Types within 25% of 

historical values 

95% Distress sample data audits 
Re-Collection 

Re-Process 

Geometric Properties 

within 15% of historical 

values 

95% 
Geometric properties sample 

data audits 

Re-Collection 

Re-Process 

Quality ROW and 

Pavement Images 
98% 

ROW and pavement sample 

images visual checks 
Re-Collection 
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7.3.6 Quality Assurance Plan 

This chapter covers the periodic quality assurance (QA) procedures to ensure the data collection 

and processing system is producing data conforming to the quality standards and protocols. The 

results of the routine QC measurements and FDOT quality acceptance audits on the produced 

data are fed into the QA procedures. 

Training 

As part of their Quality Control Plan, the Data Collection Contractor validates that the 

corresponding staff are properly trained and certified in maintenance and operation of data 

collection equipment, and operation of the data processing software. In addition, corresponding 

staff need to be trained on the relevant FDOT guidelines. 

Moreover, any FDOT staff who are collecting data or conducting the review and audit of the 

submitted data should also be trained and certified in maintenance and operation of data 

collection equipment, as well as the operation of the data processing software. 

Standard Operating Procedures (SOPs) are key documents that should be frequently updated 

and made available to all relevant staff for training purposes. 

Process Improvement 

As a result of all quality management activities, areas for improvement should be identified in the 

data collection, processing, and quality control procedures. These process improvements should 

be designed to enhance data quality and should be reflected in the updated SOPs. 

The existing agency protocols for collection, processing, and reporting of pavement performance 

data should be updated in line with the corresponding advances in data collection technologies. 

The FDOT staff shall review all the existing protocols, considering their specific objectives, and 

recommend any changes or updates in concert with newer data collection technologies. 
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7.3.7 Quality Reporting Plan 

This chapter covers the documentation of all quality management activities with the objective of 

staff training, identification of gaps, and process improvement. 

QC Log 

A QC Log should be submitted with every data delivery batch either by FDOT staff or the Data 

Collection Contractor. Table 70 shows an example format of this QC Log, which should include 

any exceptions found as a result of the QC activities and a corresponding resolution. 

Table 70. Example QC Log Format 
QC Log 

ID Review Deliverable Location Resolution 

Number Date Reviewed Information 
Findings Resolution 

Date 

12500 7/20/18 
ROW 

Imagery 
US-27 

ROW images 

exhibit water 

spots 

Cleaned 

camera 

windshield 

7/21/18 

Acceptance Log 

The results of the quality review and audit by FDOT staff of each data delivery are documented 

in the Acceptance Log, an example format of which is presented in Table 71. 

Table 71. Example Acceptance Log Format 
Acceptance Log 

ID 

Number 

Review 

Date 

Deliverable 

Reviewed 
Findings Resolution 

Resolution 

Date 

302 8/05/18 

July 18 

Pavement 

Data 

Section 302681 

missing pavement 

images 

Recollect section 

302681 
8/20/18 

QA Log 

Table 72 shows an example format for documenting the process improvements 
identified through various quality management activities. 

Table 72. Example QA Log Format 
QA Log 

ID 

Number 

Corresponding 

QC Log 

Number 

Process 
Identified 

Improvement 

Implementation 

Approach 

Implementation 

Date 

802 12500 

ROW 

Image 

Collection 

Clean camera 

windshield 

after 

Update 

collection 

protocol 

7/27/18 
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QA Log 

ID 

Number 

Corresponding 

QC Log 

Number 

Process 
Identified 

Improvement 

Implementation 

Approach 

Implementation 

Date 

inclement 

weather 

7.3.8 Roles and Responsibilities 

Table 73 identifies the recommended staff categories that should be involved in quality 

management activities and their corresponding responsibilities. In addition, a contingency plan 

needs to be identified to ensure continuous conduct of quality management and process 

improvement. 

Table 73. Recommended Quality Team Roles and Responsibilities 
Team Role Quality Management Responsibilities 

FDOT Project Manager 

➢ Set quality standards, acceptance criteria, and 

corrective actions 

➢ Review and approve Contractor’s Quality Control 
Plan 

➢ Review Contractor’s equipment and training 
certifications 

➢ Review weekly updates from Contractor’s PM 
➢ Review Contractor’s QC Log and approve 

resolution of quality issues 

➢ Supervise acceptance checks and finalize 

Acceptance Log 

➢ Submit Acceptance Log with feedback to 

Contractor’s PM 
➢ Monitor resolution of quality exceptions and 

submit the re-delivery Acceptance Log to 

Contractor’s PM 
➢ Prepare quality management report 

➢ Recommend improvements to quality processes 

FDOT Quality Management 

Engineer 

➢ Supervise manual measurements of control 

sites, establish reference values, and maintain its 

records 

➢ Review Contractor’s QC Plan 
➢ Learn Contractor’s data viewing software 
➢ Approve the entry control site report 

➢ Review monthly control site reports 

➢ Approve the exit control site report 

➢ Conduct data QC for in-house collection 
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Team Role Quality Management Responsibilities 

➢ Review data delivery report and issue resolution 

method in the QC Log 

➢ Conduct quality acceptance checks on each data 

delivery batch 

➢ Summarize acceptance check results and initiate 

Acceptance Log 

➢ Review Contractor response and conduct 

corresponding acceptance checks on re-delivery 

➢ Update Acceptance Log 

➢ Recommend improvements to quality processes 

FDOT In-House Data Collection 

Supervisor 

➢ Establish control and verification sites 

➢ Maintain and calibrate in-house equipment 

➢ Train and certify in-house equipment operators 

➢ Conduct QC activities before and during in-house 

collection 

➢ Recommend improvements to quality processes 

Data Collection Contractor 

Project Manager 

➢ Submit Quality Control Plan 

➢ Ensure staff training and certification 

➢ Review vehicle configuration and calibration 

reports 

➢ Coordinate and submit vehicle certification at 

third party location 

➢ Coordinate first control site visit (entry) and 

report results 

➢ Review routing plan and resolve discrepancy 

with FDOT inventory 

➢ Review daily/weekly/monthly equipment checks 

➢ Submit weekly verification site checks along with 

a summary of daily checks 

➢ Communicate weekly with FDOT PM to provide 

status and schedule update 

➢ Submit monthly control site checks 

➢ Diagnose and resolve any issues from 

daily/weekly/monthly checks 

➢ Review data QC checks and diagnose issues in 

QC Log 

➢ Ensure QC issues are addressed 

➢ Submit monthly data delivery batch along with 

QC Log 

➢ Review Acceptance Log feedback from FDOT 

PM 
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Team Role Quality Management Responsibilities 

➢ Diagnose and address issues with each delivery 

and resubmit along with QC and Acceptance 

Logs 

➢ Coordinate last control site visit (exit) and report 

results 

➢ Conduct lessons learned meeting and identify 

process improvements to be documented in QA 

Log 

Vendor Dispute Resolution 

The FDOT PM and Data Collection Contractor’s PM shall work to minimize any conflicts on the 
front end by clearly defining the project goals, deliverables (contract, scope, schedule, and 

budget), quality standards, roles, and responsibilities during project initiation. However, if any 

issues or discrepancies should arise during the project, the following are the recommended steps 

to be undertaken: 

1. The issue or disagreement shall be clearly identified by both the FDOT PM and Data 

Collection Contractor’s PM. 

2. A review of the project contract and initial project plan shall be conducted by the Data 

Collection Contractor’s PM and reviewed by the FDOT PM. If the contract or project plan 

clearly addresses the issue, the Data Collection Contractor’s PM and the FDOT PM will 

both be required to acknowledge the fact before proceeding to the next step. 

3. The first tier of resolution options to be explored are those that do not negatively impact 

the project contract, budget, or schedule. The second tier of resolution options to be 

explored are those that may impact schedule, contract and/or budgets. All resolution 

options will be reviewed and discussed to ensure all parties are clear on each option’s 

impact on the project deliverables, timelines, and budget. 

4. After all resolution options have been presented and all FDOT questions have been 

answered to their satisfaction, the FDOT PM shall commit to an option that resolves the 

issue with minimal impact. Upon identification of an acceptable resolution option, the Data 

Collection Contractor’s PM should adjust the project plan to reflect the changes. 
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7.4 Recommendations for Further Implementation 

Task 7 of this research project involved technical support to implement the validated automated 

distress identification applications for both rigid and flexible pavements into the annual Pavement 

Condition Survey (PCS) process. At the time of completion of this research project, FDOT was 

yet to purchase a new vehicle for data collection. However, FDOT commissioned collection of 

LCMS data on the Florida Interstate Highway System. According to the observations during 

software implementation, the following are the recommendations for further implementation: 

1. For the historical LRIS data from the FDOT MPSV, the workflow in Appendix A can be 

used to transfer the data to Vision. For FDOT contracted data, Fugro staff have developed 

and tested the workflow in Appendix B, which can be used to transfer the LCMS data into 

Vision. The workflow in Appendix B includes a user interface that facilitates the execution 

of the SQL code to transfer the data. 

2. It is recommended to use FRPDA and FFPDA on a larger database of highway sections 

to determine if there are any systematic errors in software results. It is also recommended 

to use the semi-automated rating (manual rating of pavement images) to QC the results 

of FRPDA and FFPDA and potentially discover any remaining systematic errors. 

3. The semi-automated rating method should also be used to determine rigid and flexible 

pavement areas affected by non-cracking distress types. The developed software can 

automatically add these semi-automated rating results to the automated cracking results 

of FFPDA and provide the final combined condition index for every pavement section. The 

process of combing semi-automated rating results with automated cracking results should 

be validated before implementation. 

4. Using a larger database of representative test sections, compare the results of FRPDA 

and FFPDA to the manual windshield Crack Ratings to determine a calibration equation 

between the two methodologies. This equation can be used to transform the FFPDA 

cracking results to a similar scale as the manual windshield results to ensure smooth 

pavement deterioration trends before and after implementation of an automated approach. 

In the long term, the deduct values for the calculation of Crack Rating might need to be 

revisited as a result of this exercise. 

5. It is recommended that the FDOT Rigid Pavement Condition Survey Handbook and 

Flexible Pavement Condition Survey Handbook be reviewed considering the capabilities 

of the automated software. These guidelines were developed for visual windshield 

surveys and need to be evaluated and updated as necessary. It is recommended that the 

distress types, their definitions, and measurement method be reviewed in meetings with 

the data stakeholders such as the pavement management staff. 

6. The recommended quality management program should be reviewed and evaluated by 

FDOT staff to be eventually implemented within the annual PCS process. 
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CHAPTER 8 – TECHNOLOGY NEEDS AND GAPS ASSESSMENT 

In Task 8 of this research project, the project team reviewed the results and findings from the 

tasks completed under Phase I and Phase II to identify gaps in functionality of the FDOT data 

collection hardware and the automated computer applications for automated crack identification 

and quantification on flexible and rigid pavements to meet FDOT’s short- and long-term needs. 

The team also identified the necessary support resources (staffing, hardware and software) to 

support these needs. The team developed recommendations to bridge these gaps in the form of 

a suggested technical solution along with an estimated level of effort and time schedule. 

This document is organized into five sections. Following this introduction, Section 8.1 summarizes 

the identified gaps in functionality of the FDOT data collection hardware and the recommended 

features for the new FDOT data collection vehicle. Section 8.2 describes the remaining gaps in 

the FDOT Rigid Pavement Distress Application (FRPDA) to meet the FDOT needs and the 

corresponding recommended remedies. Section 8.3 lists the remaining gaps in the FDOT Flexible 

Pavement Distress Application (FFPDA) and the pertinent solutions. Finally, Section 8.4 

summarizes the key remaining gaps and their corresponding solutions for future data collection 

and processing activities. 

8.1 Remaining Gaps in the Data Collection Equipment 

This section of the report describes the remaining gaps in the FDOT data collection equipment 

and some recommended solutions to bridge those gaps. Some of these gaps were identified 

during the application of collected data and images in Phase I of this research project to detect 

and quantify surface cracking on rigid pavements. During Task 4 of Phase II, several important 

limitations of the existing equipment in detection and quantification of cracking on flexible 

pavements were also identified. 

8.1.1 Hardware Gaps Identified in Phase I 

The sample data for identification and quantification of cracking on rigid pavements was collected 

using FDOT multi-purpose survey vehicle (MPSV), which is equipped with the Laser Road 

Imaging System (LRIS). In Task 2, Fugro staff conducted an investigation to determine whether 

the collected two-dimensional (2D) pavement images are of acceptable quality for crack detection 

and how FDOT can potentially measure various image quality indicators in future. This 

investigation concluded that the LRIS data met the requirements for pavement images to be used 

in crack detection according to the AASHTO provisional protocol that later became the AASHTO 

Standard Designation R 86-18. However, as noted in the Task 2 report, the requirements in this 

standard are dependent on the crack detection algorithms that are used to evaluate whether the 

minimum amount of cracking with specific width could be detected, or whether false positives are 

avoided. 

It was found that the LRIS images and data were of acceptable quality for crack detection on rigid 

pavements if certain quality control procedures were followed. As a result, Fugro developed a 

Hardware Maintenance Protocol to be used by FDOT staff to ensure long term image quality 

and consistency. This protocol was submitted as an appendix to the Task 2 Report. 
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When considering other non-cracking types of rigid pavement distress such as surface 

deterioration, patching, and spalling, having access to the 3D depth data can provide useful 

information. 

8.1.2 Hardware Gaps Identified in Phase II 

In Task 4 of Phase II, the research team analyzed the viability of using 2D LRIS images to detect, 

quantify and classify cracks on flexible pavements. The 2D LRIS technology was found to have 

the following potentials: 

3. The LRIS equipment is more affordable than the three-dimensional (3D) equipment. 

4. The run-to-run repeatability of crack detection from 2D images is acceptable. 

However, there are several important limitations of the 2D LRIS technology: 

5. The section-to-section consistency of crack detection from 2D images was 39% which is 

very low. 

6. The accuracy of crack detection from 2D images was very low, as evidenced by the crack 

detection algorithm only detecting 18 percent of the cracks that were in the reference 

survey. Also, only 25 percent of the cracks detected from the 2D images were actually 

present in the reference survey. 

When the flexible pavement surface is damp, the area around the crack edges become darker in 

the 2D images and as a result, the crack detection algorithms result in exaggerated crack width 

measurements based on pixel intensities. This issue negatively impacts severity rating of cracking 

distress types. 

Since FDOT did not own 3D imaging equipment, the sample data for identification and 

quantification of distresses for flexible pavements was collected using a Fugro Automatic 

Roadway Analyzer (ARAN) vehicle equipped with the 3D Laser Crack Measurement System 

(LCMS). At the time of the conclusion of this research project, FDOT had not yet purchased a 3D 

data collection vehicle. However, FDOT had contracted the collection of the pavement condition 

data on Florida Interstate Highways to a Data Collection Contractor who operated an LCMS 

vehicle. 

Based on a systematic evaluation framework and pertinent success metrics, it was found that the 

3D technology is superior to the 2D technology in the following areas: 

1. 67% increase in the crack detection accuracy, which translates into 71% more in 

percentage of detected crack length from the ground truth, and 50% more in percentage 

of the correctly detected cracks. 

2. 83% increase in accuracy in identifying wheel path cracking (CW) and 56% more accuracy 

in identifying cracking outside the wheel paths (CO). 

3. 6% more run-to-run repeatability in identifying wheel path cracking (CW) and 10% more 

repeatability in identifying cracking outside the wheel paths (CO). 

4. 83% more section-to-section consistency in identifying wheel path cracking (CW) and 51% 

more consistency in identifying cracks outside the wheel paths (CO). 
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5. 6 seconds faster in crack detection per image frame. 

The following advantages are based on thousands of miles collected with 2D LRIS and 3D LCMS 

technologies: 

1. The 3D technology is less prone to crack width exaggeration on damp pavement surfaces 

and thereby produces more robust severity rating. 

2. The 3D technology provides an area-based surface macro-texture measurement which 

can potentially be used for identifying raveling. Since these measurements are area-

based, they have shown a significantly higher run-to-run repeatability compared to the 

macro-texture measurements with point laser sensors, which are line based and sensitive 

to vehicle wander. 

The 3D technology was used for automated identification and quantification of flexible pavement 

distresses in Phase II of this research project. Detecting pavement surface cracks and identifying 

the corresponding distress with superior accuracy, consistency, repeatability, and efficiency of the 

3D technology. 

8.1.3 Recommended Data Collection Hardware Specifications 

This section presents an overview of key components the research team recommend for the next 

FDOT data collection vehicle. These specifications are according to the experience of Fugro in 

data collection and processing, and in line with the latest available and proven technology at the 

time of this research project. 

Requirements for the Data Collection Vehicle Integrator 

The integrated data collection system shall be a new, currently advertised production model. This 

model or line of equipment and post-processing software shall specifically have at least five years 

or more of prior assembly, operational, service support, and maintenance experience in North 

America. A reference list, with complete names, addresses, and telephone numbers of at least 

five (5) different active State agencies in the United States who purchased directly from the 

manufacturer and who own the same Model of the manufacturer's equipment, including their 

relevant representative(s) in the United States, shall be provided by the manufacturer to ascertain 

quality assurance, ensure non-prototype integrity of equipment model, and to confirm the 

capacity of the manufacturer to deliver and support the equipment exactly to these specifications. 

The provider company shall offer a multi-year support service agreement with the following 

components: 

1. Frequent training and certification of FDOT staff designated for vehicle operation and 

equipment maintenance 

2. Support of FDOT in setup of equipment calibration and control sites 

3. Annual visit to FDOT offices for equipment maintenance and calibration certification 

4. On-demand customer support services, including online remote access and diagnostics 

for resolution of any potential issues 
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Requirements for the Vehicle 

A Mercedes made Sprinter model, or a Ford made Transit 350 model are the recommended 

chassis that would allow for the required equipment to be seamlessly integrated. Advantages of 

using a Mercedes Sprinter are the superior line of sight via windows for the driver, better 

suspension system, longer lasting chassis. After including the preferred options, the two models 

are similar in pricing. However, dependent on the location, Mercedes maintenance costs might 

be higher than that of Ford. 

It is recommended to upgrade the alternator so that the invertor can be used for generating 

additional power. It is important in the mechanical drawings to ensure the weight and center of 

gravity is in adherence with corresponding DOT design requirements. Auto Start and Stop 

capability is also recommended. 

Requirements for the Data Collection Equipment on the Vehicle 

The System shall meet or exceed the specifications set forth by the following industry standards: 

• The Inertial Profiling System for measuring the longitudinal profile: 

o The minimum precision and bias requirements for Equipment Classification 1 in 

accordance with ASTM E950M, Standard Test Method for Measuring the 

Longitudinal Profile of Traveled Surfaces with an Accelerometer Established 

Inertial Profiling Reference 

o ASTM E2560, Standard Specification for Data Format for pavement Profile. 

o AASHTO M328-10, Standard Specification for Inertial Profiler. 

o AASHTO R56-10, Certification of Inertial Profiling Systems. 

o AASHTO R36-17, Standard Practice for Evaluating Faulting of Concrete 

Pavements. 

• Pavement Imaging System for crack detection and measuring the transverse profile: 

o A 3D system such as the Pavemetrics LCMS is required. 

o AASHTO R86-18, Standard Practice for Collecting Images of Pavement Surfaces 

for Distress Detection. 

o AASHTO R88-18, Standard Practice for Collecting the Transverse Pavement 

Profile. 

• High Definition (HD) cameras for right-of-way (ROW) images: 

o HD resolution. 

o Adequate shutter speed for crisp images. 

o Automated adjustment to abrupt changes in lighting condition, e.g. under tunnels 

and bridges. 
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Requirements for the Integration System 

The integration system needs to be designed with state-of-the-practice features: Tight and shock 

resistant computer rack enclosures, easy access to electronics and connections, detailed wiring 

and electronics schematics and on-board labeling for ease in troubleshooting by FDOT 

technicians, all cabling and connections hidden in flooring and paneling providing a clean and 

safe internal operational environment, redundant solid state hard drive storage for extended data 

collection length before having to change hard drives, hot swappable hard drives, National 

Electrical Manufacturers Association (NEMA) rating of all electronics, computers, etc. for shock 

and vibrations typical of a moving vehicle. 

The system needs to be designed so that the maintenance is available to be completed by State 

Staff. Each wire and connection must be properly labeled, and schematics provided to ensure 

that cabling and connections as well as other components are easily identifiable and swappable. 

The system requires heat sinking and shock mounting enclosures. Fully independent air 

conditioning for the computer system is recommended. 

Requirements for Data Collection and Processing Software 

The following are the recommended features for the data collection software onboard the vehicle: 

• Real Time vehicle route planning and mapping. 

• Auto-sectioning of data collected in the vehicle with an on-board GIS base map. 

• Data verification tools for in-field operator use, e.g. missing element finder, duplicate 

element, GPS gap with data checks, image count and resolution detection based on 

preset storage parameters. 

• On-line help menus and error detection help. 

• Remote Wi-Fi access for troubleshooting. 

• Verbal and keyboard “event” marking for operator selection of events, e.g. speed limit 
low/high thresholds, etc. 

• All data sets are stored in an SQL database that allows for easy export to user defined 

reporting and uploading into PMS or other software programs. Utilizing this SQL database 

avoids challenges associated with using multiple data files for each road segment (e.g. 

one for DMI, one for GPS, one for IRI, one for rutting, etc.). 

The following are the recommended features for the data processing software in the office: 

• All data should be uploaded by batch and into a SQL database. 

• Upload control into single synchronized software, which then allows for segmenting, 

processing, analysis, and reporting all from one location. 

• Modular design and scalable product. 

• Designate road zones to meet HPMS and FDOT requirements. 

• Automated lane detection from pavement striping. 
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• Automated joint detection and slab assignment. 

• Automated crack detection. 

• Automated crack classification and rating according to HPMS and FDOT requirements. 

• User defined roughness and rutting processing and reporting tools: all raw data is stored 

for every road segment allowing for processing of ride and rut statistics using multiple 

processing and reporting parameters. So, the single set of data can be used for network 

level, project level, and research level analysis. 

• Stitched together panoramic view of multiple distinct camera feeds. 

• Fully synchronized view of the collection route map, raw and processed data tables, 

charts, graphs, filterable by any field in the data set 

• Batch data processing allows the user to reprocess each data element separately, e.g. 

reprocess for longitudinal profile and not have to reprocess for distress. Batch processing 

should be available to process one or multiple sections. 

• Built-in reports for specific standard requirements such as the FHWA HPMS reporting and 

customizable reports as required by the end user. 

• Ability to share data through email links, or location reference for review by others. 

Requirements for Data Cloud Storage and Online Sharing 

The following are the recommended requirements for data cloud storage and online sharing: 

• Cloud storage and web access of data, reports, mapping, etc. A professional provider with 

established data safety (multiple backups) and security (following standard protocols) 

background should be used. An example is the Amazon Web Services (AWS). 

• Access can be given to any user via a web browser, without the need to local software 

installation or local PC minimum hardware/software specifications. 

• Simultaneous and linked data viewing from plots, tables, and map presentations of the 

data allowing the user to view data streamed from any given one point of a roadway to 

any other given point on the roadway. This feature also allows the user to perform a “one 
click” view on a map of a PMS section and automatically view the tabled data, plot of the 
data, along with synchronized photo-logging images collected for the point selected. 

• Ability to filter on locators – e.g. District, route, route number, intersection description, 

milepost, etc. 

• Ability to share data via web links, ability to share location of specific events or details with 

other users. 

• Year over year data review and synchronization of images and data using precise GPS 

data. Side by side review for engineers and analysts to explain trend dynamics, e.g. does 

the improvement in pavement condition from one year to the other correspond with a 

treatment. 
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• Use image thumbnails to increase playback speed over slower connections. Full 

resolution image should appear when playback is stopped. 

• Offset the distress categories and marking so users can see the pavement defects for 

quality control. 

• Reporting functions and data export capabilities. 

Estimated Budget 

Based on latest similar vehicles, the team estimates that FDOT should budget for approximately 

$900,000.00 to $1,250,000.00 for a data collection vehicle with the aforementioned requirements 

to be purchased in 2019. This includes the cost of purchasing the vehicle, the equipment that is 

integrated on the vehicle, the corresponding data collection and processing software, cloud data 

storage and online sharing platform, and a 5-year support service agreement. Of course, prices 

are dependent on a variety of factors such as availability of vehicle and equipment parts, 

geographic location of assembly, international trade agreements, etc. and the provided ballpark 

estimate is for general information only. 

8.2 Remaining Gaps in the FDOT Rigid Pavement Distress 

Application (FRPDA) 

There are several gaps that were identified after the development and evaluation of the FRPDA 

in Task 3, which are listed in Table 74 along with a corresponding recommended solution. 

Table 74. Remaining Gaps in FRPDA and Recommended Solutions 
Gap 

No. 
Remaining Gap Description Recommended Solution 

1 
Very straight longitudinal cracks might be rated 

as longitudinal joints 
Implement a data collection protocol 

to avoid lane stripes in the middle of 

images; Manual QC and intervention; 

these situations are not frequent 
2 

Partially faded, or non-straight and jagged 

longitudinal lane stripes in the middle of the 

lane might be rated as longitudinal cracks 

3 

Skewed joints cannot be detected (even 

though they are not the predominant design 

anymore) 

Manual QC and intervention; these 

situations are not frequent 

4 
Some run to run variation (on different images 

of same section) 

Implement a data collection protocol 

to avoid significant wander and 

variation between images 

5 Shattered slabs are not identified successfully 

Manual rating of images in the short 

term to build training database; use 

machine learning in the long-term 

6 
Not identifying spalling of crack and joint edges 

but has low deduct values 

Manual rating of images in the short 

term to build training database; 
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7 
Not identifying patching but has low deduct 

values 

collect 3D data and use machine 

learning in the long-term 

8 
Not identifying surface deterioration but has 

low deduct values 

9 
Not identifying pumping but it is an infrequent 

distress 

10 Not identifying joint condition 

The identified gaps can be classified into the following categories: 

1. Gaps that are infrequent issues; these gaps can be addressed via proper quality control 

after data collection or quality assurance precautions before and during collection. Gaps 

number 1 through 4, and number 9 in Table 74 are of this category. 

2. Gaps that are frequent issues but not significantly impacting the survey results; these gaps 

can be addressed with proper quality control in the short term; machine learning can be 

used in the long term, but it might not be worth the effort. Gaps number 6 through 8 in 

Table 74 are of this category. 

3. Gaps that are frequent and have significant impacts on the survey results; for these gaps, 

manual rating of pavement images is strongly recommended to build a training database 

for machine learning algorithms. Gaps number 5 and 10 in Table 74 are of this category. 

8.2.1 Recommended Development Initiatives and Level of Effort 

In this section of the report, some recommendations are listed for the gaps that were categorized 

as being frequent issues (categories 2 and 3 above). These development initiatives and their 

estimated crude level of effort are listed in Table 75. 

Table 75. Recommended Development Initiatives for FRPDA and the Level of Effort 
Gap 

No. 

Remaining Gap 

Description 
Development Initiative 

Level of 

Effort 

5 Shattered slabs 

Identify representative test sections that have an 

adequate number of shattered slabs and cracked 

slabs that are not shattered 

40 staff-hours 

Manual rating of images to build training 

database 
960 staff-hours 

Train and test machine learning algorithm 320 staff-hours 

Identify representative test sections that have an 

adequate number of spalled cracks/joints 
40 staff-hours 

6 
Spalling of cracks 

and joints 

Manual rating of images to build training 

database; 3D spalling depth data required for 

identification and severity levels 

960 staff-hours 

Train and test machine learning algorithm 320 staff-hours 
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7 Patching 

Identify representative test sections that have an 

adequate amount of patching 
40 staff-hours 

Manual rating of images to build training 

database; 3D texture data required 
960 staff-hours 

Train and test machine learning algorithm 320 staff-hours 

8 
Surface 

deterioration 

Identify representative test sections that have an 

adequate amount of surface deterioration 
40 staff-hours 

Manual rating of images to build training 

database; 3D texture data required 
960 staff-hours 

Train and test machine learning algorithm 320 staff-hours 

9 Pumping 

Identify representative test sections that have an 

adequate amount of pumping (challenging) 
40 staff-hours 

Manual rating of images to build training 

database 
960 staff-hours 

Train and test machine learning algorithm 320 staff-hours 

10 Joint condition 

Identify representative test sections that have an 

adequate number of sealed, non-sealed, and 

partially sealed joints 

40 staff-hours 

Manual rating of images to build training 

database; 3D depth data required 
960 staff-hours 

Train and test machine learning algorithm 320 staff-hours 

Using a 3D imaging technology can significantly improve the results of crack detection and crack 

classification. In the absence of 3D data, some distress types such as patching and spalling 

cannot easily be detected. Spalling of cracks and joints are more pronounced in 3D images, 

because the technology darkens the areas that are lower than the nominal pavement surface. In 

addition, the 3D texture data can assist in recognizing the changes in pavement surface type, 

which can potentially automate identification of patched areas. It is important to determine the 

extent of these gaps and their individual relative impact on the overall pavement condition rating. 

For most of these remaining gaps, it is challenging for the computer software to identify these 

distress types based on logical algorithms. Therefore, it is recommended to build a database of 

manually rated images to be used in training of machine learning algorithms. The first step is to 

identify representative test sections that have an adequate amount of the specific distress, and 

instances that can be false positives (e.g. slabs broken into three pieces can be falsely identified 

as shattered slabs). This could be challenging in the case of infrequent distress types such as 

pumping. FDOT staff need to determine the viability of such development initiatives for infrequent 

distress types in terms of the return on the invested level of effort. 

The second step is to develop the training database. One component is the automatically 

collected data such as the pixel intensities and 3D depth and texture data. The other component 

is the human identification of distress types, extent, and severity levels corresponding to the 

automatically collected data in specific locations. This requires the most significant level of effort 

in the recommended solutions, because the machine learning results can only be as good as the 
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quality of the training data. It is very important that multiple raters be trained on the distress 

classification and rating guidelines, so that they would be able to cross-check each other’s work 
for the best quality. An independent quality auditor is recommended to check random blind 

samples of data for adherence to the corresponding guidelines. 

The provided level of effort is a ball park estimate for each development effort in terms of staff 

hours. The assumption is that one staff would be assigned to look for representative test sections 

for a week (40 hours). Three staff members would be assigned for the manual rating of the images 

(two manual raters and one quality auditor) for two months (960 hours). Finally, two software 

developers (one for development and another for continuous testing) would be working on the 

training and test initiatives for four weeks (320 hours). Ample computing time allocated for the 

development effort depending on the size of the training database. Some of these initiatives can 

be conducted in parallel if the same test sections can be representative sections for multiple 

distress types. 

8.3 Remaining Gaps in the FDOT Flexible Pavement Distress 

Application (FFPDA) 

Several gaps were identified after the development and evaluation of the FFPDA in Task 6, which 

are listed in Table 76 along with a corresponding recommended solution. 

Table 76. Remaining Gaps in FFPDA and Recommended Solutions 
Gap 

No. 
Remaining Gap Description Recommended Solution 

1 

Partially faded, or non-straight and 

jagged longitudinal lane stripes might 

be rated as longitudinal cracks 

Manual QC and intervention; these 

situations are not frequent 

2 
Block cracks are not differentiated 

from other crack types 

Manual QC and intervention; these 

situations are not frequent, and it does 

not impact the Crack Rating 

3 Not identifying raveling 

Manual rating of images in the short term 

to build training database; collect 3D 

data and relate macrotexture to raveling 

in the long-term 

4 Not identifying patching 

Manual rating of images in the short term 

to build training database, collect 3D 

data and use machine learning in the 

long-term 

The identified gaps can be classified into the following categories: 
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1. Gaps that are infrequent issues; these gaps can be addressed via proper quality control 

after data collection or quality assurance precautions before and during collection. Gap 

number 1 in Table 76 is of this category. 

2. Gaps that are frequent issues but not significantly impacting the survey results; these gaps 

can be addressed with proper quality control in the short term; machine learning can be 

used in the long term, but it might not be worth the effort. Gap number 2 in Table 76 is of 

this category. 

3. Gaps that are frequent and have significant impacts on the survey results; for these gaps, 

manual rating of pavement images is strongly recommended to build a training database 

for machine learning algorithms. Gap numbers 3 and 4 in Table 76 are of this category. 
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8.3.1 Recommended Development Initiatives and Level of Effort 

In this section of the report, some recommendations are listed for the gaps that were categorized 

as being frequent issues (categories 2 and 3 above). These development initiatives and their 

estimated crude level of effort are listed in Table 77. 

Table 77. Recommended Development Initiatives for FRPDA and the Level of Effort 
Gap 

No. 

Remaining Gap 

Description 
Development Initiative 

Level of 

Effort 

Identify representative test sections that have an 

adequate amount of block cracking, and 

longitudinal/transverse cracks (challenging) 

40 staff-hours 

2 Block cracks Manual rating of images to build training 

database 

960 staff-

hours 

Train and test machine learning algorithm 
320 staff-

hours 

Identify representative test sections that have an 

adequate amount of raveling, and open graded 

surfaces that could be false positives 

40 staff-hours 

3 Raveling 
Manual rating of images to build training 

database; 3D texture data required for 

identification and severity levels 

960 staff-

hours 

Train and test machine learning algorithm 
320 staff-

hours 

Identify representative test sections that have an 

adequate amount of patching 
40 staff-hours 

4 Patching 
Manual rating of images to build training 

database; 3D texture data required 

960 staff-

hours 

Train and test machine learning algorithm 
320 staff-

hours 

The 3D technology provides an area-based surface macro-texture measurement which can 

potentially be used for identifying raveling. Since these measurements are area-based, they have 

shown a significantly higher run-to-run repeatability compared to macro-texture measurements 

with point laser sensors, which are line based and sensitive to vehicle wander. These robust 3D 

texture measurements can be used to identify changes in pavement surface type, areas of 

raveling, and quality control of open graded friction courses or chip seal surfaces. The 

Pavemetrics LCMS processor provides the texture values and a corresponding Raveling Index 

which is directly proportional to mean texture depth (MPD). However, this Raveling Index has not 

been calibrated to manual ratings of surface raveling and therefore a high Raveling Index might 

just be an indicator of open graded friction courses or chip seal surfaces. There is a need to 

explore the relative values of MPD and root mean square (RMS) of texture between the wheel 

paths and adjacent areas to see whether the relative difference in texture can be correlated with 

manual rating of raveling areas. In addition, 3D texture data can assist in recognizing changes in 

pavement surface type, which can potentially automate identification of patched areas. 
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For most of these gaps, it is challenging for the computer software to identify these distress types 

based on logical algorithms. Therefore, it is recommended to build a database of manually rated 

images to be used in training of machine learning algorithms. The first step is to identify 

representative test sections that have an adequate amount of the specific distress, and instances 

that can be false positives (e.g. combinations of transverse and longitudinal cracks can be falsely 

identified as block cracking). This could be challenging in the case of infrequent distress types 

such as block cracking. FDOT staff need to determine the viability of such development initiatives 

for infrequent distress types in terms of the return on the invested level of effort. 

The second step is to develop the training database. One component is the automatically 

collected data such as the pixel intensities and 3D depth and texture data. The other component 

is the human identification of distress types, extent, and severity levels corresponding to the 

automatically collected data in specific locations. This requires the most significant level of effort 

in the recommended solutions, because the machine learning results can only be as good as the 

quality of the training data. It is very important that multiple raters be trained on the distress 

classification and rating guidelines, so that they would be able to cross-check each other’s work 
for the best quality. An independent quality auditor is recommended to check random blind 

samples of data for adherence to the corresponding guidelines. 

The provided level of effort is a ball park estimate for each development effort in terms of staff 

hours. The assumption is that one staff would be assigned to look for representative test sections 

for a week (40 hours). Three staff members would be assigned for the manual rating of the images 

(two manual raters and one quality auditor) for two months (960 hours). Finally, two software 

developers (one for development and another for continuous testing) would be working on the 

training and test initiatives for four weeks (320 hours). There should be ample computing time 

allocated for the development effort depending on the size of the training database. Some of these 

initiatives can be conducted in parallel if the same test sections can be representative sections 

for multiple distress types. 
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8.4 Summary of Key Remaining Gaps and Pertinent Solutions 

Task 8 of this research project involved identification of the remaining gaps and pertinent solutions 

for the automated distress identification applications for both rigid and flexible pavements. The 

research team identified the following as the key software gaps that are both frequent issues and 

have a significant impact on the distress survey results: 

1. FRPDA key gaps and recommended solutions 

a. Shattered slabs: use machine learning trained based on the manual ratings to 

differentiate cracked slabs that are broken into four or more pieces. 

b. Patching: use machine learning to relate the manual rating of patching to the 

texture and possibly intensity of pavement areas. 

c. Joint condition: use machine learning to relate the manual rating of joint conditions 

to the depth of joints measured with 3D technology. 

2. FFPDA key gaps and recommended solutions 

a. Raveling: use machine learning to relate the manual rating of raveling to the 

difference in texture between wheel paths and areas outside the wheel paths. 

b. Patching: use machine learning to relate the manual rating of patching to the 

texture and possibly intensity of pavement areas. 

It is recommended that the FDOT Rigid Pavement Condition Survey Handbook and Flexible 

Pavement Condition Survey Handbook be reviewed considering the capabilities of the automated 

software and the requirements of data stakeholders. These guidelines were developed for visual 

windshield surveys and need to be evaluated and updated if necessary. It is recommended that 

the distress types, their definitions, and measurement method be reviewed in meetings with the 

data stakeholders such as the pavement management staff. This evaluation needs to be 

conducted before any future development initiatives are considered for addressing the gaps. 
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A. RECOMMENDED PROTOCOL FOR FDOT LRIS HARDWARE 
MAINTENANCE 

Fugro staff conducted an investigation to determine whether the collected pavement 
images are of acceptable quality for crack detection and how FDOT can potentially 
measure various image quality indicators in future. As a result of this study, Fugro 
developed a hardware maintenance protocol to be used by FDOT staff in order to 
ensure long term image quality and consistency. 

The equipment integrator (International Cybernetics Corporation), the LRIS vendor 
(Pavemetrics Systems), and the LRIS manufacturer (INO) should provide corresponding 
guidelines for maintenance and calibration of the LRIS. According to Pavemetrics 
guidelines, the overall system maintenance and recalibration is recommended once a 
year. 

NOTE: Please carefully review all the safety precautions provided by the equipment 
vendor to avoid fire or personal injury. 

Fugro is NOT responsible for providing such guidelines and their application. The 
following are general recommendations by Fugro staff based on their experience with 
the LRIS system. 

A.1 General Image Properties 

The typical state of the practice regarding these image properties is a subjective 
evaluation by an experienced human interpreter. 

A.1.1 Resolution: no need for checks 

The FDOT LRIS images have about 4,044 pixels, which is deemed as adequate for 
crack detection. The produced image resolution is NOT expected to change over time. 
Therefore, there is no need for frequent control. 

A.1.2 Exposure: Check and Calibrate Annually 

Adequate level of exposure is a very subjective matter and typically it is evaluated by an 
experienced engineer/technician. While executing the INO calibration procedure for 
LRIS (the application RoadCrack.exe displayed in the below screen capture), the 
calibration software will try to adjust pixel coefficients based on the non-uniformity found 
in the reference image, and when the expert is satisfied with the image displayed in the 
graphical interface, they should press Stop. 
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Figure 133. Calibration dialog box. 

The following steps should be conducted once every year: 

1. Start the application RoadCrack.exe and initialize both sensors (keep it simple, 
don't use the external trigger check box) 

2. Set the operation mode to UnCalibrated 

3. Start the acquisition and grab some images in Uncalibrated mode. Ideally, the 
calibration should be done using real road images, otherwise it is difficult to find a 
surface that has the same reflective properties as the pavement. The calibration 
uses the last uncalibrated image that has been grabbed and try to adjust the per 
pixel coefficients based on that image. The images used for calibration should 
not contain any defects like large cracks, shoulders, drop-off, marking, etc... 
They should also be acquired on a road section that is as uniform as possible. 
Finally, it is also better to use images acquired while the vehicle is moving (could 
be moving slow), this gives a more representative intensity profile vector (small 
defects are averaged).  Remember that the uncalibrated image is used as a 
reference, and the calibration software will try to adjust pixel coefficients based 
on the non-uniformity found in that image. 

4. When you are ready to calibrate, that is when you are satisfied with the image 
displayed in the graphical interface, you press Stop. 
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5. Then, you choose Calibrate Left/Right camera from the camera menu. The 
average intensity profile will be computed, and another window will be called. 
The average intensity profile will then be displayed in the new window. 

6. Before popping up the new window, the software will ask you to save the 
reference image. It is a good idea to save that image as a future reference. 

7. Drag and drop the blue cursors so that most of the average intensity profile is 
within the two cursors (see the BlueCursor.jpg image). 

8. Press on Filter Intensity vector, and then Calibrate Now. This process should 
take about two minutes. This is the time to download the coefficients into 
camera's memory. Once it is done, you will be asked to save the resulting 
coefficients. It could be a good idea to save them for future reference. (tip: before 
pushing Calibrate now, you can also try changing the size of the filtering kernel. 
Edit the kernel size and press Enter. This would result in a more or less smooth 
profile. We may want to try using a larger kernel size (smoother profile)). 

9. When it is done, close that window and return to the main interface. 

10.At this step, you can check the result of the calibration by setting the Operation 
Mode to Calibrated and grab some images 

NOTE: When switching from calibrated to uncalibrated, the image may become almost 
totally black. Changing the gains will correct that problem (set new gains and press 
enter). The mouse wheel can also be used to adjust the gain. 

11.Set back the Operation mode to Uncalibrated, grab some images and proceed 
with the calibration for right sensor. 

KNOWN BUG: Because the calibration process uses the last image that has been 
grabbed, it may happen that the image used for calibration is incomplete (there could a 
black section in the images). This is not critical for the calibration since it has no effect 
on the average intensity profile. However, if you want to fix that bug anyway, simply set 
BreakEffect = FINISH in the Piranha2FixedLineRate.cam file. 

If you need assistance with the above procedure, please send INO Uncalibrated images 
used as reference as well as the resulting coefficients that have been uploaded to the 
cameras. You can also send us the resulting calibrated images grabbed with your 
application. 
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A.1.3 Dynamic Range: no need for checks 

Dynamic range determines the level of detailed information contained in the image 
regarding the full spectrum of color or gray scale. The higher the dynamic range, the 
more levels of differences exist in the digital values of image pixels. In the 8-bit dynamic 
range of the FDOT LRIS images (which is currently widely used in the industry), there 
are 256 levels on the spectrum which translates into 256 shades of gray in a black and 
white image. The dynamic range is NOT expected to change over time. Therefore, there 
is no need for frequent control. 

A.1.4 White balance: Check and Calibrate Annually 

It is recommended that a wide uniform standard 18% gray carpet be used for calibration 
of the white balance. The ICC software includes a routine for such calibration. 

A.2 Image Issues 

These are issues that could be caused by defective hardware and/or unsuitable 
hardware settings. These issues could impact crack detection by increasing the 
potential for false positives. 

A.2.1 Alignment: Check and Calibrate Annually 

There are settings parameter files that control the angle and overlap of stitching of the 
left and right images. These settings are adjusted according to a visual examination of 
the images of the target site. The images should show the diamond stripes as they 
appear on the actual site. It is recommended that the images of the target site be 
controlled at least once every year that the MPSV is in service. 

A.2.2 Streaks: Clean Daily 

A disadvantage to the LRIS system is that because it creates images line by line any 
dirt or dust on the camera lens can create streaks in the image. These streaks result in 
black lines appearing in the images and can cause difficulty with automated crack 
detection software that uses the light and dark contrast to identify cracks. 
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Figure 134. Example LRIS pavement image (right) showing intensity streaks that cannot be seen 
on the ROW image (left) 

Every morning before data collection, all windows on the LRIS units should be cleaned 
with a soft fabric using isopropanol or methanol. Avoid scratches that could damage the 
optical quality of windows and affect system performances. The controller and the 
sensor’s body should be cleaned with a soft fabric using water only. Appropriate 
precautions should be taken to make sure that the isopropanol or methanol is not used 
over the different labels that are affixed on the sensors and on the controller. It is 
recommended to protect the external windows with covers when the LRIS is not in use. 

NOTE: The LRIS sensors have not been designed to resist to powerful water jets. You 
should not use a high-pressure hose or water gun to clean them. 

A.3 Image Feature Capturing (optical distortion) 

These properties are related to misrepresentation of actual pavement features due to 
inherent optical distortions in the camera and the wide-angle lens. These issues could 
impact crack detection by increasing the potential for detecting erroneous crack lengths 
and widths. 

A.3.1 Crack Length: Check Annually 

FDOT has set up an imaging target site with diamond shaped stripes as indicated in 
Figure 135. 
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Figure 135. Pavement section with optical distortion study points. 

Figure 136 depicts the target site setup and Table 78 shows the reference 
measurement patches that are considered for this evaluation. 
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Figure 136. LRIS 2D image of FDOT target site. 

In the transverse direction, all the distances between consecutive diamond stripes are 
measured in each row. For the longitudinal and diagonal directions, a sample of the 
distances are measured in the field. 
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Table 78. Reference points for measurements 

TRANSVERSE 

Row 
Patch 
Number 

Row 
Patch 
Number 

Row 
Patch 
Number 

Row 
Patch 
Number 

Row 
Patch 
Number 

Row 
Patch 
Number 

R2 

1 - 2 

R3 

1 - 2 

R4 

1 - 2 

R5 

1 - 2 

R6 

1 - 2 

R7 

1 - 2 

2 - 3 2 - 3 2 - 3 2 - 3 2 - 3 2 - 3 

3 - 4 3 - 4 3 - 4 3 - 4 3 - 4 3 - 4 

4 - 5 4 - 5 4 - 5 4 - 5 4 - 5 4 - 5 

5 - 6 5 - 6 5 - 6 5 - 6 5 - 6 5 - 6 

6 - 7 6 - 7 6 - 7 6 - 7 6 - 7 6 - 7 

7 - 8 7 - 8 7 - 8 7 - 8 7 - 8 

8 - 9 8 - 9 8 - 9 8 - 9 8 - 9 

9 - 10 9 - 10 9 - 10 

10 - 11 10 - 11 10 - 11 

11 - 12 11 - 12 11 - 12 

12 - 13 12 - 13 12 - 13 

13 - 14 

14 - 15 

LONGITUDINAL DIAGONAL 

Patch Number Patch Number 

R1,1 - R2,5 R1,1 - R3,9 

R2,5 - R3,7 R1,1 - R3,3 

R3,7 - R4,7 R6,7 - R7,4 

R4,7 - R5,8 R7,4 - R6,6 

R5,8 - R6,5 R8,1 - R6,3 

R6,5 - R7,4 R3,7 - R6,7 

R7,4 - R8,1 

The optical distortion of a camera system is NOT expected to change over time; 
however, it could easily be checked annually to detect any other system issues that 
might change with time and impact the measured distortion. The following exercise is 
recommended to be conducted annually to ensure optical distortions are not increasing 
with time: 

1. FDOT staff should conduct 3 measurements per patch and the average of those 
measurements is considered as the field reference measurement (“ground truth”) 
to estimate the error in image measurements due to optical distortions. All field 
measurements are done to the nearest full millimetre. 

2. The same distances should be measured on LRIS 2D images. The width of LRIS 
2D images are typically 4044 pixels. This depends on the amount of overlap 
between the left and right camera images during stitching. Each pixel can be 
assumed as 1 mm (which might not always be true but is the best estimate). 
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3. The normalized error between field measurements and image measured 
distances on the FDOT imaging target site should be evaluated in the transverse, 
longitudinal and diagonal directions. 

4. The average percentage of errors (normalized to field measurements) in 
longitudinal, transverse, and diagonal directions should be calculated and 
compared to the values listed in Table 79. These values were estimated during a 
research study in 2016 and it is expected that the optical distortion errors should 
fall within the recommended range in every annual estimation. 

Table 79. Recommended Range for Annual Error Estimation based on Previous Estimation of 
Average and Standard Deviation of Error Compared to Field Measurements 

Direction 

2016 Error Estimation Recommended 
Normalized 
Error Range 

Average 
Error (%) 

Standard 
Deviation of 
Error (%) 

Transverse 3.12 2.92 0 to 6 % 

Longitudinal -2.30 0.46 -3 to -2 % 

Diagonal -0.92 0.81 -2 to 0% 

A.3.2 Crack Width: no need for checks 

Unlike length measurements which are very objective, crack width measurements are 
subjective due to the gray areas in the images and subjectivity in visual field 
inspections. In addition, the small magnitudes of crack width make it a challenge (if not 
impossible) to measure the errors which are in sub millimeters, while the image 
resolution is at 1 mm. 

A.3.3 Image Focus and Signal-to-Noise Ratio: Check Annually 

This is a traditional quantitative measure representing the ratio of the amount of 
undistorted features captured in an image (signal) to the distortion errors (noise) in 
detecting features, expressed in decibels. Therefore, this measure and similar 
measures such as mean squared error (MSE) require a reference “undistorted” image. 
An estimate of the signal to noise ratio (SNR) can be approximated as the average 
value of the image pixels (0 to 255 for 8-bit images) divided by the standard deviation of 
the image intensity values. This approximation eliminates the need for a reference 
image, but an image with a high SNR value approximated through this method does not 
necessarily remain faithful to the reality. 

The SNR of a camera system is NOT expected to change over time; however, it could 
easily be checked annually to detect any other system issues that might change with 
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time and impact the measured SNR. The following exercise is recommended to be 
conducted annually to ensure signal to noise ratio is not increasing with time: 

1. An SNR target should be synthetically manufactured. Figure 137 shows two 
sample target images used as a reference for evaluating the signal to noise ratio. 
They are composed of black and white areas. 

2. An image of the synthetic target should be taken with the LRIS under proper 
lighting conditions (around noon on a clear sunny day so that there are no 
shades on the target) while the MPSV is stationary to serve as the reference 
undistorted image. The pixel intensity values (0 to 255 for 8-bit images) should 
be measured for the black and white areas of the image. These measurements 
can be done using open source software such as ImageJ. 

3. A picture of the target taken by the LRIS camera while moving at collection 
speed should be used to evaluate the SNR of the captured image as compared 
to the reference. The pixel intensity values should be measured for the black and 
white areas of the image. It is recommended that at least 3 images be taken and 
the average of the 3 be used for comparison. 

4. To evaluate camera focus, the contrast (difference) between the average pixel 
intensity values of the brighter (white) and darker (black) areas should be 
maximized. Therefore, this contrast should be measured for the reference 
stationary image and the images taken while the vehicle is moving. The average 
contrast for the collected images should be within 5% of the reference image. 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑅𝑒𝑓 = 𝜇𝑊ℎ𝑖𝑡𝑒 − 𝜇𝐵𝑙𝑎𝑐𝑘 ≥ 200 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑚𝑜𝑣𝑖𝑛𝑔 = 𝜇𝑊ℎ𝑖𝑡𝑒 − 𝜇𝐵𝑙𝑎𝑐𝑘 

|𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑅𝑒𝑓 − 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑚𝑜𝑣𝑖𝑛𝑔| 
≤ 5% 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑅𝑒𝑓 

5. To evaluate signal to noise ratio, the relative metric of average intensity divided 
by the standard deviation of intensity should be calculated for the brighter and 
darker pixels. This calculation should be conducted for the reference stationary 
image and the images taken while the vehicle is moving. The average of this 
relative SNR measure for the collected images should be within 5% of the 
reference image for both brighter and darker pixels. 
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𝑅𝑒𝑓 𝜇𝐵𝑙𝑎𝑐𝑘 𝑅𝑒𝑓 𝜇𝑊ℎ𝑖𝑡𝑒 
= =𝑆𝑁𝑅𝐵𝑙𝑎𝑐𝑘 , 𝑆𝑁𝑅𝑊ℎ𝑖𝑡𝑒 𝜎𝐵𝑙𝑎𝑐𝑘 𝜎𝑊ℎ𝑖𝑡𝑒 

𝑚𝑜𝑣𝑖𝑛𝑔 𝜇𝐵𝑙𝑎𝑐𝑘 𝑚𝑜𝑣𝑖𝑛𝑔 𝜇𝑊ℎ𝑖𝑡𝑒 
= , 𝑆𝑁𝑅𝑊ℎ𝑖𝑡𝑒 =𝑆𝑁𝑅𝐵𝑙𝑎𝑐𝑘 𝜎𝐵𝑙𝑎𝑐𝑘 𝜎𝑊ℎ𝑖𝑡𝑒 

𝑅𝑒𝑓 𝑚𝑜𝑣𝑖𝑛𝑔 𝑅𝑒𝑓 𝑚𝑜𝑣𝑖𝑛𝑔 
| |𝑆𝑁𝑅𝑊ℎ𝑖𝑡𝑒 − 𝑆𝑁𝑅𝑊ℎ𝑖𝑡𝑒 ||𝑆𝑁𝑅𝐵𝑙𝑎𝑐𝑘 − 𝑆𝑁𝑅𝐵𝑙𝑎𝑐𝑘 ≤ 5%, ≤ 5%

𝑅𝑒𝑓 𝑅𝑒𝑓 
𝑆𝑁𝑅 𝑆𝑁𝑅 𝐵𝑙𝑎𝑐𝑘 𝑊ℎ𝑖𝑡𝑒 

Figure 137. Sample Target Images used as a Reference for Evaluating Signal to Noise Ratio 

Detailed investigation of SNR values was conducted in a previous FDOT study and it is 
documented in Report No. BD-544-11. It is recommended that a similar target image be 
used for annual control checks of the SNR values. 

A.4 LRIS Hardware: Check Annually 

The integrator company for the FDOT LRIS vehicle is the International Cybernetics 
Corporation (ICC) and they are responsible for resolving hardware issues, some of 
which could be addressed by routine maintenance. It is necessary that the hardware 
and software setup and “calibration” standards recommended by the LRIS equipment 
manufacturer (Pavemetrics) and the FDOT equipment integrator (ICC) be followed with 
regards to routine maintenance and calibration controls. The overall system 
maintenance and recalibration is recommended once a year. This includes checking the 
camera installed heights and the vehicle tire pressure to ensure the pavement surface is 
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within the camera depth of field, where objects are in focus. As described in the 
previous section, the image is in focus if the contrast between the bright and dark areas 
are maximized. 

a) Distance measuring accuracy: the distance measuring instrument (DMI) 
needs to be inspected and calibrated on a routine basis as recommended 
by the manufacturer. A control section distance can be measured with the 
DOT reference device and the vehicle DMI measurements of the control 
section can be compared to the reference measurement. 

b) Latitude-Longitude accuracy: the global positioning system (GPS) devices 
need to be inspected and calibrated on a routine basis as recommended 
by the manufacturer. The vehicle needs to be parked at specific locations 
on the control section for about 15 minutes to establish a stable 
measurement. Then the GPS coordinates of those locations should be 
surveyed using total station equipment in order to check the vehicle GPS 
measurements. Depending on the number and model of the IMU units in 
the vehicle, acceptable errors could be found from the manufacturer 
website. 

c) LRIS platform stability: If there are loose connections in the platform, they 
need to be addressed as recommended by the manufacturer. 

Figure 138. Schematic of image collection concept. 
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A.5 Environmental Effects: no need for checks 

The effects of different lighting conditions (overcast, cloudy, or sunny) and vehicle 
speeds (25, 35, or 45 mph) have already been studied in a previous FDOT research 
project (documented in Report No. BD-544-11, chapter 2). It was found that the LRIS 
images are not significantly affected by different vehicle speeds and lighting conditions. 
The LRIS user manual indicates that the equipment should not be operated at 
temperatures above 40 degrees Celsius (104 degrees Fahrenheit). 

a. Performance at various lighting conditions 

b. Temperature, humidity, and wind 

c. Performance at varying speeds 
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B. DETERMINATION OF SUITABLE AUTOMATED SETTINGS FOR 
PROCESSING LRIS IMAGES FOR RIGID PAVEMENT DISTRESS IN 
THE EXISTING AUTOMATED SOFTWARE 

Table 80. Settings for WiseCrax pre-set detection profiles 

Detection 1 2 3 4 5 6 

Profile Name 

longitudinal 
and alligator 
cracks on 
lightly 
distressed 
pavement 

longitudinal 
and alligator 
cracks on 
moderately 
distressed 
pavement 

longitudinal 
and alligator 
cracks on 
heavily 
distressed 
pavement 

Dark 
Asphalt 
with 
dark 
crack 

Dark 
Asphalt 
with 
white 
crack or 
crack 
with salt 

Light 
Asphalt 
with 
dark 
crack 

Crack Types 
longitudinal 
and alligator 
cracks 

longitudinal 
and alligator 
cracks 

longitudinal 
and alligator 
cracks 

Crack Color dark white dark 

Pavement Color dark dark light 

Pavement Material asphalt 

Defection Degree lightly moderate heavily 

Crack Options 

Crack 
Simplification 

1 1 1 1 2 1 

Extraction 

Transverse 
Cracking 

15 12 25 50 30 80 

Longitudinal 
Cracking 

15 12 25 50 30 80 

Crack 
Likelihood 

2 1 1 2 1 3 

Horizontal 
Bridging 

3 3 3 3 2 3 

Vertical 
Bridging 

5 5 5 5 9 5 

Pruning 

Remove Short 
Distress 

TRUE TRUE TRUE TRUE TRUE TRUE 

Minimum 
Length (mm) 

100 100 100 150 150 140 

Remove Low 
Node-Count 
Distresses 

TRUE TRUE TRUE FALSE TRUE TRUE 
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Detection 1 2 3 4 5 6 

Minimum 
Node Count 

50 50 50 N/A 100 60 

Remove Low-
Cost 
Distresses 

FALSE FALSE FALSE TRUE FALSE FALSE 

Minimum Cost 
Threshold 

N/A N/A N/A 50 N/A N/A 

Remove 
‘Bright’ 
Distresses 

FALSE FALSE FALSE TRUE TRUE FALSE 

Maximum 
Intensity 
Threshold 

N/A N/A N/A 110 115 N/A 

Width 

Intensity 
Threshold 

60 60 60 60 60 60 

Lane Options 

Enabled TRUE TRUE TRUE TRUE TRUE TRUE 

Detect within 
lanes 

TRUE TRUE TRUE TRUE TRUE TRUE 

Scale 0.5 0.5 0.5 0.5 0.5 0.5 

Threshold 50 50 50 50 50 50 

Slice height 200 200 200 200 200 200 

Smooth width 10 10 10 10 10 10 

Minimum marker 
width 

50 50 50 50 50 50 

Maximum marker 
width 

250 250 250 250 250 250 

Lane set method 

Sealed Crack 
Options 

Crack Simplification 1 1 1 1 1 1 

Extraction 

Transverse 
Cracking 

0 17.5 0 0 0 0 

Longitudinal 
Cracking 

0 17.5 0 0 0 0 

Crack 
Likelihood 

3 3 3 3 3 3 
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Detection 1 2 3 4 5 6 

Horizontal 
Bridging 

2 2 2 2 2 2 

Vertical 
Bridging 

4 4 4 4 4 4 

Pruning 

Remove Short 
Distresses 

FALSE FALSE FALSE FALSE FALSE FALSE 

Remove Low 
Node-Count 

TRUE TRUE TRUE TRUE TRUE TRUE 

Minimum 
Node Count 

8 8 8 8 8 8 

Remove Low-
Cost 

TRUE TRUE TRUE TRUE TRUE TRUE 

Minimum Cost 
Threshold 

10 10 10 10 10 10 

Remove 
‘Bright’ 

TRUE TRUE TRUE TRUE TRUE TRUE 

Maximum 
Intensity 

80 80 80 80 80 80 

Intensity 
Threshold 

80 80 80 80 80 80 

Table 81. Settings for WiseCrax pre-set detection profiles (continued) 

Detection 7 8 9 10 

Profile Name 
longitudinal and 
transverse cracks on 
light pavement 

longitudinal 
crack 

Transverse 
crack 

Pavements with light 
number of white 
cracks 

Crack Types 
longitudinal and 
transverse cracks 

longitudinal 
crack 

Transverse 
crack 

Crack Color white (light amount) 

Pavement Color light 

Pavement Material 

Defection Degree 

Crack Options 

2 2 1 2 1 

10 0 10 30 25 50 

10 37.5 5 10 25 50 

2 2 2 1 1 2 

3 3 3 2 3 3 
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Detection 7 8 9 10 

5 5 5 9 5 5 

TRUE TRUE TRUE TRUE TRUE TRUE 

125 125 150 150 100 150 

FALSE FALSE TRUE TRUE TRUE FALSE 

N/A N/A 75 100 50 N/A 

FALSE FALSE FALSE FALSE FALSE TRUE 

N/A N/A N/A N/A N/A 50 

FALSE FALSE FALSE TRUE FALSE TRUE 

N/A N/A N/A 115 N/A 110 

60 60 60 60 60 60 

Lane Options 

TRUE TRUE TRUE TRUE TRUE 

TRUE TRUE TRUE TRUE TRUE 

0.5 0.5 0.5 0.5 0.5 

50 50 50 50 50 

200 200 200 200 200 

10 10 10 10 10 

50 50 50 50 50 

250 250 250 250 250 

Sealed Crack 
Options 

Crack Simplification 1 1 1 1 

0 0 0 0 0 0 

0 0 0 0 0 0 

3 3 3 3 3 3 
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Detection 7 8 9 10 

2 2 2 2 2 2 

3 3 3 3 4 4 

FALSE FALSE FALSE FALSE FALSE FALSE 

TRUE TRUE TRUE TRUE TRUE TRUE 

10 10 10 10 8 8 

TRUE TRUE TRUE TRUE TRUE TRUE 

120 120 120 120 10 10 

TRUE TRUE TRUE TRUE TRUE TRUE 

60 60 60 60 80 80 

80 80 

Table 82. Crack Detection Legend for Figure 139 through Figure 163 

Range Name Min Width Max Width Color 

Small 0.118 

Medium 0.118 0.236 

Large 0.236 0.394 

Very Large 0.394 
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Figure 139. Crack Detection Sample Image Number 1 

Figure 140. Crack Detection Sample Image Number 2 
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Figure 141. Crack Detection Sample Image Number 3 

Figure 142. Crack Detection Sample Image Number 4 
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Figure 143. Crack Detection Sample Image Number 5 

Figure 144. Crack Detection Sample Image Number 6 
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Figure 145. Crack Detection Sample Image Number 7 

Figure 146. Crack Detection Sample Image Number 8 
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Figure 147. Crack Detection Sample Image Number 9 

Figure 148. Crack Detection Sample Image Number 10 
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Figure 149. Crack Detection Sample Image Number 11 

Figure 150. Crack Detection Sample Image Number 12 
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Figure 151. Crack Detection Sample Image Number 13 

Figure 152. Crack Detection Sample Image Number 14 
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Figure 153. Crack Detection Sample Image Number 15 

Figure 154. Crack Detection Sample Image Number 16 
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Figure 155. Crack Detection Sample Image Number 17 

Figure 156. Crack Detection Sample Image Number 18 
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Figure 157. Crack Detection Sample Image Number 19 

Figure 158. Crack Detection Sample Image Number 20 
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Figure 159. Crack Detection Sample Image Number 21 

Figure 160. Crack Detection Sample Image Number 22 

346 



 
 

 
 

 

    

 

    

Figure 161. Crack Detection Sample Image Number 23 

Figure 162. Crack Detection Sample Image Number 24 

347 



 
 

 
 

 

    

       

 

 

 
 

 
 

 

 

 

 

 

Figure 163. Crack Detection Sample Image Number 25 

Table 83. Distress Identification Legend for Figure 164 through Figure 166 

Transverse Distress 

Longitudinal Distress 

Transverse Joint 

Longitudinal Joint (87-
90) 

Longitudinal Joint (-90--
87) 
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Figure 164. Crack Classification Sample Image Number 1 

Figure 165. Crack Classification Sample Image Number 2 
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Figure 166. Crack Classification Sample Image Number 3 
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C. RESULTS FROM FIELD DISTRESS WORKSHOP ON RIGID 
PAVEMENTS 

In the following tables, highlighted values indicate more than 50% variation or less than 
50% agreement among the raters. 

Table 84. Statistics of transverse cracking at different severity level 

Light Moderate Severe Total

01 8.67 1.67 0.33 10.67

02 6.00 2.00 1.33 9.33

03 21.00 2.00 2.00 25.00

04 10.25 3.50 1.25 15.00

01 (8,9) (0,3) (0,1) (9,13)

02 (4,7) (0,4) (1,2) (8,12)

03 (19,23) (0,4) (0,5) (19,28)

04 (6,17) (1,6) (0,3) (13,18)

01 6.66 91.65 173.21 19.52

02 28.87 100.00 43.30 24.74

03 9.52 100.00 132.29 20.78

04 48.70 68.01 120.00 16.33

AVG(COV) 23.44 89.92 117.20 20.34

100-AVG(COV) 76.56 10.08 -17.20 79.66

Section ID Statistic

OVERALL VARIATION (%)

OVERALL PRECISION (%)

(Min,Max)

(Min,Max)

COV (%)

COV (%)

COV (%)

COV (%)

AVG

AVG

AVG

AVG

(Min,Max)

(Min,Max)

Transverse Cracking (count)

Figure 167. Distance from average in standard deviation (transverse cracking). 
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Figure 168. Transverse cracking on rigid pavements. 

Table 85. Statistics of longitudinal cracking at different severity level 

Light Moderate Severe Total

01 1.00 0.33 0.00 1.33

02 10.00 4.00 1.00 15.00

03 2.33 0.67 0.33 3.33

04 1.25 0.75 0.25 2.25

01 (1,1) (0,1) (0,0) (1,2)

02 (7,16) (0,6) (0,2) (13,18)

03 (0,5) (0,1) (0,1) (2,5)

04 (0,3) (0,2) (0,1) (1,3)

01 0.00 173.21 0.00 43.30

02 51.96 86.60 100.00 17.64

03 107.85 86.60 173.21 45.83

04 100.66 127.66 200.00 42.55

AVG(COV) 65.12 118.52 118.30 37.33

100-AVG(COV) 34.88 -18.52 -18.30 62.67

Section ID Statistic

OVERALL VARIATION (%)

OVERALL PRECISION (%)

(Min,Max)

(Min,Max)

COV (%)

COV (%)

COV (%)

COV (%)

AVG

AVG

AVG

AVG

(Min,Max)

(Min,Max)

Longitudinal Cracking (count)
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Figure 169. Distance from average in standard deviation (longitudinal cracking). 

Figure 170. Longitudinal cracking on rigid pavement. 
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Table 86. Statistics of spalling at different severity level 

Moderate Severe Total

01 13.33 0.67 14.00

02 8.00 0.33 8.33

03 20.67 1.00 21.67

04 4.50 5.75 10.25

01 (11,17) (0,2) (11,17)

02 (7,9) (0,1) (7,9)

03 (13,29) (0,2) (15,30)

04 (3,6) (1,16) (6,21)

01 24.11 173.21 21.43

02 12.50 173.21 13.86

03 38.81 100.00 35.25

04 28.69 120.80 70.07

AVG(COV) 26.03 141.80 35.15

100-AVG(COV) 73.97 -41.80 64.85

Section ID Statistic

OVERALL VARIATION (%)

OVERALL PRECISION (%)

(Min,Max)

(Min,Max)

COV (%)

COV (%)

COV (%)

COV (%)

AVG

AVG

AVG

AVG

(Min,Max)

(Min,Max)

Spalling (ft)

Figure 171. Distance from average in standard deviation (spalling). 
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Figure 172. Spalling on rigid pavements. 

Table 87. Statistics of corner cracking at different severity level 

Light Moderate Severe Total

01 1.67 0.00 0.00 1.67

02 0.67 1.00 3.00 4.67

03 0.33 0.00 0.00 0.33

04 1.25 0.00 0.25 1.50

01 (0,3) (0,0) (0,0) (0,3)

02 (0,1) (0,2) (3,3) (4,6)

03 (0,1) (0,0) (0,0) (0,1)

04 (0,3) (0,0) (0,1) (0,3)

01 91.65 0.00 0.00 91.65

02 86.60 100.00 0.00 24.74

03 173.21 0.00 0.00 173.21

04 120.00 0.00 200.00 115.47

AVG(COV) 117.86 25.00 50.00 101.27

100-AVG(COV) -17.86 75.00 50.00 -1.27

Section ID Statistic

OVERALL VARIATION (%)

OVERALL PRECISION (%)

(Min,Max)

(Min,Max)

COV (%)

COV (%)

COV (%)

COV (%)

AVG

AVG

AVG

AVG

(Min,Max)

(Min,Max)

Corner Cracking (count)

355 



 
 

 
 

 

   

 

 

  

 

 

Figure 173. Distance from average in standard deviation (corner cracking). 

Figure 174. Corner cracking on rigid pavement. 
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Table 88. Statistics of patching at different severity level 

Fair Poor Total

01 0.00 0.00 0.00

02 0.00 0.00 0.00

03 4.00 0.00 4.00

04 1.00 0.25 1.25

01 (0,0) (0,0) (0,0)

02 (0,0) (0,0) (0,0)

03 (1,10) (0,0) (1,10)

04 (0,4) (0,1) (0,4)

01 0.00 0.00 0.00

02 0.00 0.00 0.00

03 129.90 0.00 129.90

04 200.00 200.00 151.44

AVG(COV) 82.48 50.00 70.34

100-AVG(COV) 17.52 50.00 29.66

Section ID Statistic

OVERALL VARIATION (%)

OVERALL PRECISION (%)

(Min,Max)

(Min,Max)

COV (%)

COV (%)

COV (%)

COV (%)

AVG

AVG

AVG

AVG

(Min,Max)

(Min,Max)

Patching (sq yd)

Table 89. Statistics of shattered slabs 

Moderate Severe Total

01 1.00 0.00 1.00

02 1.00 0.00 1.00

03 0.00 0.00 0.00

04 0.00 0.00 0.00

01 (1,1) (0,0) (1,1)

02 (1,1) (0,0) (1,1)

03 (0,0) (0,0) (0,0)

04 (0,0) (0,0) (0,0)

01 0.00 0.00 0.00

02 0.00 0.00 0.00

03 0.00 0.00 0.00

04 0.00 0.00 0.00

AVG(COV) 0.00 0.00 0.00

100-AVG(COV) 100.00 100.00 100.00

Section ID Statistic

OVERALL VARIATION (%)

OVERALL PRECISION (%)

(Min,Max)

(Min,Max)

COV (%)

COV (%)

COV (%)

COV (%)

AVG

AVG

AVG

AVG

(Min,Max)

(Min,Max)

Shattered Slabs (count)
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Figure 175. Shattered slab of rigid pavement. 

Table 90. Statistics of surface deterioration 

Moderate Severe Total

01 0.00 0.00 0.00

02 0.00 0.00 0.00

03 0.00 0.00 0.00

04 0.50 0.00 0.50

01 (0,0) (0,0) (0,0)

02 (0,0) (0,0) (0,0)

03 (0,0) (0,0) (0,0)

04 (0,1) (0,0) (0,1)

01 0.00 0.00 0.00

02 0.00 0.00 0.00

03 0.00 0.00 0.00

04 115.47 0.00 115.47

AVG(COV) 28.87 0.00 28.87

100-AVG(COV) 71.13 100.00 71.13

Section ID Statistic

OVERALL VARIATION (%)

OVERALL PRECISION (%)

(Min,Max)

(Min,Max)

COV (%)

COV (%)

COV (%)

COV (%)

AVG

AVG

AVG

AVG

(Min,Max)

(Min,Max)

Surface Deterioration (sq ft)
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Table 91. Statistics of pumping 

Light Moderate Severe Total

01 0.00 0.00 0.00 0.00

02 0.00 0.00 0.00 0.00

03 0.00 0.00 0.00 0.00

04 0.00 0.00 0.00 0.00

01 (0,0) (0,0) (0,0) (0,0)

02 (0,0) (0,0) (0,0) (0,0)

03 (0,0) (0,0) (0,0) (0,0)

04 (0,0) (0,0) (0,0) (0,0)

01 0.00 0.00 0.00 0.00

02 0.00 0.00 0.00 0.00

03 0.00 0.00 0.00 0.00

04 0.00 0.00 0.00 0.00

AVG(COV) 0.00 0.00 0.00 0.00

100-AVG(COV) 100.00 100.00 100.00 100.00

Section ID Statistic

OVERALL VARIATION (%)

OVERALL PRECISION (%)

(Min,Max)

(Min,Max)

COV (%)

COV (%)

COV (%)

COV (%)

AVG

AVG

AVG

AVG

(Min,Max)

(Min,Max)

Pumping (code 1 to 4)

359 



 
 

 
 

       

    

 

D. MANUAL WINDSHIELD SURVEY RESULTS ON RIGID PAVEMENTS 

Table 92. Transverse cracking (count): light, moderate, and severe 

Section ID Light Moderate Severe Total

01 11.00 0.00 0.00 11.00

02 15.67 0.00 0.00 15.67

03 6.67 2.00 10.67 19.33

04 17.00 2.33 1.00 20.33

05 5.00 0.00 0.00 5.00

06 6.67 1.33 2.33 10.33

07 15.00 8.33 8.00 31.33

08 9.67 6.33 7.33 23.33

09 13.67 0.33 1.67 15.67

10 1.67 3.00 4.00 8.67

11 8.67 2.33 0.33 11.33

12 19.67 2.67 2.00 24.33

01 (10,12) (0,0) (0,0) (10,12)

02 (10,24) (0,0) (0,0) (10,24)

03 (2,10) (0,5) (10,11) (18,21)

04 (7,23) (0,4) (0,3) (10,27)

05 (4,6) (0,0) (0,0) (4,6)

06 (6,8) (1,2) (1,3) (10,11)

07 (14,16) (6,10) (5,10) (29,33)

08 (7,11) (5,7) (6,9) (23,24)

09 (13,14) (0,1) (1,2) (15,16)

10 (0,3) (0,6) (2,8) (5,11)

11 (4,11) (1,4) (0,1) (9,13)

12 (17,23) (1,4) (1,3) (23,25)

01 9.09 0.00 0.00 9.09

02 47.05 0.00 0.00 47.05

03 62.45 132.29 5.41 7.90

04 51.28 89.21 173.21 44.63

05 20.00 0.00 0.00 20.00

06 17.32 43.30 49.49 5.59

07 6.67 24.98 33.07 6.64

08 23.89 18.23 20.83 2.47

09 4.22 173.21 34.64 3.69

10 91.65 100.00 86.60 37.09

11 46.63 65.47 173.21 18.37

12 15.53 57.28 50.00 4.75

AVG(COV) 32.98 58.66 52.20 17.27

100-AVG(COV) 67.02 41.34 47.80 82.73

OVERALL VARIATION (%)

OVERALL PRECISION (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

Statistic
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Figure 176. Distance from average in standard deviation (transverse cracking). 
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Table 93. Longitudinal cracking (count): light, moderate, and severe 

Section ID Light Moderate Severe Total

01 11.67 0.00 0.00 11.67

02 7.67 0.00 0.00 7.67

03 18.00 1.67 0.67 20.33

04 6.67 2.33 1.00 10.00

05 1.33 30.00 0.00 31.33

06 2.33 0.67 1.33 4.33

07 0.67 1.33 1.00 3.00

08 2.00 0.00 0.33 2.33

09 0.67 3.00 0.67 4.33

10 0.67 1.00 1.00 2.67

11 17.67 1.67 1.00 20.33

12 16.33 0.33 2.00 18.67

01 (10,13) (0,0) (0,0) (10,13)

02 (7,8) (0,0) (0,0) (7,8)

03 (15,20) (1,3) (0,2) (20,21)

04 (4,10) (0,4) (0,3) (9,11)

05 (0,4) (24,35) (0,0) (28,35)

06 (1,4) (0,1) (1,2) (3,6)

07 (0,2) (0,2) (1,1) (3,3)

08 (2,2) (0,0) (0,1) (2,3)

09 (0,2) (2,4) (0,1) (4,5)

10 (0,1) (0,2) (0,2) (1,4)

11 (15,19) (0,4) (0,2) (15,25)

12 (14,18) (0,1) (1,3) (17,21)

01 13.09 0.00 0.00 13.09

02 7.53 0.00 0.00 7.53

03 14.70 69.28 173.21 2.84

04 45.83 89.21 173.21 10.00

05 173.21 18.56 0.00 11.21

06 65.47 86.60 43.30 35.25

07 173.21 86.60 0.00 0.00

08 0.00 0.00 173.21 24.74

09 173.21 33.33 86.60 13.32

10 86.60 100.00 100.00 57.28

11 13.07 124.90 100.00 24.75

12 12.74 173.21 50.00 11.15

AVG(COV) 64.89 65.14 74.96 17.60

100-AVG(COV) 35.11 34.86 25.04 82.40

OVERALL VARIATION (%)

OVERALL PRECISION (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

Statistic
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Figure 177. Distance from average in standard deviation (longitudinal cracking). 
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Table 94. Spalling (linear feet): moderate and severe 

Section ID Moderate Severe Total

01 5.67 0.33 6.00

02 8.00 0.00 8.00

03 14.33 9.67 24.00

04 14.33 9.67 24.00

05 15.67 5.33 21.00

06 4.00 13.67 17.67

07 19.33 8.33 27.67

08 11.33 7.67 19.00

09 7.00 2.33 9.33

10 16.00 10.00 26.00

11 14.00 4.33 18.33

12 22.00 14.00 36.00

01 (2,10) (0,1) (2,10)

02 (5,10) (0,0) (5,10)

03 (12,17) (1,21) (15,38)

04 (12,18) (6,17) (18,35)

05 (10,23) (0,15) (10,38)

06 (3,5) (13,14) (16,19)

07 (17,21) (5,11) (22,31)

08 (9,14) (6,9) (17,20)

09 (2,10) (1,4) (6,11)

10 (15,18) (4,20) (21,35)

11 (9,19) (2,9) (11,28)

12 (16,26) (11,20) (27,44)

01 71.32 173.21 66.67

02 33.07 0.00 33.07

03 17.56 106.17 51.20

04 22.43 65.70 39.75

05 42.50 157.25 71.11

06 25.00 4.22 8.65

07 10.77 36.66 17.83

08 22.21 19.92 9.12

09 62.27 65.47 30.93

10 10.83 87.18 30.04

11 35.71 93.26 47.66

12 24.05 37.12 23.73

AVG(COV) 31.48 70.51 35.81

100-AVG(COV) 68.52 29.49 64.19

OVERALL VARIATION (%)

OVERALL PRECISION (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

Statistic
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Figure 178. Distance from average in standard deviation (spalling). 

365 



 
 

 
 

  

 

Table 95. Corner cracking (count): light, moderate, and severe 

Section ID Light Moderate Severe Total

01 1.00 0.00 0.00 1.00

02 0.33 0.00 0.00 0.33

03 0.33 0.00 0.00 0.33

04 0.00 0.00 0.00 0.00

05 1.00 0.00 0.00 1.00

06 0.33 0.00 2.33 2.67

07 0.00 0.67 2.33 3.00

08 0.00 0.00 0.00 0.00

09 0.00 0.00 0.00 0.00

10 0.00 0.00 1.00 1.00

11 1.67 2.00 0.67 4.33

12 4.67 3.00 3.00 10.67

01 (0,2) (0,0) (0,0) (0,2)

02 (0,1) (0,0) (0,0) (0,1)

03 (0,1) (0,0) (0,0) (0,1)

04 (0,0) (0,0) (0,0) (0,0)

05 (1,1) (0,0) (0,0) (1,1)

06 (0,1) (0,0) (2,3) (2,4)

07 (0,0) (0,2) (1,3) (3,3)

08 (0,0) (0,0) (0,0) (0,0)

09 (0,0) (0,0) (0,0) (0,0)

10 (0,0) (0,0) (1,1) (1,1)

11 (1,2) (0,4) (0,1) (3,5)

12 (3,6) (2,4) (2,4) (10,11)

01 100.00 0.00 0.00 100.00

02 173.21 0.00 0.00 173.21

03 173.21 0.00 0.00 173.21

04 0.00 0.00 0.00 0.00

05 0.00 0.00 0.00 0.00

06 173.21 0.00 24.74 43.30

07 0.00 173.21 49.49 0.00

08 0.00 0.00 0.00 0.00

09 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00

11 34.64 100.00 86.60 26.65

12 32.73 33.33 33.33 5.41

AVG(COV) 57.25 25.54 16.18 43.48

100-AVG(COV) 42.75 74.46 83.82 56.52

OVERALL VARIATION (%)

OVERALL PRECISION (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

Statistic
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Figure 179. Distance from average in standard deviation (corner cracking). 
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Table 96. Patching (sq. yards): fair and poor 

Section ID Fair Poor Total

01 0.00 0.00 0.00

02 1.33 0.00 1.33

03 2.00 2.67 4.67

04 0.00 0.00 0.00

05 0.00 0.00 0.00

06 0.00 1.00 1.00

07 0.00 0.00 0.00

08 0.00 0.00 0.00

09 0.00 0.00 0.00

10 0.00 1.00 1.00

11 0.00 0.00 0.00

12 0.00 0.00 0.00

01 (0,0) (0,0) (0,0)

02 (0,2) (0,0) (0,2)

03 (0,3) (2,3) (2,6)

04 (0,0) (0,0) (0,0)

05 (0,0) (0,0) (0,0)

06 (0,0) (1,1) (1,1)

07 (0,0) (0,0) (0,0)

08 (0,0) (0,0) (0,0)

09 (0,0) (0,0) (0,0)

10 (0,0) (0,3) (0,3)

11 (0,0) (0,0) (0,0)

12 (0,0) (0,0) (0,0)

01 0.00 0.00 0.00

02 86.60 0.00 86.60

03 86.60 21.65 49.49

04 0.00 0.00 0.00

05 0.00 0.00 0.00

06 0.00 0.00 0.00

07 0.00 0.00 0.00

08 0.00 0.00 0.00

09 0.00 0.00 0.00

10 0.00 173.21 173.21

11 0.00 0.00 0.00

12 0.00 0.00 0.00

AVG(COV) 14.43 16.24 25.77

100-AVG(COV) 85.57 83.76 74.23

OVERALL VARIATION (%)

OVERALL PRECISION (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

Statistic
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Figure 180. Distance from average in standard deviation (patching). 
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Table 97. Shattered slab (count): moderate and severe 

Section ID Moderate Severe Total

01 1.33 0.00 1.33

02 0.00 0.00 0.00

03 0.33 0.67 1.00

04 1.00 0.00 1.00

05 0.00 0.00 0.00

06 0.67 4.00 4.67

07 0.00 1.00 1.00

08 0.67 0.00 0.67

09 0.67 0.00 0.67

10 0.00 0.67 0.67

11 2.33 1.00 3.33

12 1.33 2.33 3.67

01 (1,2) (0,0) (1,2)

02 (0,0) (0,0) (0,0)

03 (0,1) (0,1) (1,1)

04 (1,1) (0,0) (1,1)

05 (0,0) (0,0) (0,0)

06 (0,1) (4,4) (4,5)

07 (0,0) (1,1) (1,1)

08 (0,1) (0,0) (0,1)

09 (0,1) (0,0) (0,1)

10 (0,0) (0,1) (0,1)

11 (2,3) (1,1) (3,4)

12 (1,2) (1,3) (3,4)

01 43.30 0.00 43.30

02 0.00 0.00 0.00

03 173.21 86.60 0.00

04 0.00 0.00 0.00

05 0.00 0.00 0.00

06 86.60 0.00 12.37

07 0.00 0.00 0.00

08 86.60 0.00 86.60

09 86.60 0.00 86.60

10 0.00 86.60 86.60

11 24.74 0.00 17.32

12 43.30 49.49 15.75

AVG(COV) 45.36 18.56 29.05

100-AVG(COV) 54.64 81.44 70.95

OVERALL VARIATION (%)

OVERALL PRECISION (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

Statistic
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Figure 181. Distance from average in standard deviation (shattered slab). 
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Table 98. Surface deterioration (sq. feet): moderate and severe 

Section ID Moderate Severe Total

01 5.33 1.33 6.67

02 0.00 0.00 0.00

03 13.67 0.00 13.67

04 29.67 0.00 29.67

05 0.00 0.00 0.00

06 0.00 0.00 0.00

07 0.00 0.00 0.00

08 0.00 0.00 0.00

09 0.33 0.00 0.33

10 0.00 0.00 0.00

11 0.33 0.00 0.33

12 0.00 0.00 0.00

01 (0,14) (0,2) (2,14)

02 (0,0) (0,0) (0,0)

03 (10,21) (0,0) (10,21)

04 (3,52) (0,0) (3,52)

05 (0,0) (0,0) (0,0)

06 (0,0) (0,0) (0,0)

07 (0,0) (0,0) (0,0)

08 (0,0) (0,0) (0,0)

09 (0,1) (0,0) (0,1)

10 (0,0) (0,0) (0,0)

11 (0,1) (0,0) (0,1)

12 (0,0) (0,0) (0,0)

01 141.97 86.60 96.44

02 0.00 0.00 0.00

03 46.47 0.00 46.47

04 83.55 0.00 83.55

05 0.00 0.00 0.00

06 0.00 0.00 0.00

07 0.00 0.00 0.00

08 0.00 0.00 0.00

09 173.21 0.00 173.21

10 0.00 0.00 0.00

11 173.21 0.00 173.21

12 0.00 0.00 0.00

AVG(COV) 51.53 7.22 47.74

100-AVG(COV) 48.47 92.78 52.26

OVERALL VARIATION (%)

OVERALL PRECISION (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

Statistic
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   Figure 182. Distance from average in standard deviation (surface deterioration). 
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E. SEMI-AUTOMATED SURVEY RESULTS ON RIGID PAVEMENTS 

Table 99. Transverse cracking (count): light, moderate, and severe 

Section ID Light Moderate Severe Total

01 9.67 0.00 0.00 9.67

02 13.67 0.00 0.00 13.67

03 7.67 4.33 5.00 17.00

04 9.33 2.67 2.00 14.00

05 3.33 1.33 0.67 5.33

06 7.33 1.00 5.33 13.67

07 11.00 7.00 8.00 26.00

08 10.67 6.33 5.33 22.33

09 8.00 0.33 1.67 10.00

10 4.67 3.67 0.67 9.00

11 11.67 0.67 0.00 12.33

12 16.33 5.67 1.00 23.00

01 (7,11) (0,0) (0,0) (7,11)

02 (8,17) (0,0) (0,0) (8,17)

03 (7,8) (2,9) (0,9) (16,18)

04 (2,21) (2,4) (0,5) (9,23)

05 (3,4) (0,2) (0,2) (4,7)

06 (4,10) (0,2) (4,7) (13,14)

07 (8,14) (5,9) (3,13) (26,26)

08 (7,17) (2,9) (4,7) (21,24)

09 (7,10) (0,1) (0,4) (7,12)

10 (0,9) (0,8) (0,1) (9,9)

11 (9,14) (0,1) (0,0) (10,15)

12 (10,22) (1,11) (0,2) (21,25)

01 23.89 0.00 0.00 23.89

02 36.09 0.00 0.00 36.09

03 7.53 93.26 91.65 5.88

04 109.44 43.30 132.29 55.79

05 17.32 86.60 173.21 28.64

06 41.66 100.00 28.64 4.22

07 38.57 40.41 88.39 0.00

08 51.63 59.78 28.64 6.84

09 21.65 173.21 124.90 26.46

10 96.63 110.22 86.60 0.00

11 21.57 86.60 0.00 20.40

12 36.90 88.82 100.00 8.70

AVG(COV) 41.91 73.52 71.19 18.08

100-AVG(COV) 58.09 26.48 28.81 81.92

OVERALL VARIATION (%)

OVERALL PRECISION (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

AVG

AVG

AVG

AVG

AVG

AVG
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AVG

Statistic
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Figure 183. Distance from average in standard deviation (transverse cracking). 
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Table 100. Longitudinal cracking (count): light, moderate, and severe 

Section ID Light Moderate Severe Total

01 17.00 0.00 0.00 17.00

02 11.00 0.00 0.00 11.00

03 19.33 0.33 0.33 20.00

04 9.00 1.00 0.67 10.67

05 6.33 14.00 13.33 33.67

06 1.67 1.67 0.67 4.00

07 1.00 0.50 1.50 3.00

08 2.00 0.33 0.33 2.67

09 0.67 0.67 0.33 1.67

10 3.33 0.67 0.67 4.67

11 15.00 0.33 0.00 15.33

12 14.00 1.00 1.00 16.00

01 (13,24) (0,0) (0,0) (13,24)

02 (6,20) (0,0) (0,0) (6,20)

03 (18,22) (0,1) (0,1) (18,23)

04 (5,14) (0,3) (0,2) (5,14)

05 (1,16) (0,40) (0,40) (18,42)

06 (1,2) (1,2) (0,1) (3,5)

07 (0,2) (0,1) (1,2) (3,3)

08 (2,2) (0,1) (0,1) (2,3)

09 (0,1) (0,1) (0,1) (0,3)

10 (0,5) (0,2) (0,2) (4,5)

11 (13,16) (0,1) (0,0) (13,17)

12 (12,17) (0,2) (0,2) (12,20)

01 35.78 0.00 0.00 35.78

02 71.00 0.00 0.00 71.00

03 11.95 173.21 173.21 13.23

04 50.92 173.21 173.21 46.25

05 132.42 160.99 173.21 40.33

06 34.64 34.64 86.60 25.00

07 141.42 141.42 47.14 0.00

08 0.00 173.21 173.21 21.65

09 86.60 86.60 173.21 91.65

10 86.60 173.21 173.21 12.37

11 11.55 173.21 0.00 13.58

12 18.90 100.00 100.00 25.00

AVG(COV) 56.81 115.81 106.08 32.99

100-AVG(COV) 43.19 -15.81 -6.08 67.01

OVERALL VARIATION (%)

OVERALL PRECISION (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

Statistic
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Figure 184. Distance from average in standard deviation (longitudinal cracking). 
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Table 101. Spalling (linear feet): moderate and severe 

Section ID Moderate Severe Total

01 15.00 0.00 15.00

02 20.00 0.67 20.67

03 16.67 3.33 20.00

04 28.67 14.00 42.67

05 37.67 3.33 41.00

06 14.33 6.67 21.00

07 37.00 11.50 48.50

08 15.00 7.00 22.00

09 9.00 1.67 10.67

10 32.00 2.67 34.67

11 18.33 0.67 19.00

12 27.33 3.00 30.33

01 (7,29) (0,0) (7,29)

02 (7,31) (0,2) (7,33)

03 (11,21) (0,5) (16,23)

04 (27,30) (7,25) (37,52)

05 (17,53) (0,10) (17,63)

06 (11,16) (3,11) (14,27)

07 (34,40) (8,15) (42,55)

08 (8,20) (2,12) (10,32)

09 (6,15) (0,3) (6,18)

10 (27,36) (0,7) (27,43)

11 (17,20) (0,1) (17,21)

12 (20,31) (0,6) (23,37)

01 81.10 0.00 81.10

02 60.62 173.21 63.15

03 30.79 86.60 18.03

04 5.33 68.88 19.09

05 49.34 173.21 56.26

06 20.14 60.62 31.23

07 11.47 43.04 18.95

08 41.63 71.43 50.62

09 57.74 91.65 60.27

10 14.32 141.97 23.14

11 8.33 86.60 10.53

12 23.23 100.00 23.16

AVG(COV) 33.67 91.43 37.96

100-AVG(COV) 66.33 8.57 62.04

OVERALL VARIATION (%)

OVERALL PRECISION (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

Statistic
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Figure 185. Distance from average in standard deviation (spalling). 
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Table 102. Corner cracking (count): light, moderate, and severe 

Section ID Light Moderate Severe Total

01 1.00 0.00 0.00 1.00

02 0.00 0.00 0.00 0.00

03 0.33 0.00 0.00 0.33

04 0.00 0.00 0.00 0.00

05 0.67 0.00 0.33 1.00

06 1.00 0.33 1.00 2.33

07 0.50 0.50 0.50 1.50

08 0.00 0.00 0.00 0.00

09 0.33 0.00 0.00 0.33

10 0.00 0.33 0.33 0.67

11 3.33 1.00 0.33 4.67

12 3.00 1.67 0.67 5.33

01 (1,1) (0,0) (0,0) (1,1)

02 (0,0) (0,0) (0,0) (0,0)

03 (0,1) (0,0) (0,0) (0,1)

04 (0,0) (0,0) (0,0) (0,0)

05 (0,2) (0,0) (0,1) (0,2)

06 (0,2) (0,1) (0,3) (1,4)

07 (0,1) (0,1) (0,1) (0,3)

08 (0,0) (0,0) (0,0) (0,0)

09 (0,1) (0,0) (0,0) (0,1)

10 (0,0) (0,1) (0,1) (0,1)

11 (1,5) (0,3) (0,1) (2,7)

12 (2,4) (1,2) (0,1) (3,7)

01 0.00 0.00 0.00 0.00

02 0.00 0.00 0.00 0.00

03 173.21 0.00 0.00 173.21

04 0.00 0.00 0.00 0.00

05 173.21 0.00 173.21 100.00

06 100.00 173.21 173.21 65.47

07 141.42 141.42 141.42 141.42

08 0.00 0.00 0.00 0.00

09 173.21 0.00 0.00 173.21

10 0.00 173.21 173.21 86.60

11 62.45 173.21 173.21 53.93

12 33.33 34.64 86.60 39.03

AVG(COV) 71.40 57.97 76.74 69.40

100-AVG(COV) 28.60 42.03 23.26 30.60

OVERALL VARIATION (%)

OVERALL PRECISION (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

Statistic
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Figure 186. Distance from average in standard deviation (corner cracking). 
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Table 103. Patching (sq. yard): fair and poor 

Section ID Fair Poor Total

01 0.00 0.03 0.03

02 1.37 0.00 1.37

03 1.95 2.03 3.97

04 0.04 0.03 0.07

05 0.79 0.01 0.81

06 12.41 0.58 12.99

07 0.00 0.00 0.00

08 0.00 0.00 0.00

09 0.00 0.00 0.00

10 0.06 1.82 1.88

11 0.01 0.00 0.01

12 0.00 0.00 0.00

01 (0,0) (0,0.09) (0,0.09)

02 (1.27,2.43) (0,0) (1.27,2.43)

03 (1.74,2.51) (1.45,2.37) (3.96,4)

04 (0,0.06) (0,0.08) (0,0.14)

05 (0.17,2.21) (0,0.04) (0.22,2.21)

06 (0,37.23) (0,1.09) (0,38.32)

07 (0,0) (0,0) (0,0)

08 (0,0) (0,0) (0,0)

09 (0,0) (0,0) (0,0)

10 (0,0.19) (0.64,2.79) (0.64,2.79)

11 (0,0.03) (0,0) (0,0.03)

12 (0,0) (0,0) (0,0)

01 0.00 173.21 173.21

02 73.93 0.00 73.93

03 25.21 24.87 0.64

04 86.65 173.21 108.16

05 154.73 173.21 150.56

06 173.21 93.94 168.80

07 0.00 0.00 0.00

08 0.00 0.00 0.00

09 0.00 0.00 0.00

10 173.21 59.79 59.00

11 173.21 0.00 173.21

12 0.00 0.00 0.00

AVG(COV) 71.68 58.18 75.62

100-AVG(COV) 28.32 41.82 24.38

OVERALL VARIATION (%)

OVERALL PRECISION (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

Statistic
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Figure 187. Distance from average in standard deviation (patching). 
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Table 104. Shattered slab (count): moderate and severe 

Section ID Moderate Severe Total

01 1.00 0.00 1.00

02 0.33 0.00 0.33

03 0.67 0.00 0.67

04 0.67 0.00 0.67

05 0.00 0.00 0.00

06 0.33 3.00 3.33

07 0.00 1.00 1.00

08 0.00 0.33 0.33

09 0.00 0.00 0.00

10 0.00 0.33 0.33

11 2.00 0.67 2.67

12 1.67 1.00 2.67

01 (1,1) (0,0) (1,1)

02 (0,1) (0,0) (0,1)

03 (0,1) (0,0) (0,1)

04 (0,1) (0,0) (0,1)

05 (0,0) (0,0) (0,0)

06 (0,1) (2,4) (3,4)

07 (0,0) (1,1) (1,1)

08 (0,0) (0,1) (0,1)

09 (0,0) (0,0) (0,0)

10 (0,0) (0,1) (0,1)

11 (1,3) (0,2) (1,4)

12 (0,3) (0,2) (0,5)

01 0.00 0.00 0.00

02 173.21 0.00 173.21

03 86.60 0.00 86.60

04 86.60 0.00 86.60

05 0.00 0.00 0.00

06 173.21 33.33 17.32

07 0.00 0.00 0.00

08 0.00 173.21 173.21

09 0.00 0.00 0.00

10 0.00 173.21 173.21

11 50.00 173.21 57.28

12 91.65 100.00 94.37

AVG(COV) 55.11 54.41 71.82

100-AVG(COV) 44.89 45.59 28.18

OVERALL VARIATION (%)

OVERALL PRECISION (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG
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Figure 188. Distance from average in standard deviation (shattered slab). 
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Table 105. Surface deterioration (sq. feet): moderate and severe 

Section ID Moderate Severe Total

01 0.11 0.00 0.11

02 0.00 0.00 0.00

03 0.08 0.00 0.08

04 0.52 0.00 0.52

05 0.00 0.00 0.00

06 0.00 0.00 0.00

07 0.00 0.00 0.00

08 0.00 0.00 0.00

09 0.00 0.00 0.00

10 0.00 0.00 0.00

11 0.00 0.00 0.00

12 0.00 0.00 0.00

01 (0,0.33) (0,0) (0,0.33)

02 (0,0) (0,0) (0,0)

03 (0,0.18) (0,0) (0,0.18)

04 (0,1.41) (0,0) (0,1.41)

05 (0,0) (0,0) (0,0)

06 (0,0) (0,0) (0,0)

07 (0,0) (0,0) (0,0)

08 (0,0) (0,0) (0,0)

09 (0,0) (0,0) (0,0)

10 (0,0) (0,0) (0,0)

11 (0,0) (0,0) (0,0)

12 (0,0) (0,0) (0,0)

01 173.21 0.00 173.21

02 0.00 0.00 0.00

03 128.01 0.00 128.01

04 149.29 0.00 149.29

05 0.00 0.00 0.00

06 0.00 0.00 0.00

07 0.00 0.00 0.00

08 0.00 0.00 0.00

09 0.00 0.00 0.00

10 0.00 0.00 0.00

11 0.00 0.00 0.00

12 0.00 0.00 0.00

AVG(COV) 37.54 0.00 37.54

100-AVG(COV) 62.46 100.00 62.46

OVERALL VARIATION (%)

OVERALL PRECISION (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

AVG
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AVG

AVG
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Figure 189. Distance from average in standard deviation (surface deterioration). 
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F. AUTOMATED SURVEY RESULTS ON RIGID PAVEMENTS USING 
THE EXISTING SOFTWARE 

Table 106. Transverse and longitudinal cracking (count) 

Transverse Cracking (count) Longitudinal Cracking (count)

Section ID Total Total

02 18.33 41.67

03 21.00 56.00

04 32.00 29.67

05 10.00 43.33

06 17.33 22.67

07 35.00 23.00

08 20.00 6.00

09 12.67 28.33

10 14.00 13.33

02 (17,20) (36,48)

03 (18,27) (53,59)

04 (28,38) (23,38)

05 (4,15) (27,68)

06 (16,19) (15,33)

07 (27,43) (6,40)

08 (12,28) (5,7)

09 (10,16) (18,34)

10 (12,16) (10,16)

02 8.33 14.47

03 24.74 5.36

04 16.54 25.74

05 55.68 50.15

06 8.81 40.99

07 32.32 104.53

08 40.00 16.67

09 24.12 31.63

10 14.29 22.91

AVG(COV) 24.98 34.72

100-AVG(COV) 75.02 65.28

OVERALL VARIATION (%)

OVERALL PRECISION (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

Statistic
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Figure 190. Distance from average in standard deviation (transverse cracking count) 

Figure 191. Distance from average in standard deviation (longitudinal cracking count) 
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Table 107. Transverse and longitudinal cracking (linear feet) 

Transverse Cracking Length (ft) Longitudinal Cracking Length (ft)

Section ID Total Total

02 101.36 151.70

03 111.49 260.08

04 146.39 87.62

05 54.30 273.26

06 89.80 69.19

07 139.63 33.53

08 73.92 3.98

09 43.12 142.42

10 93.47 28.49

02 (90.29,115.79) (142.95,158.86)

03 (85.31,130.11) (240.59,274.77)

04 (134.9,167.76) (61.85,110.84)

05 (13.92,112.13) (143.91,453.86)

06 (75.06,110.91) (41.58,104.53)

07 (131.73,147.52) (19.38,47.69)

08 (53.34,88.26) (0,7.11)

09 (39.05,49.39) (63.09,208.95)

10 (62.44,125.11) (25.67,32.97)

02 12.90 5.32

03 20.93 6.76

04 12.66 28.07

05 94.62 59.00

06 20.88 46.50

07 7.99 59.69

08 24.72 91.17

09 12.79 51.79

10 33.53 13.76

AVG(COV) 26.78 40.23

100-AVG(COV) 73.22 59.77

Statistic

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

AVG

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

(Min,Max)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

COV (%)

OVERALL VARIATION (%)

OVERALL PRECISION (%)
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Figure 192. Distance from average in standard deviation (transverse cracking length). 

Figure 193. Distance from average in standard deviation (longitudinal cracking length). 
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G. FDOT RIGID PAVEMENT DISTRESS APPLICATION (FRPDA) 
USER’S GUIDE 

The developed application (FRPDA) is executed by running a batch processor from the 
Fugro Vision platform, which is used for data monitoring, processing, and reporting. 
Previously, FDOT raters used the same platform to conduct the semi-automated 
surveys. It is recommended that the new users review the guide on Using Basic Vision 
Functions, which has been included at the end of this Appendix to become familiar with 
the Vision platform before conducting distress surveys. Fugro also maintains more 
detailed User Manual and Training Modules for users to learn and adjust to the Vision 
platform. The Installation Guidelines for the Fugro Vision platform and the FRPDA batch 
processor are also included in this Appendix. 

The outline of the recommended procedure for automated identification and 
quantification of pavement distress is as follows: 

1. Run the automated lane assignment based on lane edge offset from image edge 
and specified lane width. Review and correct lane edges as needed to address 
any significant vehicle wander during data collection. 

2. Run the automated batch processor for crack detection (based on WiseCrax), 
which filters the images and detects the surface defects for all sections in a 
project database. This processor is mainly based on the existing Fugro software 
and not the development efforts in this project. Therefore, it has been organized 
in a separate processor to protect the pertinent intellectual property (IP). 

3. Run the automated batch processor called “FDOT Rigid Pavement Distress 
Application” to: 

a. Detect the joints for all sections in a project database; 

4. Perform quality control (QC) of the joints, modify, add, or delete as appropriate 
for each section using the Vision platform; 

5. Run the automated batch processor called “FDOT Rigid Pavement Distress 
Application” to: 

b. Conduct classification, which groups adjacent lines, assigns lines to slabs, 
and classifies lines into longitudinal and transverse based on their angle 
for all sections in a project database; 
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c. Rate the classified lines into corresponding crack types and severities for 
all sections in a project database; 

6. Perform QC of the automated cracks, modify, add, or delete as appropriate for 
each section using the Vision platform. Other non-cracking distress types can 
also be manually identified during this QC. 

The following sections explain each of the above steps in more detail. 

G.1. Preliminary Adjustments 

The pavement sections are organized in ‘sessions’, where images are stored. The user 
will need to double click on a session in the ‘Section Explorer’ to highlight it. Only one 
session can be highlighted at a time. After highlighting a session, lock the session so 
you can work on it manually. This will stop other users from accessing and processing 
data from that section. The section on Using Basic Vision Functions includes details on 
how to lock or unlock a session. Even if you start from locking one section, you can still 
run the batch processor for an automated survey of multiple sections at the same time. 
As a general rule, automated processes can be executed without locking sessions, but 
any manual adjustments would require you to lock the session. 

The correct ‘Distress Schema’ needs to be loaded before running the application. The 
schema specifies the included distress types and their severities. Fugro engineers 
create project specific schema that can be saved, emailed, and loaded. If you do not 
have a distress schema, or if you would like to create one for a specific different project, 
then you need to use the process for ‘Setting Up a Schema,’ which is explained at the 
end of this Appendix. It is recommended that the new users would refrain from creating 
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or modifying distress schema, unless approved by a more professional user. Different 
profiles will impact the detection results a lot, because each profile contains different 
parameter settings for the detection process. It is very important that you use the 
detection profile specifically created for you by a professional user. Once a schema is 
loaded for a project, other users can access it. Therefore, it is recommended that a 
professional user loads the schema. 

The following screen captures show where the professional user can load a previously 
saved schema. Go to the ‘Schema’ drop-down menu and select ‘Edit’. 

Then go to the ‘Profiles’ tab, and load the schema file from the saved location on your 
hard drive or server. 
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G.2. Lane Edge Adjustments 

Before the user can conduct automated distress surveys, they need to setup lane 
edges. Lane edges can be drawn separately for each image, which is approximately 20 
feet long. The Vision platform allows you to automatically setup all the lane edges for all 
the images in each session by specifying the offset of one lane edge and the lane width. 
Select "Lane" then select "Adjust Lane Edges": 
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The following window will show up, where you can automatically setup all the lane 
edges for all the images in each session, by specifying the offset of one lane edge and 
the lane width (note: only Metric units are available at this time). You can either select 
one or multiple images in each session to setup their lane edges. 
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Note that due to vehicle wander and lane departures, this automated lane edge 
assignment might not be very accurate. It is recommended that the results of this 
automated lane edge assignment be reviewed and adjusted manually. To manually 
adjust the lane edges after you have locked the session, click on the lane icon (see 
screen below) to adjust lane edge on pavement images. 
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Click on left/right half of the image, left click your mouse and select ‘Adjust Lane Edge 
(left/right)’: 
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    The following is an example of adjusted lane edge: 
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G.3. Automated Pre-Filtering and Crack Detection 

The existing batch processor for detection of pavement surface defects (based on 
WiseCrax algorithm) has been slightly adjusted to include pre-filtering with a Gaussian 
filter using the ImageJ open-sourec code. Select the ‘Process’ tab, and click on the 
‘New Batch Processor’ from the drop-down menu: 

Select the ‘Cracks Processing’ group of processors from the left hand side folders, and 
then select the ‘JPEG Cracks Detection Processor’ from the list: 

After selecting this processor from the ‘Tasks’ menu, go to the ‘Options’ menu on top, 
and choose the ‘Detection Profile’ called “FDOT_2D_RIGID” (Fugro engineers will 
provide the correct profile for you.). You must select the detection profile, or the 
processor won’t run. 
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Go to the ‘Data’ menu on top to select the session(s) that you would like to process. 
Note that in this menu, all of the available sessions will be loaded. The session numbers 
will be based on the ‘Collection’ data field in the list of sections (Section Explorer). In 
order to choose your desired session(s), you need to remove the unwanted sessions. 
First select the desired session to highlight it in blue. You can select multiple sessions 
by holding down the Ctrl key and left-clicking on multiple sessions (in the following 
example, all the sessions with their name ending in R1 corresponding to run number 1 
have been selected). Then, click on the check box on the top left and from the drop-
down menu, select ‘Invert’. 
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 This will result in all the other unwanted sessions to be highlighted in blue. 
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Now, you can click to ‘Remove’ the unwanted secssions. If you remove the incorrect 
sessions by mistake, you can click on the undo icon on top left to reload all the available 
sessions in this project. 

404 



 
 

 
 

 

     
   

  
  

In order to run the processor on the selected session(s), go to the ‘Process’ menu on 
top and select ‘Start’. The ‘Process’ menu will show you the progress of the processing 
on each and all of the selected sessions. You can select ‘Pause’ or ‘Stop’ at any time 
during the process: 
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After the processing has been completed for all the selected sessions, a message box 
will let you know that the batch processing is complete. Click on OK button to continue. 
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In order to see the detection results on any session that was already selected 
(highlighted in the ‘Section Explorer’ menu) before the batch processing, you need to 
double click to highlight another session and then come vback and double click the 
desired session. This process refreshes the view of the session and you can see the 
changes that took effect as a result of the batch processor. This screen capture shows 
an example image after the detection process has been executed and the surface 
defects have been detected: 
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G.4. FDOT Rigid Pavement Distress Application: FRPDA 

This application is developed specifically for FDOT, and it contains the following 
functions: 

1. Detection of joints from 2-D pavement surface images, 

2. Classification of lines (that have been detected by the previous batch processor) 
into longitudinal and transverse orientations based on their angle; grouping of 
adjacent cracks based on their type and proximity to one another; and assigning 
the detected cracks to the correct slab, based on their locations relative to the 
joints of the slabs; 

3. Rating of the cracks into longitudinal, transverse, or corner cracking, and 
shattered slabs; and assigning a severity level based on the width of cracks. 

Select the ‘Process’ tab, and click on the ‘New Batch Processor’ from the drop-down 
menu: 

Select the ‘Cracks Processing’ group of processors from the left-hand side folders, and 
then select the ‘FDOT Rigid Pavement Distress App’ from the list: 
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G.4.1. Joint Detection and QC 

Go to the ‘Options’ menu on top. In the ‘Settings’ for the ‘FDOT Rigid Pavement 
Distress App’, you can specify which process you would like to run: joint detection, 
classification, or rating. If you just want to detect the joints from pavement images, set 
the ‘Detect Joint’ as True, and ‘Classification’ and ‘Rating’ as False: 

Select the ‘Data’ (sessions) you would like to process. The default data to be processed 
is pavement images from all sessions. Go to the ‘Data’ menu on top to select the 
session(s) that you would like to process. Note that in this menu, all of the available 
sessions will be loaded. The session numbers will be based on the ‘Collection’ data field 
in the list of sections (Section Explorer). In order to choose your desired session(s), you 
need to remove the unwanted sessions. First select the desired session to highlight it in 
blue. You can select multiple sessions by holding down the Ctrl key and left-clicking on 
multiple sessions (in the following example, all the sessions with their name ending in 
R1 corresponding to run number 1 have been selected). Then, click on the check box 
on the top left and from the drop-down menu, select ‘Invert’. 

410 



 
 

 
 

 

 This will result in all the other unwanted sessions to be highlighted in blue. 
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Now, you can click to ‘Remove’ the unwanted secssions. If you remove the incorrect 
sessions by mistake, you can click on the undo icon on top left to reload all the available 
sessions in this project. 
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Process the selected data by clicking on the ‘Process’ menu on top, and choose ‘Start’: 

The ‘Process’ menu will show you the progress of the processing on each and all of the 
selected sessions. You can select ‘Pause’ or ‘Stop’ at any time during the process: 
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Once the joint detection is complete, you will be notified that ‘Batch processing has 
completed’: 

You have to click on ‘OK’ so you can go back to the section to check the detection 
results. The detected joints have been written to the ‘distress.Joints’ table in the Vision 
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database corresponding to this specific project. The ‘distress.Joints’ table includes key 
information for the joints location, length, direction, and the image frame id. The 
following is a screen capture of the table: 

The detected joints have also been displayed as green solid lines on the pavement 
images: 
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Most of joint detection results are accurate. However, A small number of false detection 
results and missed joints are unavoidable, specifically when skewed transverse joints or 
diagonal longitudinal joints are present. The user can go back to the pavement images 
to control the quality of the results and correct the minor errors. 

Select the desired session from the ‘Section Explorer’ menu. Lock that session under 
your name to be able to conduct manual changes. To remove the unexpected joint 
detection results, select the joint using the arrow sign by left-clicking and dragging a 
window on to the joint. Then, click on the ‘Delete’ icon: 
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To insert a missed joint, click on the ‘Joints’ icon, and draw a joint in the corresponding 
location manually: 
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To save the drawn ‘Joints’, the user must save the results by clicking on the ‘save’ 
(floppy disc cartoon) icon. Please remember to unlock the session so that others can 
also access this session for any required further modification. The database will be 
automatically updated with these manual interventions. And the classification, and rating 
would be conducted based on the updated joint data. 

G.4.2. Classification, Grouping, Slab Assignment 

Select the batch processor ‘FDOT Rigid Pavement Distress App’ again. If you only need 
to classify the lines, set the ‘Classification’ as True and the ‘Detect Joint’ and ‘Rating’ as 
False. The user can also conduct both the Classification and Rating by setting them 
both as True. We recommend that the user would perform classification and rating at 
the same time. 

During the classification, the line(s) will be classified as ‘transverse’ or ‘longitudinal’ 
according to their angle, and the slabs would be identified. If you would like to check the 
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results of identified slabs, you can save the results as a csv file in your chosen output 
folder: 

The classification results would be displayed in the Vision software and written into the 
distress.CrackSets table in the Vision database. 
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The app would also create a directory named ‘Slab Coordinate’ in the chosen output 
folder, the slab coordinates information would be saved in a .csv file with the same 
name as the session number. This file also includes other slab dimensional information: 
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G.4.3. Distress Rating and QC 

If you already rated the cracks, skip this step. If not, select the batch processor ‘FDOT 
Rigid Pavement Distress App’ again, and set the ‘Rating’ as True, and others as False. 
Note that you must perform the Classification before Rating. 

Here is an example image after processing is complete: 
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After the distress rating has been completed, the rating results would be displayed on 
both pavement images in the Vision software and tables in the Vision database. 
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The rating results have been also written to the distress.DistressRecords table in Vision 
database: 
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The app would also create a directory named ‘Distress in Slab’ in the chosen output 
folder, the identified distress information would be saved in a .csv file with the same 
name as the session number. 

The user can go back to the session by double clicking on the session number to check 
the final distress rating results. The user can select each one of the identified distresses 
from the list on the right or the images on the left using the cursor button: 

And the blue horizontal line will be centered on the selected distress, which is 
highlighted in the list of distresses displayed on the right hand side: 
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During the QC review of the distress identification results, the user can modify the type 
and severity of the selected distress by clicking on the modify button, which will open 
the corresponding edit window: 
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G.5. Setting Up a Schema 

Create Distress Types (Distress Name and category listed as following):  

Note: you don’t need to set up distress type for ‘Joints’. It is an internal distress type in 
Vision. 
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Create severity level list by using severity editor (the rated crack would be displayed 
according to severity level): 

Modify: 

New: 
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G.6. Using Basic Vision Functions 

The following show some instructions on using basic Vision functions after starting up 
the software. 

G.6.1. Connecting to a Project 

Click on "Connect" (top left-hand side), and recent databases that you have accessed 
will be listed. To connect to a new project, click on "New" and a window will allow you to 
enter the server name where the data is stored, username and password to access the 
server, and the name of the database which you would like to connect to. 

• Database Server Name: dotssmsql02 

• Database Name: (example) FugroPavementsTest 

• Select: Windows NT Authentication 
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When connected, a list of the sections in the database will appear on the screen. You 
can click on "Show" to filter out the sections which do not have corresponding data. By 
double clicking on one of the Routes, you will select that route file and a blue arrow will 
appear to indicate that selection. 

G.6.2. Connecting to the Images for the Project 

If this is the first time you or any of your colleagues are accessing this database, then 
you need to make sure that the project contains the correct links to the directory where 
the corresponding images are stored. Go to the File System Mapper under the Tools 
menu. Select the image type(s) for which you would like to specify a directory and then 
click on Remap: 

Then you will be able to enter a new directory address for those images and click OK. 
then you will see a list of all the images found. Click on Check >> Destination. If the 
images exist, the destination addresses will turn bold: 
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Now you can click on Map and the correct image paths will be restored. Please note 
that this will update the image paths for this project for all users. Therefore, this needs 
to be done once, preferably by the administrator of that project and then everyone will 
be able to see the images. In order for Vision to run faster, it is recommended that the 
images be stored on the FDOT server. 

G.6.3. Opening ROW and Pavement Images 

From the menu bar, select "Images" and then select "ROW" or "Pavement" images. 

Existing database does not yet contain ROW Images. 
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You can move any of the opened tabs ("Sections" and "ROW" in this example) around 
your screen to arrange the windows according to your preferences. If you have multiple 
monitors, you can right-click on any tab, select "undock" and then move the new 
window to another monitor screen. 

The play-stop-forward-backward buttons can be used to see images along the length of 
the roadway. The play speed can be adjusted. The slider bar on the right-hand side 
shows the location in milli-miles from the beginning of the roadway section. 

G.6.4. Pavement Distress Rating 

From the "Rate" menu, select "Pavement Distress" and you will see the module for 1) 
detecting lines, 2) classifying cracks by type (longitudinal, transverse, etc.), and 3) rating 
the detected cracks (assigned as specific distresses). The pavement surface distresses 
can be either rated manually on the collected digital images (a process referred to as 
semi-automated distress survey) or rated automatically using crack detection software. 
In the case of automated distress surveys, a post-survey manual QC is required to 
ensure quality. 
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The available distress types and the corresponding severity levels are preset using the 

distress schema: 

You can again use the media buttons at the bottom to see pavement images along the 
test section. Alternatively, you can use the blue arrows on the left side of the pavement 
image to move forward or backward in the pavement distress rating module. You can 
also adjust the speed of scrolling by moving your mouse up and down the arrows. The 
BLUE horizontal line on the pavement image shows the exact location of the mileage 
indicated at the bottom of the screen. 

Before one can start a distress survey on any pavement section, that specific section 
needs to be "locked" under their name. This ensures that only one person at a time can 
have access to add/edit pavement distresses on that section. Click on the lock icon on 
the top left side, from the menu select "Assignments" and you can see a list of 
assignments for each user and the status of the assignments. Here you can select a 
user and lock or unlock the section. You should lock it under your user name to be able 
to work on that section. 
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After you have "locked" a pavement section under your name, you can also edit the 
appearance of pavement imagery to facilitate manual rating of the pavement images. 

Using the button from the top of the pavement image, you will be provided with an 
image adjustment window as in the following screen to edit properties such as 
sharpness, brightness, and contrast. Please note that these modifications will only affect 
the image appearance for manual rating and will not affect the automated distress 
identification process. 
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G.6.5. Manual Distress Rating 

There are a variety of tools for drawing cracks and distresses on pavement surface. 

At the first step, you will need to identify the edges of the lane that you would like to 

rate. Using this button you can drag and adjust the lane edges on the left and right. 
The lane edge adjustment will need to happen at specified intervals or whenever you 
deem necessary. 

You can use this button on the top left to draw distresses. If you would like to 
identify linear distresses such as spalling, you should left-click the beginning and the 
end points for the crack and depending of the angle of the created line (less than or 
more than 45 degrees), the software will give you options to select from the available 
distresses. You can also select from the defined list of severity levels. For example, you 
can see a longitudinal crack in the following example: 

If you would like to identify an area type distress (fatigue cracking, patching, etc.), then 
you should left-click and drag to draw a box, and the software will give you the available 
distress options and severity levels for each. If you would like to identify a point type 
distress (counting the number of joints with defined condition, or number of shattered 
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slabs), then you should double-click on the pavement image and the software will give 
you the available distress options and severity levels for each. 

If you would like to erase a distress you can use the erase button and you can 
identify the distresses that you would like to erase. An alternative option would be to use 

the delete button. 

if you would like to modify a distress type or severity, you can use the modify 

button. 

If you need to measure distress dimensions to assign appropriate severity levels, you 

can use the measurement button. Also, if you need to zoom into a specific part on 
pavement surface to make sense of a defect, you can use the magnify tab at the bottom 

right of the pavement image: 

The following example shows low-severity longitudinal, moderate-severity transverse, 
and low-severity alligator cracking instances. The identified distresses are listed on the 
right-hand side according to the mile post. 
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If you would like others to be able to see the results of your distress survey, you should 

save your work with the save button. Be CAUTIOUS as the Undo button will 
undo all the distresses that you have drawn on the pavement image since the last time 
that you hit the save button. 

G.7. Installation Instructions for Fugro Vision Platform and the FDOT 
Rigid Pavement Distress App 

0) Uninstall the current Fugro Roadware Vision 

1) Install Fugro Roadware Vision 3.1.1 using the provided msi file. 

If there is an error regarding C++ (see below), install the vcredist_x64.exe file and then 
install Vision. 

Please note that for the Vision software, you will need to enter the licence key to extend 
the availability of the software from 30 days to 365 days. Please contact Fugro for a 
license key if you have nbot been provided one. 

2) Copy the following .dll files into this folder (replace the files in the destination folder): 
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C:\Program Files\Fugro Roadware\Fugro Roadware 
Vision\LCMS\LcmsAnalyserLib_4_13_0_0_64bit\ 

3) Copy the following .dll file into this folder: 
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C:\Program Files\Fugro Roadware\Fugro Roadware Vision\ 

4) Copy the following .dll file into this folder: 

C:\Program Files\Fugro Roadware\Fugro Roadware Vision\PlugIn\Processors\Cracks\ 

5) Now, run Vision and connect to the following test database to test if everything is 
working fine: 

database name: FDOT_LRIS_TEST_Final 
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H. DOCUMENTATION OF 24 SELECTED PROCESSED IMAGES OF 
RIGID PAVEMENTS 

All the processed images can be reviewed through the Fugro Vision platform to observe 
the performance of the crack detection and classification processes. In this appendix, 
screen captures of the processed images for 24 selected images (2 images from each 
of the 12 test sections) have been recorded from Vision. 

Table 108. List of Sample Image Frames Processed for Rigid Pavements 

Image Number Test Section Image Frame 

1 Section 1 3P000019 

2 Section 1 3P000020 

3 Section 2 3P000115 

4 Section 2 3P000116 

5 Section 3 3P000029 

6 Section 3 3P000022 

7 Section 4 3P000014 

8 Section 4 3P000024 

9 Section 5 3P000767 

10 Section 5 3P000768 

11 Section 6 3P000022 

12 Section 6 3P000023 

13 Section 7 3P000062 

14 Section 7 3P000061 

15 Section 8 3P000006 

16 Section 8 3P000010 

17 Section 9 3P000031 

18 Section 9 3P000038 

19 Section 10 3P000052 

20 Section 10 3P000053 

21 Section 11 3P000044 

22 Section 11 3P000045 

23 Section 12 3P000087 

24 Section 12 3P000088 
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   Figure 194. (Left) Image Number 1 (Frame 19); (Right) Image Number 2 (Frame 20) from Section 1 
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Figure 195. (Left) Image Number 3 (Frame 115); (Right) Image Number 4 (Frame 116) from 
Section 2 
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   Figure 196. (Left) Image Number 5 (Frame 29); (Right) Image Number 6 (Frame 22) from Section 3 
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   Figure 197. (Left) Image Number 7 (Frame 14); (Right) Image Number 8 (Frame 24) from Section 4 
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Figure 198. (Left) Image Number 9 (Frame 767); (Right) Image Number 10 (Frame 768) from 
Section 5 
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Figure 199. (Left) Image Number 11 (Frame 22); (Right) Image Number 12 (Frame 23) from 
Section 6 
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Figure 200. (Left) Image Number 13 (Frame 62); (Right) Image Number 14 (Frame 61) from 
Section 7 
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Figure 201. (Left) Image Number 15 (Frame 6); (Right) Image Number 16 (Frame 10) from Section 
8 
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Figure 202. (Left) Image Number 17 (Frame 31); (Right) Image Number 18 (Frame 38) from 
Section 9 
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Figure 203. (Left) Image Number 19 (Frame 52); (Right) Image Number 20 (Frame 53) from 
Section 10 
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Figure 204. (Left) Image Number 21 (Frame 44); (Right) Image Number 22 (Frame 45) from 
Section 11 
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Figure 205. (Left) Image Number 23 (Frame 87); (Right) Image Number 24 (Frame 88) from 
Section 12 
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I. PURCHASE ORDER NUMBER PR10026557: LCMS FEASIBILITY ON 
FLEXIBLE PAVEMENTS 

Since the commencement of this research project, new advances in technology have 
turned three-dimensional (3D) data collection systems into the state of the practice in 
the industry. These 3D systems provide additional information regarding pavement 
surface condition that facilitates the reporting of Statewide data in accordance with the 
federal requirements for the Moving Ahead for Progress in the 21st Century (MAP-21) 
and Fixing of America’s Surface Transportation (FAST) acts. As a result, there is a need 
to investigate feasibility of using 3D data for automated pavement condition surveys. 
Because Task 4 of Phase II involves a study on the feasibility of the 2D LRIS data for 
developing an automated crack detection software for flexible pavements, this is the 
optimum time to conduct the feasibility concurrently based on both 2D and 3D data. 

Since Florida Department of Transportation (FDOT) does not own 3D data collection 
equipment, FDOT staff requested that Fugro provides a scope and estimate of the 
required level of effort to collect the required 3D images and conduct analysis based on 
the 3D data. Fugro owns and operates several Automatic Road Analyzer (ARAN) 
vehicles equipped with 3D Laser Crack Measurement System (LCMS). Therefore, 
Fugro has the expertise and experience required to conduct the 3D data collection 
effectively and efficiently. FDOT approved a Purchase Order (Number: PR10026557) 
for Fugro to conduct the 3D data collection and the corresponding processing and 
analysis to evaluate feasibility of the 3D technology for this purpose. 

Under this purchase order, Fugro analyzed the viability of using 3D LCMS images to 
detect, quantify and classify cracks in flexible pavements. Fugro collected and 
processed 3D LCMS images and data to be used in software evaluation. It should be 
noted that the actual software development effort will be carried out during Task 6 of 
Phase II of this project, and therefore at this stage of the analysis, the existing Fugro 
Vision software was used due to its availability with the integrated images and data. 
Fugro identified the potentials and the limitations of this application with 3D images for 
flexible pavements and compared it to the results from the 2D LRIS analysis in Task 4 
of Phase II. The results from the analysis and recommendations are documented in this 
Appendix. 

The required activities for evaluating the software on 3D images included the following: 

• Activity 1: Collect 3D LCMS images and data on the representative flexible 
pavement test sections identified by FDOT staff. 

• Activity 2: Process the collected LCMS data to create a corresponding database 
for the automated software application. 
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• Activity 3: Determine proper detection parameter settings for 3D LCMS images 

• Activity 4: Conduct classification and rating of detection results 

• Activity 5: Summarize the LCMS results and compare it to LRIS results obtained 
in Task 4 of Phase II; prepare documentation on comparison, potentials, 
limitations, and recommendations 

This Appendix is organized in five sections. Following this introduction, Section I.1 
provides a report on the 3D data collection conducted by Fugro staff. Section I.2 
explains the data processing details including segmentation, crack detection, and 
distress identification. Section I.3 provides a comparison of automated crack detection 
and distress identification results between the 3D analyses conducted under the current 
Purchase Order and the 2D analyses conducted under Task 4 of Phase II. Section I.4 
summarizes the advantages and limitations of the 3D technology for automated crack 
detection and distress identification. Section I.5 includes conclusions and 
recommendations. 

I.1. Data Collection 

Data collection for this FDOT Purchase Order was completed in May 2017. This section 
describes the data collected, and the equipment used for the collection. 

I.1.1. Collected Data Elements 

Collection of 3D LCMS images and data was requested by FDOT and conducted by 
Fugro. All collected data is referenced geographically and linearly to FDOT’s inventory 
based on the provided Location Referencing System (LRS). The collected data include 
the following: 

▪ 3D pavement images used for crack detection and distress identification 

▪ High definition forward viewing right-of-way (ROW) images 

▪ Pavement longitudinal profile using a Laser South Dakota Profiler (SDP) 

▪ Pavement transverse profile using the 3D LCMS data 

▪ Pavement surface texture using the 3D LCMS data 
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▪ Differential Global Positioning System (GPS) data 

▪ Distance Measuring Instrument (DMI) data integrated with GPS data 

▪ Inertial position and orientation data from fiber optic gyros and accelerometers, 
integrated with the GPS and DMI data 

I.1.2. Data Collection Equipment 

The data was collected using an Automatic Road Analyzers (ARAN), equipped with the 
Pave3D system, which uses INO/Pavemetrics’ Laser Crack Measurement System for 
collecting 3D images of the pavement surface. Fugro Roadware developed the first 
ARAN in 1983, one of the very first multi-functional pavement data collection vehicles in 
the world. Now in its 6th generation, everything learned from then until now has been 
applied to create a robust, accurate and repeatable integrated pavement data collection 
system. The ARAN has a modular design which allows it to be configured to meet a 
large range of agency needs. An overview of the ARAN sensors and capabilities used 
for the FDOT project is shown in Figure 206 and further described in the section on 
ARAN Information and Specifications at the end of this Appendix. 

The Pave3D system compared to the Pave2D system has the benefits of fewer reruns 
due to damp collection, less ARAN downtime while waiting for roads to be 95% dry, 
faster collection due to the fewer down days, lower cost of collection, and faster data 
turnaround time, operation in all types of lighting conditions both during the day and at 
night without the need for artificial illumination of pavement, operation under the sun 
and shadows as well as various types of pavement types ranging from dark asphalt to 
light colored concrete, measurements at highway survey speeds and on roads reaching 
14 feet in width and still achieving a 0.19 inches longitudinal resolution. 
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Figure 206. The ARAN Data Collection System Used for the FDOT Project 

I.1.3. Testing Locations and Routing 

Similar to Phase I of this project, 12 representative flexible pavement test sections 
(Table 109) were selected by FDOT staff for Phase II evaluations. These 
representative test sections were selected in a manner that would include the key 
distress types and severity levels that are frequently encountered on Florida highways. 
All routes were identified, divided into segments, mapped, and measured for length. 
This information was assembled into tables and maps (“routing package”) for use on the 
ARAN. This “routing” process allowed the operators to clearly understand which roads 
and at which specific locations were to be tested and pick an optimal testing path to 
reduce testing time. 
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Table 109. 12 Representative Flexible Pavement Test Sections 
Inde 
x 

County 
ID 

Road City 
Lan 
e 

Directio 
n 

BMP EMP 
Lengt 
h 

1 02050000 SR 44 Crystal River R2 East 0.000 0.604 0.604 

2 02050000 SR 44 Crystal River L2 West 0.000 0.604 0.604 

3 11010000 SR 44 Leesburg R2 East 0.000 1.592 1.592 

4 11100000 SR 19 Umatilla R2 North 3.816 4.906 1.090 

5 11002000 SR 44 Leesburg R2 East 1.183 2.276 1.093 

6 11002000 SR 44 Leesburg R2 East 3.184 4.514 1.330 

7 11080000 SR 19 
Howey in the 
Hills 

R1 North 0.000 0.925 0.925 

8 18020000 SR 50 Polk City R1 East 5.356 6.421 1.065 

9 26050000 SR 24 Gainesville L2 South 3.367 6.095 2.728 

10 26050000 SR 24 Gainesville L2 South 6.095 7.670 1.575 

11 10190000 
SR 400 
/ I-4 

Tampa R3 East 
11.09 
8 

12.33 
2 

1.234 

12 10190000 
SR 400 
/ I-4 

Tampa R3 East 
20.40 
7 

21.47 
6 

1.069 

I.2. Data Processing 

Data processing for this FDOT Purchase Order consisted of three major processes: 
data import and quality control, data analysis, and data publishing. Software packages 
developed by Fugro are used to help manage the flow of data throughout all stages of a 
project. Figure 207 provides a high-level overview of the standard operating procedures 
(SOP) at every step of the data flow process in the Fugro ISO 9001 certified Quality 
Management System (QMS) for highway data collection. 

Figure 207. Fugro Data Process Flow 
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This section provides a brief overview of the methodology behind some of the key 
processing steps relevant to the topic of this research and any project specifications 
unique to this project. 

I.2.1. Segmentation 

Segmenting is the method of ensuring the data collected by the ARAN matches the 
geographic and linear references set up by FDOT. The segmenting process is 
completed to ensure that the true start and stop locations of the road can be best 
matched to ensure that the data represents the exact location expected by FDOT. The 
matching of information was completed using Fugro’s Vision and utilizes a combination 
of image streams (ROW and pavement images), electronic field sheets, as well as GIS / 
web-based maps. 

Stationing for all routes was adjusted using a method called “rubber-banding”, to match 
stationing provided by FDOT. All data collected prior to the start of the route are 
removed and the chainage of the beginning of the route is set to the FDOT value for 
that landmark. Chainages for all other landmarks on the route are adjusted to match 
length and location information provided by FDOT. In the “rubber-banding” process, 
data between each set landmark may be stretched or compressed accordingly to 
ensure station chainages match up. The Vision module used to perform segmenting for 
the 2017 FDOT collection is shown in Figure 208. 

Figure 208. Vision Software for Segmenting 
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I.2.2. Distress Data Analysis Process 

The actual software development effort for this project will be carried out during Task 6 
of Phase II, and therefore at this stage of the analysis, the existing Fugro Vision 
software was used due to its availability with the integrated images and data. Therefore, 
the following software descriptions are the Vision software descriptions and not the 
descriptions for the FDOT customized application at this point of the project. Fugro 
Vision software includes an automated distress data analysis application, which 
involves the following main routines: 

1. Lane Detection: during this step, lane boundaries are automatically detected 
and marked as blue lines on the pavement images. 

2. Defect Detection: also called “Crack Detection,” during which any linear 
defects on pavement surface is detected and marked with lines. 

3. Defect Classification: during this step, all of the detected linear defects are 
classified into one of the three categories of longitudinal defects, transverse 
defects, and other (which will eventually be rated as alligator or block 
cracking) defects according to some criteria for defect angle and density, 
which can be changed by the user. 

4. Distress Rating: during this final step, the software assigns a distress type 
and severity to each of the classified defects according to a distress schema 
defined by the user. The user needs to select one or more criteria from a 
series of criteria such as angle, longitudinal and transverse extent, density, 
width, and others for each distress type and severity. Once the schema is 
setup and saved, this schema can be applied for network-level data 
collection. 

I.2.3. Distress Schema Specification 

The performance of crack detection, classification and rating is highly dependent on a 
well-defined distress schema. The setting up of distress schema includes creation of 
Distress Type, Distress Severities, Crack Ranges, Detection Profile, Classification 
Profile, Road Zones and Rating Profile (Figure 209). In this project, the distress schema 
was setup according to the specified criteria for each distress type in the FDOT Flexible 
Pavement Condition Survey Handbook. Once the schema is setup and saved, this 
schema can be applied for network-level data collection. The following segments 
describe how the details of the distress schema are setup. 

The Vision software provides two options for distinguishing distresses by zone location: 
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1. In the distress schema, only one distress type would be setup for both wheel 
path (WP) and outside wheel path (OP), but then they could be separated 
using a SQL code on the database based on the location information (Figure 
209). This option is more flexible as it does not require reprocessing if it is 
decided to change the width of wheel path zones in the future. Specifically, if 
the images are going to be rated manually or if the automated distress needs 
manual QC and correction, this option is recommended. It is extremely 
tedious for the manual rater to draw separate distresses for the wheel path 
and non-wheel path areas (option 2).  In this stage of the project, option 
number 1 was used for establishing the reference survey. 

2. In the distress schema, separate distress types could be setup for WP and 
OP areas (Figure 210). This option is recommended when no manual 
correction of the automated process is needed. In this stage of the project, 
option number 2 was used for the automated distress survey. 

Figure 209. Vision Distress Schema Editor Interface with One Distress Type for Both Wheel Path 
and Outside Wheel Path Zones (Option 1) 
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Figure 210. Vision Distress Schema Editor Interface with Separate Distress Types Defined for 
Wheel Path and Outside Wheel Path Zones (Option 2) 

Distress Type and Severity 

Distress types are defined under the ‘Distresses’ tab and the severities under the 
‘Severities’ tab. Then, each distress type is assigned the possible severity options. 
FDOT’s Flexible Pavement Condition Survey Handbook (August 2015) includes the 
following distress types and severities: 

1. Single Cracks (linear length, feet), Class 1B or Class II or Class III 

2. Branch Cracks (linear length, feet), Class 1B or Class II or Class III 

3. Block Cracks (area, sq. feet), Class 1B or Class II or Class III 

4. Alligator or Fatigue Cracks (area, sq. feet), Class II or Class III 

5. Patching (area, sq. feet), no severity levels 

6. Raveling (area, sq. feet), Light or Moderate or Severe 

During the distress rating process, these distress types are identified and quantified 
individually and then they are added up to generate the total amount of cracking in each 
one of the Class 1B, Class II, and Class III cracks. All linear distress types are recorded 
in two groups of longitudinal and transverse to differentiate their orientation and facilitate 
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quality control, but they are added up for each distress type (for example, branch cracks 
or single cracks) following the survey. 

Following the distress survey, two (2) categories of distress will be recorded for each of 
these distress types: within the wheel paths (CW), and outside the wheel paths (CO). 
For automated survey results, this differentiation was made in the schema setup (option 
2). For the reference survey, this differentiation was conducted using a SQL code 
(option 1). This is required for the final calculation of the amount of distress in each 
class within and outside the wheel paths, because the deduct values are higher for 
distresses within the wheel paths. 

The total area for patching and raveling is added to the total amount of Class III cracks. 
The details of each distress type and severity are recorded to keep a permanent record 
that facilitates quality control and quality assurance initiatives. All the summation 
happens on the recorded data in the SQL database. 

Crack Range 

Under the ‘Cracks’ tab in the Distress Schema Editor, a coloring scheme is defined for 
identification of the detected cracks/defects on the pavement image according to crack 
width (Figure 211). The following crack ranges were determined for this project as they 
correspond to the severity levels identified in the FDOT manual: 

1. Small cracks with crack width less than 3.18 mm are identified with green color 
lines (later assigned to Class 1B category in distress rating) 

2. Medium cracks with crack width equal to or greater than 3.18 and less than 6.35 
mm are identified with yellow color lines (later assigned to Class II category in 
distress rating) 

3. Large cracks with crack width equal to or greater than 6.35 mm are identified with 
a red color lines (later assigned to Class III category in distress rating) 

The “Max Width” in Figure 211 means “less than” and the “Min Width” indicates “equal 
to or greater than”. As previously noted, this is NOT the FDOT customized application. 
At this stage, we are using the existing Vision software to compare 2D versus 3D data. 
The FDOT customized application will be developed during Task 6 (development). Also 
patching and raveling are “distresses” and NOT “cracks”. This menu is ONLY showing 
cracks. After the distresses are identified in the “rating” process, patching and raveling 
can be added. 
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Following the crack detection process, the detected cracks are displayed on top of the 
pavement images with the colors corresponding to their width. As shown in Figure 211, 
the Cracks menu also allows selection of specific coloring scheme for the classification 
categories of Longitudinal, Transverse, Alligator, Block, and Unclassified categories. 
Following the classification process, each class of cracks are identified on top of 
pavement images using the corresponding colors. These colors help with quality control 
of the detection and classification process. 

Figure 211. Cracks Menu in the Distress Schema Editor 

Detection and Classification Profiles 

Under the ‘Profiles’ tab in the Distress Schema Editor, the control parameters for the 
crack detection and classification processes are determined. The software typically 
shows the default values for these control parameters that have been set based on 
empirical experience. In the Task 2 report for this project, various control parameters for 
the detection of cracks from 2D images and for the classification of detected cracks into 
transverse, longitudinal, alligator, and block categories were introduced and the impacts 
on software performance of changing each control parameter were explained in detail. 
Figure 212 shows the ‘Profiles’ tab, which allows for customization of the control 
parameters for the crack detection and classification processes. 
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Figure 212. Detection and Classification Profiles in the Distress Schema Editor 

Vision provides two alternative automated crack detection algorithms to choose from 
when running this process on 3D images (using both image pixels and depth data): 

1. LCMS Global Processor: This automated crack detection algorithm was 
developed by Pavemetrics Systems, Inc. Pavemetrics is the vendor company 
for the LCMS devices that have been manufactured by INO. 

2. Fugro Machine Learning Crack Detection: This machine learning automated 
crack detection algorithm was recently developed by Fugro engineers, based on 
a large database of semi-automated evaluation of 3D images. 

Both the Pavemetrics LCMS Global Processor and the Fugro machine learning based 
3D crack detection algorithms have been tested on numerous pavement surface images 
and their corresponding control parameters have been optimized in the latest version of 
Vision software. As a result, it is recommended that the detection parameters are not 
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changed. In this project, the Pavemetrics LCMS Global Processor algorithm was used 
to create crack maps that were manually fixed to establish the reference survey. The 
Fugro machine learning algorithm was used without manual intervention to evaluate the 
automated crack detection results on 3D images. There was no specific reason for the 
selection of one or the other. Either way, one algorithm needed manual correction to 
establish the reference crack map and a different algorithm was needed to show the 
automated crack detection results on 3D images. 

In the classification step, there are several parameters that can be changed to improve 
the classification results (Table 110). For this phase of the project, eight classification 
profiles using eight different control parameter sets were used, and the final 
classification profile was selected based on the best results among these profiles on the 
selected representative test sections. It should be noted that the cracking analysis 
results are very sensitive to these settings and they are not one size fits all. 

Table 110. Classification Parameter Settings 
Parameter Description Value Used 

Classification Enabled Enables classification TRUE 

Separate Seal Classification Classifies sealed cracks separately FALSE 

Degree Angle 

Angle threshold differentiating between 
longitudinal and transverse defects, this 
is the angle for the best fit line across the 
crack nodes 

45 

Density 

The density threshold beyond which 
there are enough cracks within a tile to 
count the tile area as alligator cracking 
area and not individual cracks. 

1.5 

Tile Height (pixels) Tile used for calculating the density of 400 

Tile Width (pixels) the alligator or block categories 200 

Group Tile Height (pixels) 

Tile used for grouping defects together 

(see Figure 213). Cracks that fall within 
these grouping tiles and are of the same 

50 

Group Tile Width (pixels) 
classification will be grouped together to 
make one crack set or group of cracks. 10 
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Figure 213. Group Tile Height and Width 

The tuning of the classification control parameters was conducted by changing the 
parameters one by one and comparing the one classification result against the other. 
Figure 214 shows a comparison of the classification results when changing the density 
threshold that defines when cracks become alligator cracks. To compute crack density, 
the bounding box of a crack is divided into grids of tiles of user input size. If the density 
threshold is increased, there will be less distresses classified as alligator cracking. 
Figure 215 shows a comparison of classification results when changing the dimensions 
of the Tile used for calculating the density of the alligator or block categories. It is 
obvious that the larger the tile size, the smaller the density of the cracks. As a result, if 
the density threshold is fixed but the tile size is increased, there will be less distresses 
classified into alligator category. 
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Density threshold=1.5 Density threshold=2 

Figure 214. Comparison of Classification Control Parameter Settings: Density 
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Tile Height= 400, Tile Width= 
200 

Tile Height= 400, Tile Width= 
400 

Figure 215. Comparison of Classification Control Parameter Settings: Tile Height and Width 

During the classification, the detected cracks are grouped into crack sets based on their 
proximity to each other. The distances between each crack bounding box are checked; 
if the horizontal distance between two adjacent bounding boxes is smaller than the 
group tile width and the longitudinal distance between the boxes is smaller than group 
tile height, then the two cracks are merged into one crack set. Each crack set will be 
rated as one distress. Figure 216 shows a comparison of the classification results when 
changing the dimensions of the Group Tile used for grouping defects together (see 
Figure 213). 
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Group Tile Height: 50 

Group Tile Width: 10 

Group Tile Height: 50 

Group Tile Width: 50 

Figure 216. Comparison of Classification Control Parameter Settings: Group Tile Height and 
Width 

Road Zone 

Road zone describes the portion of the road that is in the wheel paths and what is 
outside the wheel paths. The road zones were customized according to the Florida DOT 
specification of each wheel path being three feet wide (the FHWA HPMS Field Manual 
of December 2016 specifies 1 meter) and the center zone being three feet (0.91 meters) 
wide (Figure 217 and Figure 218): 

1. Left Exterior: 0 meters offset from the Left Edge to -1.365 meters offset from the 
Center 

2. Left Wheel Path: -1.365 to -0.455 meters offset from the Center 
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3. Center: -0.455 to 0.455 meters offset from the Center 

4. Right Wheel Path: 0.455 to 1.365 meters offset from the Center 

5. Right Exterior: 1.365 meters offset from the Center to 0 meters offset from the 
Right Edge 

Figure 217. Wheel Path Designation in FDOT Flexible Distress Handbook 

Figure 218. Road Zone Settings 
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Rating Profile 

The Rating Profile is used for assigning a distress type and severity to each of the 
detected and classified surface defects. This profile contains several components 
including profile name, profile description and rating rules. The rating rules configuration 
include distress rule set up and severity rule set up. While the Distress Rules specify 
classification of crack, the road zone, and distress metrics to be calculated, the Severity 
Rules determine detailed constraints on distresses that will be rated into each severity. 

Distress Rules are setup based on the following: 

1. Crack Classification: following detection and classification, all cracks are 
classified into Longitudinal, Transverse, Alligator, or Block. As previously noted, 
there are two options for distinguishing distresses by zone location. Table 111 
and Table 112 show the distress types that were considered for this project and 
their corresponding crack classification for option 1 and option 2, respectively. As 
it was noted before, these distress types are used for documenting the distresses 
in a permanent record to facilitate quality control. 

Table 111. Distress Types and Corresponding Crack Classification and Severity Levels (option 1 
corresponding to Figure 209 used for the reference survey) 

Distress Name Crack Classification Severity Levels 

SingleCrack_L Longitudinal 1B, II, III 

SingleCrack_T Transverse 1B, II, III 

BranchCrack_L Longitudinal 1B, II, III 

BranchCrack_T Transverse 1B, II, III 

BlockCrack Block 1B, II, III 

AlligatorCrack Alligator II, III 

Raveling NA III 

Patching NA III 

Table 112. Distress Types and Corresponding Crack Classification and Severity Levels (option 2 
corresponding to Figure 210 used for automated results) 

Distress Name Crack Classification Severity Levels 

SingleCrack_L_WP Longitudinal 1B, II, III 

SingleCrack_L_OP Longitudinal 1B, II, III 

SingleCrack_T_WP Transverse 1B, II, III 

SingleCrack_T_OP Transverse 1B, II, III 

BranchCrack_L_WP Longitudinal 1B, II, III 

BranchCrack_L_OP Longitudinal 1B, II, III 

BranchCrack_T_WP Transverse 1B, II, III 

BranchCrack_T_OP Transverse 1B, II, III 

BlockCrack_WP Block 1B, II, III 

BlockCrack_OP Block 1B, II, III 
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Distress Name Crack Classification Severity Levels 

AlligatorCrack_WP Alligator II, III 

AlligatorCrack_OP Alligator II, III 

Raveling_WP NA III 

Raveling_OP NA III 

Patching_WP NA III 

Patching_OP NA III 

2. Lane Type: Used only with option 2 (Table 112 and Figure 210), this refers to the 
road zones to be included in the process of identifying a selected Distress Type. 
For wheel path distresses, the ‘Left Wheel Path’ and ‘Right Wheel Path’ zones 
created in the ‘Road Zone’ menu of the Schema Editor can be selected. For non-
wheel path distresses, the ‘Left Exterior’, ‘Center’, and ‘Right Exterior’ zones 
created in the ‘Road Zone’ menu of the Schema Editor are selected. For the 
reference survey in which manual correction of the automated results was 
required, this feature was disabled and instead wheel path and non-wheel path 
distresses were recorded in the same distress type and separated using an SQL 
code on the database (option 1). In this manner, if the road zone widths change 
in the future, the data can easily be reprocessed and there would be no need for 
conducting the manual distress rating again. 

3. Metric: These include metrics to be reported for a selected Distress Type after 
automated identification and quantification. The following metrics were selected 
in the created rating rules. They will be calculated and recorded in the Vision 
Database. 

a) Crack Count - Number of Cracks that make up a Crack Group 

b) Crack Area - Area that contains all Cracks (all cracks in Crack Group) 

c) Crack Length - Actual length along all cracks in a Crack Group 

d) Crack Extent - Longitudinal length of cracks in a Crack Group (Length in y-
axis) 

e) Transverse Extent - Horizontal length of cracks in a Crack Group (Length 
in x-axis) 

f) Width - Width of Crack (Average width of cracks in Crack Group) 
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g) Diagonal - Length from bottom left to top right of every distress bounding 
box 

Severity Rules are setup based on the following (In current version of Vision software, 
the unit used in parameter settings is meter): 

4. Crack Width: a crack width range is used as a constraint for selected severity 
levels in this project as demonstrated in Table 113. 

Table 113. Crack Width Range 
Severity Level Crack Width Range (meter) 

Class 1B Less than 0.00318 

Class II Greater than or equal to 0.00318 and less than 
0.00635 

Class III Greater than or equal to 0.00365 and less than 1 

5. Crack Length: a minimum extent of 0.3 meter (1.0 ft) is used as a constraint for 
identifying distresses (this was selected based on past experience): 

a) Transverse Extent is used for transverse single and branch cracks 

b) Longitudinal Extent is used for longitudinal single and branch cracks 

c) No extent limitation was considered for alligator or block cracks 

6. Road Zone: Used only with option 2 (Table 112 and Figure 210), this refers to the 
road zones to be included in the process of rating a selected Distress Severity. 
For wheel path distresses, the ‘Left Wheel Path’ and ‘Right Wheel Path’ zones 
created in the ‘Road Zone’ menu of the Schema Editor can be selected. For non-
wheel path distresses, the ‘Left Exterior’, ‘Center’, and ‘Right Exterior’ zones 
created in the ‘Road Zone’ menu of the Schema Editor are selected. This results 
in only the portion of detected cracks within specified zones to be included in 
each severity rating. This was only used for the fully automated survey. For 
example, Figure 219 shows that Distress number 195 shows longitudinal 
cracking in the wheel path and Distress number 196 shows the adjacent 
longitudinal cracking outside the wheel path. Similarly, Distress number 197 
shows alligator cracking in the wheel path, while Distress number 198 indicates 
the adjacent alligator cracking outside the wheel path. 
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Figure 219. Automatically Separated Wheel Path and Non-Wheel Path Distress Rating 

I.2.4. Automated Pavement Distress Identification 

Fugro Vision software includes batch processors for automated lane detection, crack 
detection, classification and rating as identified in Table 114. These batch processors 
can be executed individually or all together. The JPEG Crack Detection Processor is 
Fugro’s solution for detecting surface defects using machine learning algorithms on 2D 
or 3D pavement images. The LCMS Global Processor is the Pavemetrics solution for 
detecting surface defects on 3D pavement images. As noted previously, the 
Pavemetrics algorithm was used to create crack maps that were manually fixed to 
establish the reference survey. The Fugro machine learning algorithm was used without 
manual intervention to evaluate the automated crack detection results on both 2D and 
3D images. There was no specific reason for the selection of one or the other. Either 
way, one algorithm needed manual correction to establish the reference crack map and 
a different algorithm was needed to show the automated crack detection results on 3D 
images. 
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At this stage, the Vision software does NOT have an automated way of identifying 
patching. There is an automated raveling algorithm developed by Pavemetrics, but it 
needs to be calibrated according to FDOT raters’ subjective identification of the raveling 
severity levels (This will be done in Task 6). 

Table 114. Vision Automated Batch Processors 
Batch Processor Function 

JPEG Lane Detection Processor Lane Detection 

JPEG Crack Detection Processor Crack Detection from 2D or 3D Images 

LCMS Global Processor Crack Detection from 3D Images 

Classification Processor Classification 

Rating Processor Rating 

I.2.5. Semi-Automated Pavement Distress Identification 

A Fugro rater conducted a manual rating on one run of the images for the 12 test 
sections using the LCMS images that were imported into the Vision software. Then 
another Fugro rater reviewed the results of the first rater to reach consensus on the 
reference survey (“Ground Truth”). During this procedure, linear distresses and area 
distresses (boxes) are manually drawn on top of the collected pavement images. The 
results of the crack detection process, including the color-coded cracks were used by 
raters as guidance to assign severity levels based on crack width. As shown in Figure 
220, the Vision Pavement rating module allows the analyst to simultaneously view both 
the ROW and pavement images while marking and rating pavement distresses. 
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Figure 220. Vision Pavement Rating Module for Semi-Automated Distress Survey 

I.3. Comparison of Automated Distress Survey Results on 2D versus 
3D Images 

In this chapter of the report, the results of crack detection and distress identification 
using the 2D and 3D images are contrasted. The 2D data collection was conducted by 
FDOT using their LRIS equipment and the data were analyzed by Fugro staff during 
Task 4 of this project. The 3D data collection was conducted by Fugro using the ARAN 
LCMS equipment and the data were analyzed by Fugro staff as part of the required 
activities for this Purchase Order. The following will describe the success metrics, the 
reference values, and the comparison results, which will be analyzed to conclude on 
feasibility of using 3D LCMS technology and its advantages to the 2D LRIS technology 
in identification and quantification of flexible pavement distresses. 
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I.3.1. Success Metrics 

The three principal success metrics of any process are effectiveness, efficiency, and 
reliability. In the context of automated distress identification, effectiveness can be 
expressed in terms of accuracy of the crack detection software when compared to a 
reference baseline. Accuracy is a qualitative term referring to whether there is 
agreement between a measurement made on an object and its true (target or reference) 
value. Bias is a quantitative term describing the difference (or error) between the 
average of measurements made on the same object and its true value. 

While systematic errors identified in the bias can be calibrated out, such evaluations 
must address the random errors as well. The average results may be quite comparable, 
but individual results can deviate significantly. Efforts must be made to control these 
deviations to produce results which can ultimately be classified as reliable. Reliability of 
automated distress surveys is often expressed in terms of precision. Precision is a 
qualitative term that can describe the degree of repeatability of a measurement value on 
the same sample, or consistency in accuracy of measurement on different samples. 
Coefficient of variation of actual measurement values on the same sample is a 
quantitative estimate of repeatability. Standard deviation of error (standard error) is a 
quantitative estimate of consistency. Accuracy and precision (or the corresponding 
quantitative estimates: bias, variance, and standard error) ultimately define how 
effective and reliable a system is as described in greater detail below. The efficiency of 
the system is typically measured by the time it takes to conduct these measurements. 

With respect to automated condition evaluations, the success metrics could be 
considered for two aspects of the process, first for the detection of individual surface 
defects (cracks), and second for the identification and quantification of the distresses in 
a distinct section. 

The following are the success metrics used for evaluating the crack detection results: 

• True Positives: length of correctly detected cracking 

• False Positives: length of detected cracking that don’t exist in the reference 
survey 

• False Negatives: length of missed cracking 

• Crack Validity: an indicator to be calculated as the ratio of the correctly detected 
cracks (true positives) to the total detected cracks (true positives and false 
positives). This statistic indicates the percentage of the detected cracks that was 
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actually present in the reference survey, thereby expressing the validity of the 
cracks detected by algorithms. 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦 (%) = 100 × = 100 × 

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

• Crack Sensitivity (or Recall): a parameter to be calculated as the ratio of the 
correctly detected cracks to the total actual cracks existing on the pavement 
surface (true positives and false negatives). This statistic represents the 
percentage of the cracks in the reference survey that was detected by the 
automated method, thereby expressing the sensitivity of the algorithms to 
existing cracks. 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) = 100 × = 100 × 

𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑎𝑐𝑘𝑠 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

• Crack Detection Accuracy: based on average normalized error (bias) of 
automatically detected crack length compared to the reference. Accuracy (%) = 
100 – Bias (%) 

• Crack Detection Repeatability: based on coefficient of variation (COV) of 
detected crack length among three runs (independent of the reference and 
averaged among the sections). Repeatability (%) = 100 – COV (%) 

• Crack Detection Consistency: based on coefficient of variation (COV) of crack 
detection accuracy among 12 test sections. Consistency (%) = 100 – [Standard 
Deviation of Accuracy (%) / Average Accuracy (%)] 

• Crack Detection Efficiency: based on the time required for the automated crack 
detection. Efficiency (second per foot) = time for cracking detection divided by the 
total length 

Based on the overall cumulative amount of each distress among different test sections 
and multiple runs, the success metrics used to compare 2D and 3D rating methods are: 

1. Distress Identification Accuracy: based on average error (bias) with respect to 
the reference distress survey values for each distress type. Accuracy (%) = 100 – 
Bias (%) 
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2. Distress Identification Repeatability: based on coefficient of variation (COV) of 
automatically identified distresses among three runs for each distress type 
(independent of the reference and averaged among the sections). Repeatability 
(%) = 100 – COV (%) 

3. Distress Identification Consistency: based on coefficient of variation (COV) of 
distress identification accuracy among 12 sections for each distress type. 
Consistency (%) = 100 – [Standard Deviation of Accuracy (%) / Average 
Accuracy (%)] 

4. Distress Identification Efficiency: based on the time required for the automated 
distress survey. Efficiency (second per foot) = time for cracking detection, 
classification, and rating divided by the total length. 

I.3.2. Reference Rating or “Ground Truth” 

Two reference ratings were created for this evaluation: 

1. Crack Detection Reference: the Pavemetrics LCMS crack detection routine was 
used to generate a baseline crack map and then a Fugro data technician 
reviewed all the images in one run of the 12 test sections and modified the crack 
maps. New cracks were added for missed cracks, false positives were deleted, 
and some cracks with wrong extent were modified to reflect the actual cracks that 
can be seen on the 3D intensity and range (depth) images and with assistance 
from the ROW images. 

2. Distress Identification Reference: a reference survey was created by one Fugro 
engineer and another Fugro technician reviewed the results to reach a 
consensus for the reference survey. This reference survey was created using the 
3D images because they provide both intensity and range (depth) views, along 
with the ROW images. Therefore, comprehensive sources of data are available 
in the 3D database for creating this reference survey. 

I.3.3. Comparison Limitations 

The current comparison was conducted considering the following limitations of this 
analysis: 

1. The 12 test sections were selected as representative of the actual pavement 
surfaces found across Florida. With such a small sample, it is possible that not all 
of the actual pavement network is represented in this study. Every effort was 
made to select a representative sample. However, the budgetary and schedule 
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limitations of this project would not allow for collection and processing of data 
across a wider network. 

2. The comparison of crack detection is conducted using different automated 
detection algorithms for 2D versus 3D images. This is because the 3D images 
provide additional depth information and the corresponding algorithm is inevitably 
different than the 2D algorithm. As noted previously, both employed algorithms 
are based on machine learning techniques. The 2D algorithm was trained on a 
large database of manually rated 2D images; similarly, the 3D algorithm was 
trained on a large database of manually rated 3D images. The process for 
generating the corresponding training database and training of the corresponding 
algorithms were carried out outside this project. 

3. The comparison of distress identification was conducted using the same 
automated distress identification algorithm. This algorithm as it stands does not 
exactly differentiate between the crack types as defined in the FDOT Flexible 
Pavement Condition Survey Handbook, because those definitions were originally 
intended for human raters and not for computers. The automated algorithm used 
crack angle to differentiate between longitudinal and transverse cracks, and 
crack density in a given area to differentiate between single linear cracks and an 
area of alligator cracking. Therefore, the error compared to ground truth is 
estimated by comparing the total amount of automatically identified longitudinal 
and transverse cracks to the sum of the single and branch cracks manually 
identified in the reference survey. Similarly, the total amount of automatically 
identified alligator cracking is compared to the sum of the alligator and block 
cracks manually identified in the reference survey. This limitation does not 
undermine this comparison because the same automated algorithm was used for 
both 2D and 3D analyses. 

4. This study is mainly focused on cracking distresses and patching and raveling 
were not considered in this comparison. The 3D technology provides pavement 
surface macro-texture measurements which could potentially be used for 
identifying raveling. However, these texture measurements need to be calibrated 
to corresponding areas of raveling identified by experienced raters. This effort is 
planned to be conducted during Task 6 of this study. 

5. The quality assurance practices such as equipment calibration and verification 
procedures, and the process for certification of the operators could affect the 
results. The FDOT QA practices for operating their 2D LRIS equipment differ 
from the Fugro QA practices for operating ARANs with 3D LCMS technology. 
While proper precautions and coordination were made to limit the impacts of 
these differences, some impact is inevitable. For example, the vehicle wander 
could impact the run-to-run repeatability results. 
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I.3.4. Comparison of Automatically Detected Crack Quantities 

False positives are cracks that have been reported by the automated crack detection 
software, while no crack has been recorded in the Crack Detection Reference (“ground 
truth”) at the same location. On the other hand, false negatives are existing cracks that 
have been reported in the “ground truth” but were not detected by the software (i.e. 
missed cracks). Table 115 and Table 116 show the true positives, false positives, false 
negatives, validity, and sensitivity of the automated crack detection using Fugro’s 
machine learning algorithms on 3D and 2D images, respectively. These tables include 
the crack detection results on run number 1 of the 3 runs. These tables indicate that 
about 75 percent of the automatically detected cracks from 3D images were actually 
present on the pavement surface (Validity), compared to only 25 percent of 
automatically detected cracks from 2D images being true positives. Also, about 89 
percent of the cracks in the ground truth were automatically detected from 3D images 
(Sensitivity), while only about 18 percent of the actual cracks were detected from 2D 
images. These results demonstrate that the automated crack detection from the 3D 
images has a significantly superior performance compared to that from the 2D images, 
in terms of both validity of the detected cracks and sensitivity of the automated 
algorithm to detecting existing surface cracks. 

In Table 115 and Table 116, the yellow highlighted cells indicate significant false 
positives (more than 50% of the reference) and the orange colored cells indicate 
significant amounts of false negatives (more than 50% of the reference). It is evident 
that in Sections number 3, 7, and 9, both the 2D and 3D methods have a significant 
amount of false positives. This is due to two reasons. First, some patching area 
boundaries (Figure 221) and Automated Vehicle Counter (AVC) loops and Weigh-In-
Motion (WIM) devices (Figure 222) being falsely detected as cracks. Second, the 
amount of cracking in the semi-automated reference survey for these three sections is 
lower compared to other sections and as a result, the errors seem higher. 

From Table 115, it is also evident that the 3D method does not result in a significant 
number of missed cracks, as it has detected about 89 percent of the existing cracks. 
However, Table 116 shows that the 2D method has missed a significant amount of the 
cracks and only detected about 18 percent of the existing cracks in the reference. 
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Table 115. Verification of Crack Detection on 3D images Using Fugro Machine Learning 
Algorithm 

Test 
Section 

Ground 
Truth (ft) 

Crack Detection Results 
Crack 
Validity 
(%) 

Crack 
Sensitivity 
(%) 

True 
Positives 
(ft) 

False 
Positives 
(ft) 

False 
Negatives 
(ft) 

1 22,944.22 18,464.62 2,762.11 4,479.60 86.99 80.48 

2 26,741.89 24,873.49 1,217.80 1,868.40 95.33 93.01 

3 132.74 126.10 824.84 6.64 13.26 94.99 

4 14,823.69 12,015.20 1,429.99 2,808.49 89.36 81.05 

5 68,726.86 65,286.40 3,453.19 3,440.46 94.98 94.99 

6 112,892.60 102,199.75 11,059.70 10,692.85 90.24 90.53 

7 809.34 687.92 1,820.47 121.42 27.42 85.00 

8 27,185.46 23,990.87 2,097.65 3,194.59 91.96 88.25 

9 3,993.09 2,881.59 6,082.98 1,111.50 32.14 72.16 

10 36,631.86 38,825.92 1,803.39 (2,194.06) 95.56 105.99 

11 30,517.80 27,386.58 4,025.66 3,131.22 87.18 89.74 

12 29,327.95 28,174.06 3,057.05 1,153.89 90.21 96.07 

74.55 89.36 

Table 116. Verification of Crack Detection on 2D images Using Fugro Machine Learning 
Algorithm 

Test 
Section 

Ground 
Truth (ft) 

Crack Detection Results 
Crack 
Validity 
(%) 

Crack 
Sensitivity 
(%) 

True 
Positives 
(ft) 

False 
Positives 
(ft) 

False 
Negatives 
(ft) 

1 22,944.22 1,162.61 3,337.93 21,781.61 25.83 5.07 

2 26,741.89 824.98 3,727.55 25,916.91 18.12 3.08 

3 132.74 42.55 16,471.86 90.19 0.26 32.06 

4 14,823.69 3,659.58 4,199.93 11,164.11 46.56 24.69 

5 68,726.86 6,226.68 10,005.31 62,500.18 38.36 9.06 

6 112,892.60 7,139.73 10,005.56 105,752.87 41.64 6.32 

7 809.34 523.47 13,969.35 285.87 3.61 64.68 

8 27,185.46 5,184.47 13,606.25 22,000.99 27.59 19.07 

9 3,993.09 807.72 19,550.12 3,185.37 3.97 20.23 

10 36,631.86 1,718.52 12,621.25 34,913.34 11.98 4.69 

11 30,517.80 3,507.70 6,274.08 27,010.10 35.86 11.49 

12 29,327.95 3,003.47 3,539.88 26,324.48 45.90 10.24 

24.97 17.56 

481 



 
 

 
 

 

  

 

    

    

 
 

   
   

Figure 221. Patching Area Boundary Falsely Detected as Cracks 

Figure 222. AVC Loops and WIM Devices Falsely Detected as Cracks 

In addition to the crack detection verification results in Table 115 and Table 116, other 
crack detection success metrics including normalized error, average error (bias), 
variation between multiple runs (repeatability), and variation among 12 test sections 
(consistency) of the automated crack detection algorithms from 3D and 2D images have 
been listed in Table 117 and Table 118, respectively. The three test sections number 3, 
7, and 9 have been highlighted in yellow to indicate the sections that have a significant 
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amount of false positives in both of the crack detection methods (Figure 221 and Figure 
222). The bias has been provided as the average normalized crack detection error both 
on all the test sections and also excluding the 3 outliers. When excluding the outliers, 
Table 117 and Table 118 indicate that the accuracy (100 - Bias) of the automated crack 
detection from 3D images is about 99 percent, which is significantly superior to the 
accuracy from 2D images (about 31 percent). 

Table 117. Accuracy, Repeatability, and Consistency of Crack Detection based on 3D Images 

Test 
Section 

Ground 
Truth (ft) 

Detected Crack Length Normalized Error 100 - AVG 
ABS Error 
(%) 

Repeatabilit 
y (%) Run 1 (ft) Run 2 (ft) Run 3 (ft) 

Run1 
(%) 

Run2 
(%) 

Run3 
(%) 

1 
22,944.2 
2 

21,226.73 20,718.69 20,761.75 -7.49 -9.70 -9.51 91.10 98.65 

2 
26,741.8 
9 

26,091.29 26,564.27 26,905.88 -2.43 -0.66 0.61 99.17 98.46 

3 132.74 950.94 658.74 1,020.48 616.39 
396.2 
6 

668.78 -460.48 78.11 

4 
14,823.6 
9 

13,445.19 12,647.37 13,034.35 -9.30 
-
14.68 

-12.07 87.98 96.94 

5 
68,726.8 
6 

68,739.59 67,648.23 68,637.83 0.02 -1.57 -0.13 99.44 99.12 

6 
112,892. 
6 

113,259.4 
5 

116,185.5 
7 

116,723.1 
3 

0.32 2.92 3.39 97.79 98.38 

7 809.34 2,508.39 2,187.71 2,512.42 209.93 
170.3 
1 

210.43 -96.89 92.25 

8 
27,185.4 
6 

26,088.52 24,746.74 24,978.47 -4.04 -8.97 -8.12 92.96 97.16 

9 3,993.09 8,964.57 9,143.59 8,296.30 124.50 
128.9 
9 

107.77 -20.42 94.93 

10 
36,631.8 
6 

40,629.31 45,240.06 38,560.87 10.91 23.50 5.27 86.77 91.76 

11 
30,517.8 
0 

31,412.24 29,347.11 30,317.56 2.93 -3.84 -0.66 99.48 96.60 

12 
29,327.9 
5 

31,231.11 30,760.06 29,860.88 6.49 4.88 1.82 95.60 97.73 

Bias (%) 

Bias Excluding Outliers (%) 

Accuracy (%) = 100 - Absolute Bias 

Consistency (%) = 100 - COV(Accuracy) 

72.31 97.20 

-1.11 

98.89 

94.95 
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Table 118. Accuracy, Repeatability, and Consistency of Crack Detection based on 2D Images 

Test 
Section 

Ground 
Truth (ft) 

Detected Crack Length Normalized Error 100 - AVG 
ABS Error 
(%) 

Repeatabilit 
y (%) Run 1 

(ft) 
Run 2 
(ft) 

Run 3 (ft) 
Run1 
(%) 

Run2 
(%) 

Run3 
(%) 

1 22,944.22 4,500.54 4,564.01 4,090.53 -80.38 -80.11 -82.17 19.11 94.14 

2 26,741.89 4,552.53 3,864.70 3,843.54 -82.98 -85.55 -85.63 15.28 90.13 

3 132.74 
16,514.4 
1 

14,055.8 
3 

15,632.52 
12341.1 
7 

10488.9 
9 

11676.8 
0 

-11402.32 91.91 

4 14,823.69 7,859.51 7,699.58 7,906.21 -46.98 -48.06 -46.67 52.77 98.61 

5 68,726.86 
16,231.9 
9 

13,279.2 
3 

10,427.46-76.38 -80.68 -84.83 19.37 78.20 

6 
112,892.6 
0 

17,145.2 
9 

18,010.4 
5 

17,739.17-84.81 -84.05 -84.29 15.62 97.49 

7 809.34 
14,492.8 
2 

13,748.7 
5 

14,703.701690.70 1598.76 1716.75 -1568.74 96.50 

8 27,185.46 
18,790.7 
2 

19,884.3 
7 

19,572.17-30.88 -26.86 -28.01 71.42 97.10 

9 3,993.09 
20,357.8 
4 

19,751.2 
0 

20,089.79409.83 394.63 403.11 -302.53 98.49 

10 36,631.86 
14,339.7 
7 

14,077.3 
6 

11,809.28-60.85 -61.57 -67.76 36.60 89.62 

11 30,517.80 9,781.78 9,506.47 9,133.08 -67.95 -68.85 -70.07 31.04 96.56 

12 29,327.95 6,543.35 6,448.33 6,702.61 -77.69 -78.01 -77.15 22.38 98.04 

Bias (%) 

Bias Excluding Outliers (%) 

Accuracy (%) = 100 - Absolute Bias 

Consistency (%) = 100 - COV(Accuracy) 

1079.77 93.32 

-68.49 

31.51 

38.84 

The automated detection from 3D and 2D images are comparable in terms of run-to-run 
repeatability with about 97 and 93 percent agreement among runs for 3D and 2D 
methods, respectively. The 3D method is showing better performance in terms of 
consistency of results on different sections as the 3D method has about 95 percent 
agreement in crack detection accuracy among 12 sections and the 2D method has only 
about 39 percent. 

I.3.5. Comparison of Automatically Identified Distress Quantities 

In this section, the results of automated distress identification from 2D and 3D images 
are compared to each other. It should be noted that the most significant difference 
between the results from the two methodologies is caused by the difference in the crack 
detection performance. As it was demonstrated in the previous section, the crack 
detection from 2D images is missing a significant amount of cracking and as a result, 
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there is a significant negative bias in the distress identification results for the 2D 
methodology. 

Comparison of Automatically Identified Longitudinal, Transverse, and Alligator 
Cracking from 2D Versus 3D Images 

The available Vision software was used for this comparison. In this section, the 
comparison is conducted based on the amount of automatically identified Longitudinal, 
Transverse, and Alligator cracking. 

It should be noted that the automated algorithm used crack angle to differentiate 
between longitudinal and transverse cracks, and crack density in a given area to 
differentiate between single linear cracks and an area of alligator cracking. Therefore, 
the normalized error compared to ground truth is estimated by comparing the total 
amount of automatically identified longitudinal and transverse cracks to the sum of 
single and branch cracks manually identified in the reference survey. Similarly, the total 
amount of automatically identified alligator cracking is compared to the sum of alligator 
and block cracks manually identified in the reference survey. This limitation does not 
undermine this comparison because the same automated algorithm was used for both 
2D and 3D analyses. Table 119 and Table 120 show the success metrics for 
automatically identifying Longitudinal cracks from 3D and 2D images, respectively. Test 
sections with minimal amount of longitudinal cracking (in the reference survey) have 
been highlighted in yellow as outliers. Excluding the outliers, the automated longitudinal 
cracking identification from 3D and 2D images have demonstrated about 93 and 46 
percent accuracy, respectively. 

The 3D results show a positive bias indicating more automatically identified longitudinal 
cracks compared to the reference survey. However, the 2D results show a significantly 
high amount of missed longitudinal cracking compared to the reference survey, 
reflected in the high negative bias. 

On average, there is about 97 percent run-to-run agreement in the length of 
automatically identified longitudinal cracks from 3D images. This run-to-run repeatability 
is about 89 percent for the 2D results. There is about 81 percent section-to-section 
agreement in the accuracy in automatically identifying the length of longitudinal cracks 
from 3D images. This section-to-section consistency is about 45 percent for 2D results. 
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Table 119. Accuracy, Repeatability, and Consistency of Longitudinal Cracks on 3D 

Test 
Section 

Ground 
Truth (ft) 

Automatically Identified 
Longitudinal Cracks 

Normalized Error 100 - AVG 
ABS Error 

(%) 

Repeatability 
(%) 

Run 1 (ft) Run 2 (ft) Run 3 (ft) 
Run1 
(%) 

Run2 
(%) 

Run3 
(%) 

1 3,596.83 3,657.91 3,722.85 4,231.16 1.70 3.50 17.64 92.39 91.89 

2 2,138.43 3,160.27 3,230.07 3,188.40 47.78 51.05 49.10 50.69 98.90 

3 9.79 33.61 30.48 91.18 243.31 211.34 831.36 -328.67 33.97 

4 2,744.90 2,911.72 2,917.34 2,871.70 6.08 6.28 4.62 94.34 99.14 

5 8,468.56 10,649.4210,563.81 10,635.02 25.75 24.74 25.58 74.64 99.57 

6 9,148.41 13,762.5414,608.56 14,050.04 50.44 59.68 53.58 45.43 96.96 

7 481.76 201.21 164.96 188.44 -58.23 -65.76 -60.89 38.37 90.05 

8 7,717.18 5,799.07 5,921.45 5,767.01 -24.86 -23.27 -25.27 75.54 98.60 

9 807.48 989.11 980.57 1,184.31 22.49 21.44 46.67 69.80 89.04 

10 6,599.33 4,630.23 4,755.88 4,113.87 -29.84 -27.93 -37.66 68.19 92.44 

11 10,103.9010,780.9911,059.53 11,546.60 6.70 9.46 14.28 89.85 96.52 

12 19,775.8513,550.5813,327.31 13,382.07 -31.48 -32.61 -32.33 67.86 99.13 

Bias (%) 

Bias Excluding Outliers (%) 

Accuracy (%) = 100 - Absolute Bias 

Consistency (%) = 100 - COV(Accuracy) 

38.46 97.02 

7.14 

92.86 

81.23 

Table 120. Accuracy, Repeatability, and Consistency of Longitudinal Cracks on 2D 

Test 
Section 

Ground 
Truth 

(ft) 

Automatically Identified 
Longitudinal Cracks 

Normalized Error 100 - AVG 
ABS Error 

(%) 

Repeatabilit 
y (%) Run 1 

(ft) 
Run 2 

(ft) 
Run 3 

(ft) 
Run1 
(%) 

Run2 
(%) 

Run3 (%) 

1 3,596.83 1,310.26 1,260.20 1,126.84 -63.57 -64.96 -68.67 34.26 92.31 

2 2,138.43 921.76 794.50 813.26 -56.90 -62.85 -61.97 39.43 91.85 

3 9.79 5,845.47 3,380.38 3,255.96 
59608.5 

8 
34428.9 

1 
33158.02 -42298.50 64.90 

4 2,744.90 2,492.63 2,629.55 2,541.79 -9.19 -4.20 -7.40 93.07 97.28 

5 8,468.56 5,782.13 4,822.60 3,558.99 -31.72 -43.05 -57.97 55.75 76.38 

6 9,148.41 4,937.94 5,869.39 5,263.88 -46.02 -35.84 -42.46 58.56 91.18 

7 481.76 1,812.05 1,629.81 1,967.13 276.13 238.30 308.32 -174.25 90.64 

8 7,717.18 3,996.32 4,238.55 4,446.63 -48.22 -45.08 -42.38 54.78 94.67 

9 807.48 1,454.53 1,181.45 1,254.07 80.13 46.31 55.31 39.42 89.09 

10 6,599.33 3,914.45 3,497.79 2,383.00 -40.68 -47.00 -63.89 49.48 75.75 

11 
10,103.9 

0 
1,817.90 1,921.66 2,195.46 -82.01 -80.98 -78.27 19.58 90.14 

12 
19,775.8 

5 
1,030.80 979.37 1,151.56 -94.79 -95.05 -94.18 5.33 91.61 

Bias (%) 

Bias Excluding Outliers (%) 

Accuracy (%) = 100 - Absolute Bias 

Consistency (%) = 100 - COV(Accuracy) 

3520.30 89.02 

-54.42 

45.58 

44.67 

Table 121 and Table 122 show the success metrics for automatically identifying 
Transverse cracks from 3D and 2D images, respectively. Test sections with minimal 



 
 

 
 

   
     

  

  
   

 
  

    
 

   

 
 

 

 

 
 

 
    

 
 

 
 

 
 

 
 

 
    

          

          

          

          

          

          

          

          

          

          

          

          

    

     

       

       

 
  

amount of transverse cracking have been highlighted as outliers. Excluding the outliers, 
the automated transverse cracking identification from 3D and 2D images have 
demonstrated about 90 and 24 percent accuracy, respectively. Both the 3D and 2D 
results show a negative bias indicating less automatically identified transverse cracks 
compared to the reference survey. On average, there is about 90 percent run-to-run 
agreement in the length of automatically identified transverse cracks from 3D images. 
This run-to-run repeatability is about 91 percent for the 2D results. There is about 74 
percent section-to-section agreement in the accuracy in identifying transverse cracking 
from 3D images. This section-to-section consistency is only about 6 percent for 2D 
results. 

Table 121. Accuracy, Repeatability, and Consistency of Transverse Cracks based on 3D 

Test 
Section 

Ground 
Truth 

(ft) 

Automatically 
Identified Transverse 

Cracks 
Normalized Error 100 - AVG 

ABS Error 
(%) 

Repeatability 
(%) 

Run 1 
(ft) 

Run 2 
(ft) 

Run 3 
(ft) 

Run1 
(%) 

Run2 
(%) 

Run3 
(%) 

1 276.88 99.58 87.88 79.50 -64.03 -68.26 -71.29 32.14 88.67 

2 273.01 37.33 46.74 47.47 -86.33 -82.88 -82.61 16.06 87.10 

3 10.93 7.84 10.73 9.44 -28.27 -1.83 -13.63 85.42 100.00 

4 256.67 452.80 391.54 462.75 76.41 52.55 80.29 30.25 91.15 

5 109.35 185.70 174.61 160.16 69.82 59.68 46.47 41.34 92.62 

6 157.20 198.29 189.94 187.33 26.14 20.83 19.17 77.96 97.02 

7 16.51 15.91 15.14 28.93 -3.63 -8.30 75.23 78.90 61.24 

8 965.30 767.31 726.02 834.96 -20.51 -24.79 -13.50 80.40 92.91 

9 21.60 126.65 118.27 130.01 486.34 447.55 501.90 -378.60 95.16 

10 2,306.42 854.82 836.38 1,009.24 -62.94 -63.74 -56.24 39.03 89.45 

11 170.73 292.80 259.16 344.70 71.50 51.80 101.90 24.94 85.58 

12 590.56 132.92 102.83 101.02 -77.49 -82.59 -82.89 19.01 84.04 

Bias (%) 

Bias Excluding Outliers (%) 

Accuracy (%) = 100 - Absolute Bias 

Consistency (%) = 100 - COV(Accuracy) 

33.11 89.84 

-9.76 

90.24 

73.80 
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Table 122. Accuracy, Repeatability, and Consistency of Transverse Cracks based on 2D 

Test 
Section 

Ground 
Truth 

(ft) 

Automatically 
Identified Transverse 

Cracks 
Normalized Error 

Repeatability 
(%) 

Run 1 
(ft) 

Run 2 
(ft) 

Run 3 
(ft) 

Run1 
(%) 

Run2 
(%) 

Run3 
(%) 

100 - AVG 
ABS Error 

(%) 

1 276.88 30.55 29.06 30.52 -88.97 -89.50 -88.98 10.85 97.17 

2 273.01 50.95 52.38 55.64 -81.34 -80.81 -79.62 19.41 95.46 

3 10.93 0.00 0.00 0.00 -100.00 -100.00 -100.00 0.00 100.00 

4 256.67 17.39 18.20 18.56 -93.22 -92.91 -92.77 7.03 96.68 

5 109.35 65.53 66.41 63.08 -40.07 -39.27 -42.31 59.45 97.35 

6 157.20 68.65 73.08 71.56 -56.33 -53.51 -54.48 45.23 96.83 

7 16.51 4.69 1.04 2.29 -71.59 -93.70 -86.13 16.19 30.61 

8 965.30 42.60 40.95 39.61 -95.59 -95.76 -95.90 4.25 96.35 

9 21.60 115.14 124.41 123.30 433.06 475.97 470.83 -359.95 95.81 

10 2,306.42 22.52 18.90 12.81 -99.02 -99.18 -99.44 0.78 72.85 

11 170.73 99.33 90.25 93.03 -41.82 -47.14 -45.51 55.18 95.06 

12 590.56 101.41 106.83 64.08 -82.83 -81.91 -89.15 15.37 74.36 

Bias (%) 

Bias Excluding Outliers (%) 

Accuracy (%) = 100 - Absolute Bias 

Consistency (%) = 100 - COV(Accuracy) 

-33.86 91.35 

-75.83 

24.17 

5.62 

Table 123 and Table 124 show the success metrics for automatically identifying 
Alligator cracks from 3D and 2D images, respectively. Test sections free of alligator 
cracking have been highlighted as outliers. Excluding the outliers, the automated 
alligator cracking identification from 3D and 2D images have demonstrated about 95 
and 0.01 percent accuracy, respectively. 
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Table 123. Accuracy, Repeatability, and Consistency of Alligator Cracks based on 3D Images 

Test 
Section 

Ground 
Truth (Sq 

Ft) 

Automatically Identified 
Alligator Cracks 

Normalized Error 100 - AVG 
ABS Error 

(%) 

Repeatability 
(%) Run 1 (Sq 

Ft) 
Run 2 (Sq 

Ft) 
Run 3 (Sq 

Ft) 
Run1 
(%) 

Run2 
(%) 

Run3 
(%) 

1 5,846.75 5,338.05 5,424.37 5,093.62 -8.70 -7.22 -12.88 90.40 96.75 

2 9,482.90 8,162.28 8,445.05 8,571.04 -13.93 -10.94 -9.62 88.50 97.51 

3 0.00 0.00 0.00 0.00 

4 3,100.22 721.79 549.74 575.11 -76.72 -82.27-81.45 19.85 84.91 

5 18,795.12 16,437.95 17,019.01 16,729.03 -12.54 -9.45 -10.99 89.01 98.26 

6 27,372.47 30,219.12 30,618.90 31,145.60 10.40 11.86 13.78 87.99 98.48 

7 0.00 0.00 0.00 0.00 

8 4,223.72 1,975.46 1,888.80 1,859.62 -53.23 -55.28-55.97 45.17 96.84 

9 0.00 4.74 4.59 1.28 44.70 

10 6,567.40 8,617.27 9,703.71 8,059.52 31.21 47.76 22.72 66.10 90.49 

11 1,533.73 1,690.51 1,553.59 1,397.82 10.22 1.29 -8.86 99.11 90.54 

12 900.06 1,769.73 1,538.15 1,316.48 96.62 70.89 46.27 28.74 85.30 

Bias (%) 

Bias Excluding Outliers (%) 

Accuracy (%) = 100 - Absolute Bias 

Consistency (%) = 100 - COV(Accuracy) 

-5.45 93.23 

-5.45 

94.55 

68.46 

Table 124. Accuracy, Repeatability, and Consistency of Alligator Cracks based on 2D Images 

Test 
Section 

Ground 
Truth (Sq 

Ft) 

Automatically Identified 
Alligator Cracks 

Normalized Error 100 - AVG 
ABS Error 

(%) 

Repeatability 
(%) Run 1 

(Sq Ft) 
Run 2 
(Sq Ft) 

Run 3 
(Sq Ft) 

Run1 
(%) 

Run2 
(%) 

Run3 
(%) 

1 5,846.75 0.00 0.00 0.00 -100.00 -100.00 -100.00 0.00 100.00 

2 9,482.90 14.21 0.00 0.00 -99.85 -100.00 -100.00 0.05 -73.21 

3 0.00 0.00 0.00 0.00 100.00 

4 3,100.22 0.18 0.00 0.00 -99.99 -100.00 -100.00 0.00 -73.21 

5 18,795.12 0.05 0.00 0.00 -100.00 -100.00 -100.00 0.00 -73.21 

6 27,372.47 0.00 0.00 0.00 -100.00 -100.00 -100.00 0.00 100.00 

7 0.00 0.00 0.00 0.00 100.00 

8 4,223.72 0.00 0.00 0.00 -100.00 -100.00 -100.00 0.00 100.00 

9 0.00 0.00 0.00 0.00 100.00 

10 6,567.40 0.00 0.01 0.00 -100.00 -100.00 -100.00 0.00 -73.21 

11 1,533.73 0.18 0.23 0.04 -99.99 -99.99 -100.00 0.01 34.34 

12 900.06 0.00 0.00 0.00 -100.00 -100.00 -100.00 0.00 100.00 

Bias (%) 

Bias Excluding Outliers (%) 

Accuracy (%) = 100 - Absolute Bias 

Consistency (%) = 100 - COV(Accuracy) 

-99.99 15.72 

-99.99 

0.01 

-139.83 

The 3D results show a negative bias indicating less automatically identified alligator 
cracks compared to the reference survey. The 2D results however show a significant 



 
 

 
 

   
  

 
 

  

    
   

 

   
  

    
     

   
   

 

  
  

  
   

   
 

   
  

     
   
 

 
   

  

     
   
 

  
    

   

amount of negative bias, indicating that the 2D distress identification has failed in 
identifying areas with alligator cracking. This is mainly due to the large amount of 
missed cracking in 2D crack detection, which in turn results in cracking areas with such 
low density that cannot be identified by the computer as alligator cracking areas. 

On average, there is about 93 percent run-to-run agreement in the automatically 
identified alligator cracking areas from 3D images. This run-to-run repeatability is about 
16 percent for the 2D results. There is about 68 percent section-to-section agreement in 
the accuracy in automatically identifying the area of alligator cracks from 3D images. 
This section-to-section consistency is non-existent for 2D results. 

The Vision software records the amount of time that each batch processor had spent on 
each test section to conduct an automated survey. The automated detection, 
classification, and rating took about 20 seconds per image frame for the 3D images and 
about 26 seconds per image frame for the 2D images. The main difference in this speed 
is the crack detection time. The classification and distress identification processes take 
only about 0.05 seconds per image frame in both technologies. 

Comparison of Automatically Identified Wheel Path and Non-Wheel Path Cracking 
from 2D Versus 3D Images 

In this section, the semi-automated reference rating results were converted to cracking 
within the wheel path (CW) and outside the wheel path (CO) using a SQL code (see 
option 1). The automated distress identification results were already available in CW 
and CO format, because the distress schema was setup accordingly (see option 2). The 
total amount of cracking within the wheel paths (CW) was calculated by adding the 
longitudinal, transverse, and alligator cracking areas. The longitudinal and transverse 
cracking areas were calculated by multiplying their length by 1 foot, as specified in the 
FDOT Flexible Pavement Condition Survey Handbook. 

Table 125 and Table 126 show the automated distress identification results for CO 
distresses from 3D and 2D images, respectively. The accuracy in determining the CO 
distresses from 3D and 2D images is about 89 and 33 percent, respectively. The run-to-
run repeatability in determining the CO distresses from 3D and 2D images is about 96 
and 86 percent, respectively. The section-to-section consistency in determining the CO 
distresses from 3D and 2D images is about 85 and 34 percent, respectively. 

Table 127 and Table 128 show the automated distress identification results for CW 
distresses from 3D and 2D images, respectively. The accuracy in determining the CW 
distresses from 3D and 2D images is about 92 and 9 percent, respectively. The run-to-
run repeatability in determining the CW distresses from 3D and 2D images is about 97 
and 91 percent, respectively. The section-to-section consistency in determining the CW 
distresses from 3D and 2D images is about 84 and 0.4 percent, respectively. 
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Table 125. Accuracy, Repeatability, and Consistency of CO Based on 3D Images 

Test 
Section 

Ground 
Truth (Sq 

Ft) 

Automatically Identified 
Cracking 

Normalized Error 100 - AVG 
ABS Error 

(%) 

Repeatability 
(%) Run 1 

(Sq Ft) 
Run 2 
(Sq Ft) 

Run 3 
(Sq Ft) 

Run1 
(%) 

Run2 
(%) 

Run3 
(%) 

1 2,269.16 2,055.22 2,155.45 2,337.45 -9.43 -5.01 3.01 96.19 93.45 

2 2,929.56 2,917.19 2,947.83 3,024.51 -0.42 0.62 3.24 98.85 98.13 

3 11.98 37.48 36.06 74.96 212.85 201.00 525.71 55.43 

4 3,452.35 2,367.69 2,201.37 2,271.34 -31.42 -36.24 -34.21 66.05 96.34 

5 13,550.7112,028.6012,097.8312,358.12 -11.23 -10.72 -8.80 89.75 98.57 

6 15,456.9617,262.5217,701.3717,594.28 11.68 14.52 13.83 86.66 98.69 

7 296.23 62.06 57.41 84.87 -79.05 -80.62 -71.35 78.42 

8 4,232.96 2,679.95 2,452.73 2,549.57 -36.69 -42.06 -39.77 60.50 95.55 

9 249.79 345.65 404.21 448.16 38.38 61.82 79.41 87.12 

10 6,584.24 5,668.12 5,430.82 4,880.60 -13.91 -17.52 -25.87 80.90 92.42 

11 4,653.28 5,627.19 6,086.35 6,154.74 20.93 30.80 32.27 72.00 95.18 

12 11,403.25 8,294.84 8,021.22 7,885.04 -27.26 -29.66 -30.85 70.74 97.41 

Bias (%) 

Bias Excluding Outliers (%) 

Accuracy (%) = 100 - Absolute Bias 

Consistency (%) = 100 - COV(Accuracy) 

16.89 96.19 

-10.38 

89.62 

84.81 

Table 126. Accuracy, Repeatability, and Consistency of CO Based on 2D Images 

Test 
Section 

Ground 
Truth (Sq 

Ft) 

Automatically Identified 
Cracking 

Normalized Error 100 - AVG 
ABS Error 

(%) 

Repeatability 
(%) Run 1 

(Sq Ft) 
Run 2 
(Sq Ft) 

Run 3 
(Sq Ft) 

Run1 (%) Run2 (%) Run3 (%) 

1 2,269.16 413.16 332.64 276.57 -81.79 -85.34 -87.81 15.02 79.85 

2 2,929.56 326.82 267.14 349.21 -88.84 -90.88 -88.08 10.73 86.51 

3 11.98 5,845.47 3,380.38 3,255.96 48,693.5728,116.8627,078.30 -34529.58 100.00 

4 3,452.35 1,675.19 1,837.38 1,755.16 -51.48 -46.78 -49.16 50.86 95.38 

5 13,550.714,981.47 3,890.31 2,891.53 -63.24 -71.29 -78.66 28.94 73.34 

6 15,456.963,289.52 3,959.84 3,622.93 -78.72 -74.38 -76.56 23.45 90.75 

7 296.23 1,807.72 1,626.94 1,962.51 510.24 449.22 562.50 -407.32 90.66 

8 4,232.96 2,919.43 3,178.08 3,411.57 -31.03 -24.92 -19.40 74.88 92.23 

9 249.79 1,369.37 1,063.21 1,164.95 448.21 325.64 366.37 -280.07 87.00 

10 6,584.24 3,900.46 3,461.47 2,344.54 -40.76 -47.43 -64.39 49.14 75.21 

11 4,653.28 1,678.48 1,732.75 2,033.89 -63.93 -62.76 -56.29 39.01 89.45 

12 11,403.25 990.18 940.88 1,061.73 -91.32 -91.75 -90.69 8.75 93.91 

Bias (%) 

Bias Excluding Outliers (%) 

Accuracy (%) = 100 - Absolute Bias 

Consistency (%) = 100 - COV(Accuracy) 

2909.81 86.29 

-66.58 

33.42 

34.07 

491 



 
 

 
 

  
 

 
 

 

 

 
 

    
 

 

 
   

 
  

 
 

    

          

          

          

          

         

         

          

          

          

          

          

          

    

     

       

       

  
  

 
 

 

 
 

    
 

 

 
  

 
 

 
 

 
 

 
 

          

          

          

          

         

        

          

         

          

          

          

          

    

     

       

       

 

Table 127. Accuracy, Repeatability, and Consistency of Cracking within Wheel Paths (CW) Based 
on 3D Images 

Test 
Section 

Ground 
Truth (Sq 

Ft) 

Automatically Identified 
Cracking 

Normalized Error 100 - AVG 
ABS Error 

(%) 

Repeatability 
(%) Run 1 (Sq 

Ft) 
Run 2 (Sq 

Ft) 
Run 3 
(Sq Ft) 

Run1 
(%) 

Run2 
(%) 

Run3 
(%) 

1 7,451.30 7,040.32 7,079.65 7,066.83 -5.52 -4.99 -5.16 94.78 99.72 

2 8,964.78 8,442.69 8,774.02 8,782.40 -5.82 -2.13 -2.03 96.67 97.76 

3 8.74 3.97 5.16 25.66 -54.58 -40.96 193.59 -5.15 

4 2,649.44 1,718.61 1,657.26 1,638.22 -35.13 -37.45 -38.17 63.08 97.49 

5 13,822.31 15,244.47 15,659.61 15,166.10 10.29 13.29 9.72 88.90 98.27 

6 21,221.13 26,917.43 27,716.03 27,788.68 26.84 30.61 30.95 70.53 98.24 

7 202.05 155.06 122.70 132.51 -23.26 -39.27 -34.42 87.87 

8 8,673.24 5,861.90 6,083.54 5,912.02 -32.41 -29.86 -31.84 68.63 98.05 

9 579.29 774.85 699.23 867.43 33.76 20.70 49.74 89.21 

10 8,888.91 8,434.21 9,865.16 8,302.03 -5.12 10.98 -6.60 99.76 90.22 

11 7,155.08 7,137.11 6,785.94 7,134.38 -0.25 -5.16 -0.29 98.10 97.12 

12 9,863.21 7,158.39 6,947.06 6,914.53 -27.42 -29.57 -29.90 71.04 98.11 

Bias (%) 

Bias Excluding Outliers (%) 

Accuracy (%) = 100 - Absolute Bias 

Consistency (%) = 100 - COV(Accuracy) 

-2.69 97.22 

-7.49 

92.51 

83.93 

Table 128. Accuracy, Repeatability, and Consistency of Cracking within Wheel Paths (CW) Based 
on 2D Images 

Test 
Section 

Ground 
Truth (Sq 

Ft) 

Automatically Identified 
Cracking 

Normalized Error 100 - AVG 
ABS Error 

(%) 

Repeatability 
(%) Run 1 

(Sq Ft) 
Run 2 
(Sq Ft) 

Run 3 
(Sq Ft) 

Run1 (%) 
Run2 
(%) 

Run3 (%) 

1 7,451.30 927.65 956.62 880.79 -87.55 -87.16 -88.18 12.37 95.85 

2 8,964.78 660.09 579.74 519.69 -92.64 -93.53 -94.20 6.54 87.99 

3 8.74 0.00 0.00 0.00 -100.00 -100.00 -100.00 0.00 100.00 

4 2,649.44 835.01 810.36 805.19 -68.48 -69.41 -69.61 30.83 98.05 

5 13,822.31 866.24 998.70 730.53 -93.73 -92.77 -94.71 6.26 84.50 

6 21,221.131,717.08 1,982.63 1,712.50 -91.91 -90.66 -91.93 8.50 91.43 

7 202.05 9.02 3.91 6.91 -95.54 -98.06 -96.58 3.27 61.17 

8 8,673.24 1,119.50 1,101.42 1,074.67 -87.09 -87.30 -87.61 12.67 97.95 

9 579.29 200.31 242.65 212.42 -65.42 -58.11 -63.33 37.71 90.02 

10 8,888.91 36.51 55.22 51.26 -99.59 -99.38 -99.42 0.54 79.31 

11 7,155.08 238.93 279.39 254.64 -96.66 -96.10 -96.44 3.60 92.08 

12 9,863.21 142.03 145.32 153.92 -98.56 -98.53 -98.44 1.49 95.83 

Bias (%) 

Bias Excluding Outliers (%) 

Accuracy (%) = 100 - Absolute Bias 

Consistency (%) = 100 - COV(Accuracy) 

-89.68 91.44 

-90.80 

9.20 

0.38 
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I.4. Advantages of the 3D Technology 

Based on the observations outlined in chapter 4, this chapter will describe some of the 
advantages of the 3D technology over the 2D technology for detection, identification, 
and quantification of flexible pavement surface distresses. 

I.4.1. Improved Crack Detection 

As it was clearly demonstrated in crack detection, the 3D technology with the range 
(depth) data is facilitating detection of significantly more cracking compared to the 2D 
images. In the 12 representative test sections evaluated for this study, the use of 3D 
technology resulted in about 67 percent increase in accuracy of crack detection 
compared to the 2D technology (see Figure 223). This is also evident in the 89 percent 
of the cracking in the reference survey being detected from the 3D images, compared to 
only 18 percent from 2D images. This significant amount of missed cracks resulted in a 
big difference in the performance of automated distress identification as well. 

Figure 223. Comparison of 2D versus 3D Crack Detection Success Metrics 

In order to better demonstrate the advantage of 3D technology in detecting surface 
cracks, two example locations have been selected. Figure 224 and Figure 225 show the 
3D and 2D crack detection results for the first example location, respectively. Figure 226 
and Figure 227 show the 3D and 2D crack detection results for the second example 
location, respectively. In both examples, it is evident that the 3D technology significantly 
improves the chances of detecting surface cracks because of the additional depth 
information. It can also be seen that due to the enhanced crack detection in the 3D 
technology, more interconnected cracks are detected and as a result, more networks of 
alligator cracking can be identified on the pavement surface. 
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   Figure 224. Example LCMS Intensity (left), Range (center), and Detected Crack Map (right) 
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Figure 225. Example LRIS Image (left) and Detected Crack Map (right) Corresponding to the 
LCMS Example in Figure 224 
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   Figure 226. Example LCMS Intensity (left), Range (center), and Detected Crack Map (right) 
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Figure 227. Example LRIS Image (left) and Detected Crack Map (right) Corresponding to the 
LCMS Example in Figure 226 

In addition to improved detection of cracking, the 3D technology is also superior to 2D 
technology in terms of correctly determining crack widths. This is based on work 
performed outside of this project. When the pavement surface is damp, the area around 
the crack edges become darker in the 2D images and as a result, the crack detection 
algorithms result in exaggerated crack width measurements based on pixel intensities. 
The 3D technology is less prone to these issues because it uses a combination of pixel 
intensities and crack depth values to determine crack width. As a result, the severity 
rating is more reliable in the 3D technology. This observation is based on past 
experience outside this project. 

I.4.2. Improved Identification of Cracking Distresses 

Table 129 provides summary statistics for the automated distress identification results 
based on 2D and 3D images. 
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Table 129. Summary Statistics for Automated Distress Identification Results from 2D and 3D 
Images 

Distress 
Accuracy (%) 

Section-To-Section 
Consistency (%) 

Run-To-Run 
Repeatability (%) 

2D 3D 2D 3D 2D 3D 

Longitudinal 
Cracking 

45.58 92.86 44.67 81.23 89.02 97.02 

Transverse Cracking 24.17 90.24 5.62 73.80 91.35 89.84 

Alligator Cracking 0.01 94.55 -139.83 68.46 15.72 93.23 

CW 9.20 92.51 0.38 83.93 91.44 97.22 

CO 33.42 89.62 34.07 84.81 86.29 96.19 

Figure 228, Figure 229, and Figure 230 compare the 2D and 3D distress identification 
results for longitudinal, transverse, and alligator cracking, respectively. The 3D 
algorithm has resulted in higher accuracy, section-to-section consistency, and run-to-
run repeatability compared to the 2D algorithm in identifying longitudinal, transverse, 
and alligator cracking. 

Figure 228. Comparison of 2D versus 3D Longitudinal Cracking Success Metrics 
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2D vs 3D Alligator Cracking Identification 
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2D vs 3D Transverse Cracking Identification 
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Figure 229. Comparison of 2D versus 3D Transverse Cracking Success Metrics 

Figure 230. Comparison of 2D versus 3D Alligator Cracking Success Metrics 

Figure 231 and Figure 232 compare the results of 2D and 3D distress identification 
according to the FDOT definitions of wheel path cracking (CW) and outside wheel path 
cracking (CO), respectively. The accuracy, section-to-section consistency, and run-to-
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run repeatability of automated CO and CW identification is higher from 3D images 
compared to 2D images. 

Figure 231. Comparison of 2D versus 3D Wheel Path Cracking (CW) Success Metrics 

Figure 232. Comparison of 2D versus 3D Outside Wheel Path Cracking (CO) Success Metrics 
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I.4.3. Improved Identification of Pavement Texture Distresses 

In addition to the superior performance of the 3D technology in crack detection and the 
corresponding distress identification that was evaluated in this report, the 3D technology 
also provides area-based surface macro-texture measurements. Since these 
measurements are area-based, they have shown a significantly higher run-to-run 
repeatability compared to the macro-texture measurements with point laser sensors, 
which are line based and sensitive to vehicle wander. These robust 3D texture 
measurements can be used to identify change in pavement surface type, areas of 
weathering and raveling, and quality control of open graded friction courses or chip seal 
surfaces. The Pavemetrics LCMS processor provides the texture values and a 
corresponding Raveling Index which is directly proportional to mean texture depth 
(MPD). However, this Raveling Index has not been calibrated to manual ratings of 
surface raveling and therefore a high Raveling Index might just be an indicator of open 
graded friction courses or chip seal surfaces. There is a need to explore the relative 
values of MPD and root mean square (RMS) of texture between the wheel paths and 
adjacent areas to see whether that relative difference in texture can be correlated with 
manual rating of raveling areas. 

I.5. Findings and Recommendations 

This report described the effort under Purchase Order Number PR10026557 of this 
FDOT research project to collect and process 3D LCMS images of 12 representative 
flexible pavement test sections, and to compare the automated crack detection and 
distress identification results based on 2D and 3D technologies. 

Based on a systematic evaluation framework and pertinent success metrics, it was 
found that the 3D technology is superior to the 2D technology in the following areas: 

6. About 67 percent increase in the crack detection accuracy, which translates into 
71 percent more in percentage of detected crack length from the ground truth, 
and 50 percent more in percentage of the correctly detected cracks. 

7. About 47 percent more accuracy in identifying the length of longitudinal cracks, 
66 percent more accuracy in identifying the length of transverse cracks, and 95 
percent more accuracy in identifying alligator cracking areas. About 83 percent 
more accuracy in identifying wheel path cracking (CW) and 56 percent more 
accuracy in identifying outside wheel path cracking (CO). 

8. About 8 percent more run-to-run repeatability in identifying the length of 
longitudinal cracks and 77 percent more repeatability in identifying alligator 
cracking areas. About 6 percent more run-to-run repeatability in identifying wheel 
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path cracking (CW) and 10 percent more repeatability in identifying outside wheel 
path cracking (CO). 

9. About 36 percent more section-to-section consistency in identifying the length of 
longitudinal cracks, 68 percent more consistency in identifying the length of 
transverse cracks, and 68 percent more consistency in identifying alligator 
cracking areas. About 83 percent more section-to-section consistency in 
identifying wheel path cracking (CW) and 51 percent more consistency in 
identifying outside wheel path cracking (CO). 

10.About 6 seconds faster in crack detection per image frame. 

Based on past experience with collection of thousands of miles of data with both the 2D 
LRIS and the 3D LCMS technologies, the following advantages are also known: 

3. The 3D technology is less prone to crack width exaggeration on damp pavement 
surfaces and thereby produces more robust severity rating. 

4. The 3D technology provides a more robust surface macro-texture measurement 
which can potentially be used for identifying raveling and weathering distresses. 

Based on this superior accuracy, consistency, repeatability, and efficiency of the 3D 
technology in detecting pavement surface cracks and identifying the corresponding 
distress, it is recommended that the 3D technology be considered for automated 
identification and quantification of flexible pavement distresses. 

I.6. ARAN Information and Specifications 

Right of Way Video 

A single HDTV camera (3CCD broadcast quality) was used for viewing the right of way. 
The images were recorded every 32 feet and were set up in 2016 to show a 45% to 
55% sky-to-pavement ratio. The CCD camera has a rate of 1,000 frames per second 
and experiences limited to no frame to frame adjustment perceivable to the observer. 
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Roughness 

Fugro Roadware’s South-Dakota Profiler (SDP2) subsystem provides longitudinal 
profile measurement that will be collected in both wheel paths to calculate the 
International Roughness Index (IRI) standard. The Laser SDP2 is a non-contact, class 1 
(ASTM E950), inertial profiler that uses lasers and accelerometers mounted over each 
wheelpath to measure the longitudinal profile and calculate IRI in real time. 

Some of the technologies, best practices, and limitations of high-speed inertial profilers 
include: 

• Sensor Technology – The Laser SDP2 was equipped with LMI RoLine 3.6kHz 
scanning laser system, providing a full 100mm (4-inch) line of data across the 
road surface (similar to that of a tire footprint). 

• Flexible Testing Speeds – The Laser SDP2 is able to collect accurate 
longitudinal profile and roughness data at testing speeds ranging up to 70 mph 
while maintaining a bias of 5%. 

• Low Speed Collection Limitation – Unlike most inertial profilers on the market 
today, the Laser SDP2 allows for testing at lower speeds and in stop-and-go 
conditions, for example, in urban environments. This avoids the need to 
invalidate the IRI for the approximate 300 feet in the vicinity of the low speed 
zone. Enhanced speed-sensitive filters level the accelerometer influence at low-
speed zones and remove parasitic frequencies specific for certain low speed 
intervals. While reductions to the length of invalidated collection can be greatly 
shortened using this process, FDOT should be aware of the limitations 
surrounding the IRI standard for urbanized collection environments, meaning that 
IRI values collected at speeds lower than 15 mph are typically unreliable. 

• High Accuracy – Measurements made by a properly calibrated Laser SDP2 are 
within +/- 5% of the measurements made by manual profiling techniques such as 
rod and level. Class 1 benchmarking devices that typically used for inertial-
profiler conformance testing include the Face Dipstick and the SurPro. 

• High Repeatability – The Standard deviation for repeat runs for the Laser SDP2 
are within +/- 5% of the mean IRI for each run, however summarized IRI results 
are typically well within this accuracy range. The use of RoLine sensors would 
further improve on this consistency, regardless of the testing surface type or 
condition. 
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ITEM Pave3D (LCMS) 

1 Num. of laser profilers 2 

2 Sampling rate 5600 profiles/s 

3 Vehicle speed (max) (70 mph) 

4 Profile spacing 0.2 inches 

5 Points per profile 4160 points 

6 Transverse field-of-view 13.2 feet 

7 Depth range of operation 9.8 inches 

8 Z-axis (depth) resolution 0.02 inches 

X-axis (transverse) 
9 

resolution 
0.04 inches 

 

• Real Time - The ability to calculate IRI in real-time, which facilitates vehicle 
operators in the identification of non-operational or ill-functioning subsystems 
(such as the SDP2). This effectively reduces the amount of time to identify 
problems with the system, limiting the extent of data collection affected. 

• Compliance with Standards – Inertial profilers, such as the SDP2, should be fully 
compliant with the range of longitudinal profile collection standards including 
ASTM E950, AASHTO R 56, and the World Bank Technical Paper #46 protocol. 
The ARAN conforms to Class I profiling equipment requirements as specified in 
the most current Highway Performance Monitoring System (HPMS) Field Manual 
provided by the Federal Office of Highway Policy Information. The ARAN 
(equipped with a Pave3D system) has passed the Texas Transportation Institute 
(TTI) inertial profiler certification. 

• Conformance Testing – To ensure that an inertial profiler system remains 
accurate, two conformance tests, one static and other dynamic, ensure that the 
laser and accelerometer components of the system are operating as intended. 
Without successful completion of these tests to within allowable threshold limits, 
an ARAN would not be signed off for collection commencement. 

Rut Depth/Transverse Profile 

Transverse profile and rutting data were collected by Fugro’s Pave3D system utilizing 
the LCMS sensors. The Pave3D works by laser-illuminating one line of pavement on 
each half of the driven lane, and then capturing the profile of that laser line with a 
sensor. Table 130 provides an overview of the Pave3D system rutting capability. 

Table 130. ARAN Rutting Capabilities 
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When the Pave3D’s raw transverse data is validated, rutting is calculated in real-time on 
the ARAN using ASTM E1703 (straight-edge method), AASHTO R48 (wire method), or 
simulated N-point method (e.g. 7-point). 

Some of the technologies, best practices and limitations of pavement transverse profile 
(TP) and rut depth collection, post processing and reporting include: 

• Advanced Transverse Profile Processor and Rut Depth Settings – To ensure that 
the generation of a transverse profile is valid, and that the calculation of rut 
depths to an overlying straight edge or wire algorithm is measuring the intend 
pavement performance the following processor settings are used: 

o Validation of transverse profiles, using maximum tresholds for height 
differentials across the profile length, with a minimum profile length 
threshold set to ensure only highly valid profiles are incorporated into the 
rut depth calculation. 

o Ability to define the width of the lane to be incorporated into the transverse 
profile. This includes options such as using the pavement line marking 
detection (with or without minimum lane widths) to remove the influence of 
edge drop-off (unpaved shoulders) and curb-raise on either side of the 
lane. This will ensure that artificial rut depths due to these phenomena are 
not created and incorporated into the average for a segment. 

o Where crack detection is not used, an edge detection processor should be 
used to invalidate changes in height differentials that cannot be 
characterized by pavement deformation (e.g. edge drop-off or curb-raise). 

o The smoothing of transverse profiles (using either a moving average or 
wedge) are carried out to remove any ambiguities in the pavement surface 
that are not attributed to pavement rutting/deformation such as surface 
texture and cracking. 

o Ability to define the length of a straight-edge (half-lane, full-lane, 6-foot 
etc.) and its freedom of movement within, or outside of the calculated 
transverse profile width. 

o The ability to perform rut location optimization, whereby the transverse 
location of the maximum rut depth between TP intervals (longitudinally) 
must remain within predefined tolerances. This is very useful where rut 
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depth data is used primarily for the determination of pavement 
deformation performance (such as using rut data as part of a structural 
performance index) within each of the wheel paths. 

o Using the inertial component (multi-axis gyroscopes) of the survey 
vehicles to correct the orientation of the transverse profile (remove the 
influence of vehicle roll) to determine cross-fall. 

Positioning 

The Distance Measuring Instrument (DMI) measures ARAN chainage and linear 
distance travelled. Every ARAN is equipped with a GPS and an Inertial Reference 
System (POS LV) to fill in satellite gaps. POS LV is a state-of-the art inertial aided 
navigation system that provides precise roll, pitch, heading, velocity, and position 
information to other onboard subsystems. The GPS results were post processed as well 
to increase the level of accuracy of the readings. 
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J. MANUAL WINDSHIELD SURVEY RESULTS ON FLEXIBLE 
PAVEMENTS 

Section ID Statistic CIB (%) CII (%) CIII (%) CIB + CII + CIII (%) Raveling (%) Patching (%)

1 AVG 40 20 0 60 4 0

2 AVG 38 8 0 47 9 0

3 AVG 0 0 0 0 0 0

4 AVG 8 22 2 32 2 0

5 AVG 2 23 12 37 12 0

6 AVG 2 38 8 48 10 2

7 AVG 0 2 0 2 0 0

8 AVG 10 22 0 32 0 0

9 AVG 0 0 0 0 2 13

10 AVG 0 3 0 4 17 0

11 AVG 0 2 12 13 17 5

12 AVG 0 3 22 25 18 3

1 (Min,Max) (30,50) (10,25) (0,0) (55,65) (0,10) (0,0)

2 (Min,Max) (30,50) (5,15) (0,0) (35,55) (0,25) (0,0)

3 (Min,Max) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

4 (Min,Max) (5,15) (10,35) (0,5) (17,45) (0,5) (0,0)

5 (Min,Max) (0,5) (15,30) (0,25) (30,40) (5,25) (0,0)

6 (Min,Max) (0,5) (35,40) (0,15) (35,55) (1,20) (1,5)

7 (Min,Max) (0,1) (0,5) (0,0) (1,5) (0,0) (0,0)

8 (Min,Max) (0,20) (15,25) (0,0) (15,45) (0,0) (0,1)

9 (Min,Max) (0,0) (0,0) (0,0) (0,0) (0,5) (5,21)

10 (Min,Max) (0,0) (0,10) (0,1) (0,10) (10,25) (0,0)

11 (Min,Max) (0,0) (0,5) (5,20) (5,25) (5,30) (1,10)

12 (Min,Max) (0,0) (0,10) (15,30) (15,40) (5,40) (2,5)

1 COV 25% 43% N/A 8% 150% N/A

2 COV 27% 69% N/A 22% 163% N/A

3 COV N/A N/A N/A N/A N/A N/A

4 COV 69% 58% 108% 44% 173% N/A

5 COV 173% 33% 108% 16% 99% N/A

6 COV 173% 8% 92% 24% 92% 99%

7 COV 173% 132% N/A 99% N/A N/A

8 COV 100% 27% N/A 48% N/A 173%

9 COV N/A N/A N/A N/A 173% 63%

10 COV N/A 173% 173% 150% 46% N/A

11 COV N/A 173% 65% 78% 75% 85%

12 COV N/A 173% 35% 53% 103% 46%

106% 89% 97% 54% 119% 93%

-6% 11% 3% 46% -19% 7%OVERALL PRECISION: 100-AVG(COV)

OVERALL VARIATION: AVG(COV)

CW: Wheel Path Cracking
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Section ID Statistic CIB (%) CII (%) CIII (%) CIB + CII + CIII (%) Raveling (%) Patching (%)

1 AVG 17 3 0 20 0 0

2 AVG 16 2 0 18 2 0

3 AVG 0 0 0 0 0 0

4 AVG 10 23 5 38 2 0

5 AVG 2 28 5 35 8 0

6 AVG 2 32 3 37 9 2

7 AVG 0 2 0 2 0 0

8 AVG 8 17 0 25 0 0

9 AVG 0 0 0 0 2 13

10 AVG 0 2 2 3 8 0

11 AVG 0 0 5 5 8 5

12 AVG 0 2 17 18 10 3

1 (Min,Max) (10,20) (0,5) (0,0) (10,25) (0,0) (0,0)

2 (Min,Max) (8,25) (0,5) (0,0) (0,5) (0,0) (0,0)

3 (Min,Max) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

4 (Min,Max) (5,20) (10,35) (5,5) (0,5) (0,0) (0,0)

5 (Min,Max) (0,5) (20,35) (0,10) (5,10) (0,0) (0,0)

6 (Min,Max) (0,5) (25,40) (0,5) (1,15) (0,5) (0,5)

7 (Min,Max) (0,0) (1,5) (0,0) (0,0) (0,0) (0,0)

8 (Min,Max) (0,15) (5,25) (0,0) (0,0) (0,1) (0,1)

9 (Min,Max) (0,0) (0,0) (0,0) (0,5) (5,21) (5,21)

10 (Min,Max) (0,0) (0,5) (0,5) (5,10) (0,0) (0,0)

11 (Min,Max) (0,0) (0,0) (1,10) (5,15) (1,10) (1,10)

12 (Min,Max) (0,0) (0,5) (5,35) (5,15) (2,5) (2,5)

1 COV 35% 87% N/A 43% N/A N/A

2 COV 53% 173% N/A 64% 173% N/A

3 COV N/A N/A N/A N/A N/A N/A

4 COV 87% 54% 0% 42% 173% N/A

5 COV 173% 27% 100% 43% 35% N/A

6 COV 173% 24% 87% 28% 82% 132%

7 COV N/A 99% N/A 99% N/A N/A

8 COV 92% 62% N/A 69% N/A 173%

9 COV N/A N/A N/A N/A 173% 63%

10 COV N/A 173% 173% 87% 35% N/A

11 COV N/A N/A 85% 85% 69% 85%

12 COV N/A 173% 96% 103% 50% 46%

102% 97% 90% 66% 99% 100%

-2% 3% 10% 34% 1% 0%

OVERALL VARIATION: AVG(COV)

OVERALL PRECISION: 100-AVG(COV)

CO: Non-Wheel Path Cracking
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K. FDOT FLEXIBLE PAVEMENT DISTRESS APPLICATION (FFPDA) 
TEST RESULTS 

Table 131. Amount of Cracking by Crack Type, Severity, and Road Zone for Each Run 

Run 
No. 

Section 
No. 

By Crack Type (Sq Ft) By Crack Severity (Sq Ft) By Road Zone (Sq Ft) 

Alligator Branch Single 1B II III CW CO 

1 1 7,588.11 
1,532.9 

2 
1,153.5 

6 
2,603.20 7,651.61 19.78 9,331.14 943.45 

1 2 8,946.50 1,297.20 823.15 2,038.54 8,993.77 34.54 9,936.69 1,130.16 

1 3 0.29 5.42 49.53 54.95 0.29 - 15.04 40.20 

1 4 1,057.78 1,791.27 1,802.43 1,948.88 2,369.69 332.92 2,403.96 2,247.52 

1 5 20,487.05 3,883.75 2,530.17 5,103.22 19,774.07 2,023.68 16,927.41 9,973.56 

1 6 33,851.89 4,652.60 2,847.45 6,159.14 31,959.63 3,233.16 28,064.93 13,287.00 

1 7 1.52 24.31 194.82 154.58 62.01 4.07 152.72 67.93 

1 8 2,306.74 3,066.65 3,991.30 3,225.03 5,328.35 811.31 6,693.50 2,671.19 

1 9 51.27 160.59 1,053.97 797.28 444.07 24.48 875.90 389.93 

1 10 9,551.10 2,790.71 3,844.70 6,327.73 9,745.01 113.77 10,634.30 5,552.20 

1 11 3,632.87 3,429.36 6,902.53 8,771.04 4,672.96 520.77 8,381.75 5,583.02 

1 12 4,387.39 5,383.59 6,038.59 10,430.69 5,111.88 267.01 7,692.68 8,116.89 

2 1 7,298.45 1,539.14 1,169.93 2,425.28 7,483.51 98.73 9,060.00 947.52 

2 2 9,277.17 1,298.56 780.38 1,828.68 9,248.75 278.68 10,179.67 1,176.44 

2 3 - 0.97 87.46 88.02 0.41 - 20.39 68.04 

2 4 1,041.91 1,763.05 1,756.64 1,694.64 2,417.28 449.67 2,365.40 2,196.19 

2 5 20,279.58 3,680.41 2,453.86 4,013.00 18,966.58 3,434.28 16,590.08 9,823.77 

2 6 34,857.24 4,658.20 2,792.44 5,354.97 31,739.78 5,213.12 28,904.92 13,402.96 

2 7 0.68 2.24 175.97 133.37 44.84 0.68 116.29 62.60 

2 8 2,436.32 3,008.02 3,962.41 2,817.46 5,552.25 1,037.04 6,936.54 2,470.20 

2 9 32.30 192.02 1,089.31 698.58 600.32 14.74 860.28 453.36 

2 10 11,254.60 2,814.09 3,867.42 6,211.84 11,573.18 151.09 12,733.16 5,202.95 

2 11 3,494.94 3,358.99 7,381.27 8,356.06 5,214.97 664.18 8,136.94 6,098.27 

2 12 4,118.14 4,942.75 6,213.41 9,455.32 5,375.74 443.23 7,278.20 7,996.10 

3 1 7,054.82 1,706.58 1,184.66 2,653.30 7,228.25 64.51 8,949.32 996.73 

3 2 9,319.85 1,287.12 809.97 2,095.92 9,321.02 - 10,299.48 1,117.46 

3 3 0.00 10.47 165.41 166.55 9.33 - 50.01 125.87 

3 4 1,108.40 1,844.53 1,667.74 1,685.28 2,478.33 457.07 2,457.78 2,162.89 

3 5 20,269.21 3,863.66 2,633.78 4,062.28 19,899.88 2,804.49 16,456.42 10,310.23 

3 6 34,595.94 4,856.83 2,659.82 5,346.26 31,532.06 5,234.28 28,717.70 13,394.89 

3 7 2.78 7.02 194.25 157.41 43.07 3.56 136.30 67.75 

3 8 2,289.16 3,053.49 3,910.31 2,835.68 5,611.77 805.50 6,665.02 2,587.94 

3 9 26.29 183.46 1,216.98 852.23 555.05 19.44 967.15 459.58 

3 10 9,031.73 2,338.37 3,989.04 5,840.31 9,311.26 207.57 10,649.13 4,710.01 
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Run Section By Crack Type (Sq Ft) By Crack Severity (Sq Ft) By Road Zone (Sq Ft) 

No. No. Alligator Branch Single 1B II III CW CO 

3 11 3,351.20 3,520.37 7,449.02 8,104.20 5,452.96 763.43 8,416.94 5,903.65 

3 12 3,740.73 5,029.30 6,315.63 9,398.62 5,233.87 453.18 7,176.17 7,909.50 

Table 132. Amount of Cracking by Crack Type and Severity for Each Run 

Run 
No. 

Sectio 
n No. 

Single Cracks (Sq Ft) Branch Cracks (Sq Ft) Alligator Cracks (Sq Ft) 

1B II III 1B II III 1B II III 

1 1 1,096.97 50.52 6.08 1,506.23 26.69 - - 7,574.41 13.70 

1 2 775.31 46.35 1.50 1,263.23 33.97 - - 8,913.45 33.05 

1 3 49.53 - - 5.42 - - - 0.29 -

1 4 1,167.93 624.30 10.20 780.95 1,010.32 - - 735.07 322.72 

1 5 2,069.68 434.63 25.86 3,033.54 841.78 8.43 - 18,497.66 1,989.39 

1 6 2,378.10 458.89 10.45 3,781.03 871.57 - - 30,629.17 3,222.71 

1 7 144.35 47.35 3.11 10.23 14.08 - - 0.57 0.96 

1 8 2,101.46 1,871.42 18.42 1,123.57 1,943.08 - - 1,513.85 792.89 

1 9 712.91 329.59 11.48 84.38 76.21 - - 38.26 13.00 

1 10 3,615.60 212.26 16.85 2,712.13 78.58 - - 9,454.18 96.92 

1 11 5,988.04 840.90 73.60 2,783.00 645.38 0.99 - 3,186.69 446.19 

1 12 5,573.20 390.76 74.64 4,857.49 526.10 - - 4,195.02 192.37 

2 1 1,054.35 112.84 2.73 1,370.93 168.22 - - 7,202.46 95.99 

2 2 641.89 130.76 7.74 1,186.79 111.77 - - 9,006.22 270.94 

2 3 87.46 - - 0.56 0.41 - - - -

2 4 1,037.14 682.40 37.09 657.50 1,105.54 - - 629.33 412.58 

2 5 1,779.66 659.67 14.53 2,233.34 1,444.74 2.34 - 16,862.17 3,417.41 

2 6 2,066.90 707.65 17.89 3,288.07 1,367.77 2.36 - 29,664.37 5,192.87 

2 7 132.82 43.15 - 0.55 1.69 - - - 0.68 

2 8 1,812.32 2,142.38 7.71 1,005.14 2,002.87 - - 1,407.00 1,029.33 

2 9 608.07 478.79 2.45 90.51 101.51 - - 20.02 12.28 

2 10 3,539.88 306.22 21.31 2,671.95 142.14 - - 11,124.82 129.78 

2 11 6,010.16 1,284.36 86.75 2,345.90 1,005.15 7.94 - 2,925.46 569.48 

2 12 5,491.30 630.04 92.07 3,964.03 978.72 - - 3,766.98 351.16 

3 1 1,053.90 126.31 4.45 1,599.40 105.46 1.72 - 6,996.48 58.33 

3 2 808.81 1.17 - 1,287.12 - - - 9,319.85 -

3 3 156.08 9.33 - 10.47 - - - 0.00 -

3 4 988.22 658.29 21.23 697.05 1,145.41 2.07 - 674.62 433.77 

3 5 1,793.33 822.10 18.34 2,268.94 1,594.71 - - 17,483.06 2,786.15 

3 6 1,999.12 620.71 39.99 3,347.14 1,504.91 4.79 - 29,406.44 5,189.50 

3 7 152.10 41.36 0.79 5.31 1.71 - - - 2.78 

3 8 1,826.15 2,057.67 26.49 1,009.53 2,043.96 - - 1,510.14 779.01 

3 9 749.96 459.14 7.88 102.28 81.18 - - 14.73 11.56 
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Run Sectio Single Cracks (Sq Ft) Branch Cracks (Sq Ft) Alligator Cracks (Sq Ft) 

No. n No. 1B II III 1B II III 1B II III 

3 10 3,594.11 367.97 26.97 2,246.20 92.17 - - 8,851.13 180.60 

3 11 5,836.72 1,510.81 101.49 2,267.49 1,250.74 2.14 - 2,691.41 659.80 

3 12 5,541.35 737.00 37.28 3,857.27 1,172.04 - - 3,324.83 415.90 

Table 133. Amount of Cracking by Road Zone and Crack Severity for Each Run 

Run 
No. 

Section 
No. 

Cracking in the Wheel Path (Sq 
Ft) 

Cracking Outside the Wheel Path 
(Sq Ft) 

1B II III 1B II III 

1 1 1,731.19 7,581.31 18.63 872.00 70.30 1.15 

1 2 1,145.19 8,771.96 19.54 893.35 221.80 15.00 

1 3 15.04 - - 39.91 0.29 -

1 4 551.49 1,583.62 268.85 1,397.39 786.07 64.06 

1 5 1,794.49 14,065.63 1,067.28 3,308.72 5,708.44 956.40 

1 6 1,716.78 23,980.96 2,367.19 4,442.36 7,978.67 865.97 

1 7 96.13 54.13 2.47 58.45 7.88 1.60 

1 8 1,617.91 4,376.61 698.98 1,607.12 951.74 112.33 

1 9 519.55 342.30 14.05 277.74 101.76 10.43 

1 10 3,930.84 6,610.76 92.70 2,396.89 3,134.25 21.07 

1 11 4,637.38 3,417.35 327.02 4,133.66 1,255.61 193.75 

1 12 4,749.74 2,801.96 140.99 5,680.95 2,309.92 126.02 

2 1 1,640.97 7,325.15 93.88 784.31 158.37 4.84 

2 2 976.95 8,942.09 260.63 851.73 306.66 18.05 

2 3 20.39 - - 67.63 0.41 -

2 4 507.80 1,520.82 336.78 1,186.84 896.46 112.89 

2 5 1,309.94 13,758.09 1,522.04 2,703.05 5,208.49 1,912.23 

2 6 1,423.70 23,692.17 3,789.06 3,931.27 8,047.62 1,424.07 

2 7 78.76 37.53 - 54.61 7.31 0.68 

2 8 1,360.35 4,658.99 917.20 1,457.11 893.26 119.84 

2 9 367.05 487.38 5.86 331.54 112.94 8.88 

2 10 4,003.24 8,636.34 93.57 2,208.60 2,936.84 57.52 

2 11 4,198.92 3,473.57 464.44 4,157.14 1,741.39 199.73 

2 12 4,276.52 2,798.85 202.83 5,178.81 2,576.88 240.41 

3 1 1,843.67 7,050.35 55.31 809.63 177.90 9.20 

3 2 1,241.48 9,058.00 - 854.45 263.01 -

3 3 50.01 - - 116.55 9.33 -

3 4 507.80 1,593.29 356.69 1,177.48 885.04 100.37 

3 5 1,350.45 13,818.04 1,287.93 2,711.82 6,081.84 1,516.56 

3 6 1,423.10 23,358.60 3,936.01 3,923.16 8,173.45 1,298.27 

3 7 112.57 23.73 - 44.84 19.34 3.56 
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Run 
No. 

Section 
No. 

Cracking in the Wheel Path (Sq 
Ft) 

Cracking Outside the Wheel Path 
(Sq Ft) 

1B II III 1B II III 

3 8 1,307.08 4,703.68 654.26 1,528.60 908.09 151.24 

3 9 494.37 456.16 16.62 357.86 98.89 2.82 

3 10 3,874.28 6,621.60 153.25 1,966.03 2,689.67 54.32 

3 11 4,169.74 3,707.66 539.55 3,934.47 1,745.30 223.88 

3 12 4,183.89 2,781.78 210.50 5,214.73 2,452.10 242.68 
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L. FDOT FLEXIBLE PAVEMENT DISTRESS APPLICATION (FFPDA) 
REFERENCE MANUAL 

Document Version Control 

This Reference Manual is intended for Florida DOT staff to use as reference when 
conducting semi-automated rating of pavement images using Vision software and 
automated rating using FDOT Flexible Pavement Distress Application (FFPDA). This 
Reference Manual is updated and improved as needed. The following is the document 
control for revisions to this document. 

Version 
Number 

Date of Issue Authors Brief Description of Changes 

V.0.5 10/25/2017 
Nima Kargah-
Ostadi, Mina Zhou 

Draft User’s Guide for semi-automated 
rating (manual rating of the images) 
using Vision 3.1 

V 0.8 07/23/2018 
Nima Kargah-
Ostadi, Thomas 
Burchett 

Draft User’s Guide for semi-automated 
rating using Vision 3.3 and automated 
rating using FFPDA 

V 1.0 10/31/2018 
Nima Kargah-
Ostadi, Mina Zhou 

Changed the name of the document to 
Reference Manual, made all sentences 
in active voice, changed the sequence of 
topics and inserted additional topics 

V 1.2 02/25/2019 
Nima Kargah-
Ostadi, Mina Zhou 

Addressed FDOT comments received 
12/19/2018; added the Quick Start Guide 
from 12/06/2018 to this document; 
updated screen captures according to 
final software 
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L.1. Vision Batch Processing Quick Start Guide 

This Quick Start Guide was developed with the objective of providing the users with an 
easy and quick guide to start using the batch processors in the Vision software. For 
further explanation of the details, please refer to the remainder of the Reference 
Manual. 

After opening Vision, select the Database relevant to your assigned project. 

Select <Process> and then <New Batch Processor> from the dropdown menu. 
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Check the boxes for ‘JPEG Lanes Detection Processor’, ‘JPEG Cracks Detection 
Processor’, ‘FDOT Flexible Pavement Distress App’, and ‘FDOT Flexible Pavement 
Rating Results Summary’. 

Make sure they are sorted in the correct order: 

Then Click <Options> 

Click on the ‘JPEG Lanes Detection Processor’ to highlight, then click on the dropdown 
menu for <Detection> <Algorithm Version> and select “Wisecrax_V2”. Set the <Default 
lane width> to 3.6 meters and the <Minimum lane width> to 3 meters. 
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Click on the ‘JPEG Cracks Detection Processor’ to highlight, then click on the dropdown 
menu for <Detection> <Detection Profile> and select “Learning based WiseCrax 
(LCMS)”. 

Click on the ‘FDOT Pavement Distress App’ to highlight, then click on <Settings>, for 
<Road Zone Type>, select “FDOT” for processing according to the FDOT Flexible 
Pavement Condition Survey Handbook or “HPMS” for processing according to the 
HPMS Field Manual. Then, choose an output folder for your report. 

Click on the ‘FDOT Flexible Pavement Rating Results Summary’ to highlight, then click 
on <Settings>, choose an output folder for your report. 

After you have set the above Options up once, choose Save All and save that 
processing setup (the 4 processes, with the settings). 
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After saving the settings, next time you select <New Batch Processor>, skip the 
selection, click <Options> <Load> and select that saved process profile. 

Click <Data>, find your sections, highlight (use Ctrl+[left-click] to select multiple 
sections), click the dropdown menu next to the little check mark and click <Invert> which 
selects everything except what you had highlighted, and then click <Remove>. 
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Click <Process>, then <Start> 

When it is done running, click <OK> to save the processing results. 

Select <Rate> and then <Pavement Distress> from the dropdown menu. 
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Select section by highlighting it in the <Section Explorer> menu. Then, go back to the 

module and click on Lock to lock that section under your username. 

Use the manual rating options to create manual distress (e.g. raveling, patching, etc.), 
or modify/delete automated distress results. 

Once you’re done modifying, click <Save> and <Unlock> 

Click <Process> and then <New Batch Processor> from the dropdown menu. 

‘FDOT Flexible Pavement Rating Results Summary’ to highlight, then click on 
<Settings>, choose an output folder for your report. Click <Data> and reselect the 
desired sections, <Invert> and <Remove>. Click <Process>, <Start>. When that is done 
running, Click Ok to confirm the task is completed. 

Open the destination folder and rename both output files, move them as needed. 
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L.2. Reference Manual 

This Reference Manual includes instructions on using basic Vision software functions, 
and also instructions on using the automated application (batch processors) that was 
specifically developed during this research project for Florida DOT. The users will need 
to learn the basic Vision software functions to be able to setup and conduct quality 
control of the automated application results. Appendices C and D of this Reference 
Manual have been designated for use by a ‘Professional User’ (project database owner) 
because it is recommended that those adjustments be conducted at infrequent intervals 
by only one user per project. 

Connecting to a Project Database 

Vision software works based on SQL databases. Each database is called a project and 
it may include any number and length of sections. Click on Connect (top left-hand side) 
to display the recent databases that you have accessed. To connect to a new project, 
click on New and a window will allow you to enter the server name where the data is 
stored, username and password to access the server (or use Windows Authentication), 
and the name of the database which you would like to connect to. See an example 
below: 
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Section Explorer 

When connected to a specific project (database), a list of sections in the database will 
appear on the Section Explorer screen. These sections are defined during the 
planning process for data collection. The pavement sections are organized in 
‘Sessions’, where images are stored. Double click on a session in the Section Explorer 
to highlight it. Only one session can be highlighted at a time. A session needs to be 
highlighted before any manual data processing can be conducted on it (e.g. semi-
automated rating of distress). Please refer to the section of this document on Using 
Batch Processors to select multiple sessions for the automated processing. 

Section Filters 

You can filter out the sections which do not have the desired data using the section 
filter, a small drop-down button below the column header. 
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The default filter is not activated (‘No Filter’). To activate the filter function on each 
column in the Section Explorer menu, first select a filter option from the filter drop-
down list, input a value, and then click the filter drop-down button again to confirm using 
the filter. The drop-down list includes ten options, as shown below: 

The following explains how each filter option works. 

Contains: Only test sections in which the column value contains the input characters will 
be shown on the section list. For example, if you select ‘Contains’ and use ‘19’ as the 
input value in the ‘Route’ column, only sections in which ‘Route’ value contains 19 will 
be shown on the section list. This might include ‘Route’ number 19 or 192 or 219, etc. 

Does not contain: Only test sections in which the column value does not contain the 
input characters will be shown on the section list. For example, if you select ‘Does not 
contain’ and use ‘19’ as the input value in the ‘Route’ column, only sections in which 
‘Route’ value doesn’t contain 19 will be shown on the section list. 
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Starts with: Only test sections in which column values start with the given characters will 
be shown on the section list. 

Ends with: Only test sections in which column values end with the given characters will 
be shown on the section list. The following is an example application of this filter on the 
Route column: 

Equals: Only test sections in which column values are equal to the given characters will 
be shown on the section list. 

Not equal to: Only test sections in which column values are not equal to the given 
characters will be shown on the section list. The following shows an example application 
of this filter on the Direction column: 
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Is null: Only test sections in which column values are ‘null’ will be shown on the section 
list. 

Is not null: Only test sections in which column values are not ‘null’ will be shown on the 
section list. 

Custom: you can create a more complicated filter by using ‘And’ and ‘Or’, for example, 
‘Ends with I-4’ or ‘Ends with 24’ as shown in the following filter example on the Route 
column: 
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Group Editor 

This function will allow you to save all the filters for Section Explorer. From the Tools 
drop-down menu, select Group Editor: 

The Section Explorer will appear within the Group Editor window: 

Apply the filtering criteria as described previously. Then, select all the filtered sections to 
be highlighted: 

526 



 
 

 
 

 

  

 

  

Right click on the selected sections, and click on Create Group: 
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The Group Editor window appears (see below). The IDSession values for the selected 
sections will appear in this window and can be modified if needed (see the last white 
box in the following screen capture). Input a Name and a Description for your group: 

Click OK to confirm the creation of the group. The following conformation window will 

appear. Click the Save button ( ) to save the group: 
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The next time you open Vision, click Groups in Section Explorer to view the saved 
group: 

The Group Partitions Explorer appears. Click on the desired saved group (e.g. 
‘Run2’), and you will see the group you had created: 
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The Section Explorer will only display the filtered sections in the created group: 

Column Chooser 

You can add/remove more column(s) to/from the table in Section Explorer by using 
Column Chooser. Move the mouse over one of the header columns, and right click the 
header, a drop-down menu appears as shown below: 

Click the Column Chooser in the menu, and the Column Chooser menu appears. 
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Add column: Drag the desired field from the list to the table header to add it to the 
current view as an additional column: 

Remove Column: Drag a column header from the table to the list to remove it from the 
current view. 

NOTE: Time is when the data was collected. Start is the start milepost in the actual 
collection. End is the end milepost in the actual collection. These start and end points 
might not necessarily be the boundaries within which the data is processed. Those 
boundaries can be adjusted through the Segmentation process, which is explained in 
the section on Segmentation at the end of this Appendix. 

Opening Pavement and ROW Images 

From the menu bar, select Images and then select LCMS3D, LCMSIntensity, 
LCMSRange, or ROW images: 
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While the LRIS system only collects intensity images, the LCMS 3D image system is 
able to acquire both intensity images and range images, which includes depth 
information of pavement surface. The LCMS3D image is the combination of intensity 
image (LCMSIntensity) and range image (LCMSRange). All of these images are 
displayed if a path is provided to the location where the images are stored. Please refer 
to the section on Advanced Project Settings in this Appendix for instructions on 
providing the image path. 

LCMS 3D Image LCMS Range Image LCMS Intensity Image 
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ROW image shows the forward-facing Right-of-Way image. If more than one image is 
provided, the software is capable of displaying more forward or rear facing images. 

The play-stop-forward-backward buttons can be used to see images along the length of 
the roadway. The play speed can be adjusted. The slider bar on the right-hand side 
shows the location in 0.001-miles from the beginning of the roadway section. 
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Customizing the Work Space 

You can move any of the opened tabs (‘Section Explorer’, ‘LCMS3D’ and ‘ROW’ in this 
example) around one or multiple monitor screens to arrange the windows according to 
your preferences. If you have multiple monitors, you can right-click on any tab, select 
Undock and then move the new window to another monitor screen: 

Using Batch Processors 

Batch processors are used for any automated data processing in Vision. The use of 
batch processor(s) includes the following five steps: 

1. Select Batch Processor 

2. Set Parameters and Options 

3. Select Data 

4. Run Batch Processor(s) 

5. Save Batch Processor Settings (optional but recommended) 

Step1. Select Batch Processor 

To launch the batch processor, click on the Process icon located on the upper toolbar 
(as shown in the following figure). Select New Batch Processor from the drop-down 
menu. 
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To select a batch processor, locate the processor from the list, or type in the name of 
the processor into the search bar and click on the search icon. 
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Click on the checkbox to select the batch processor. The selected batch processor will 
be displayed in the table at the bottom of the window: 
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Step2. Set Parameters and Options 

Once you have selected the processor(s), the next step is to set the parameters and 
other options for the processing. Click on the Options tab and options of the batch 
processor will be displayed: 

Select the parameters for each processor from the table on the right: 
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A description of each selected parameter is also provided in the table below it: 

To reset any of the changes in the parameters or the options, click on the  Reset  button:  

( ). 

Select the options from the Options table: 

Any errors or missing values for parameters are displayed at the bottom of the window: 
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Step3. Select Data 

The next step is to select the data on which the batch processors will run. Click on the 
Data tab. All sessions (sections) have been selected by default and you needs to 
remove the sessions that you are not interested in: 
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To select specific sessions (sections) only, click on those sessions in the list and they 
will be highlighted in blue: 
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Click Invert to deselect all the undesirable sessions (sections), which will result in the 
undesirable sessions being highlighted in blue. Click Remove to keep only the desired 
sections: 

A list of selected sessions will be displayed: 
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Step4. Run Batch Processor 

After selecting the processor, its options, and the data, the last step is to run the batch 
processing. Click on the Process tab, which will appear after all the parameters have 
been set correctly. 

1. To schedule a batch process, click on Schedule and select Immediate to 
process immediately or click on Delayed and select the date and time when it 
should be processed. 

2. Click on Start to begin processing immediately. If you have selected Delayed in 
the first step, you do NOT need to click on Start. 

3. The progress for each batch processor and the overall progress will be displayed 
at the bottom of the window. 

4. Once the processing is complete, a pop-up window will be displayed, which will 
report whether the process was completed without errors. After clicking on the 
OK button on that pop-up window, the Tasks tab is no longer available. To carry 
out another batch process, close the window and reopen the Batch Processor. 

Running Multiple Batch Processors 

Vision allows you to select multiple processors and process the data with each 
processor one after another: 
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1. Select the desired processors from the Task tab: 

2. Make sure the desired processors are selected in the correct order by checking 
the table in the bottom of the window: 

3. Set Options for each batch processor: 

4. Click on the Data tab and select section(s) that you want to process. Note that by 
default, all sections in a project are selected and the desired section(s) are 
chosen by selecting and removing the undesired section(s). 
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5. Click on the Process tab and click on the Start button to process the selected 
section(s): 

Step5. Save Batch Processor Settings 

You can save all the settings for the batch processors so that the same settings can be 
applied the next time you open Vision software. 

Click on the Save all button ( ) to save all options for all selected processors: 
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Select the file path where you want to save the xml file and Input the file name: 

The next time you run multiple batch processors, you can skip the steps of selecting 
Tasks and go directly to Options. Click the Load button to load the settings file saved 
in Step 5: 
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Four processors are selected in this example, and the previous settings are loaded for 
all four processors: 

Next, you need to select the desired sections and run the processors. By using this 
save and load operation, the same batch processors with the same settings can be 
used on multiple databases and multiple sections. 
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Automated Distress Rating 

There are five steps for automated pavement distress rating: 

1. Vision Lane Detection: the ‘JPEG Lanes Detection Processor’ 

2. Vision Crack Detection: the ‘JPEG Cracks Detection Processor’ 

3. ‘FDOT Flexible Pavement Distress Application (FFPDA)’ 

4. Quality Control of Automated Distress Rating Results using Manual Rating (this 
is a non-mandatory manual process) 

5. ‘FDOT Flexible Pavement Rating Results Summary’ 

It is recommended to utilize the first three batch processors simultaneously to 
automatically detect the lanes, detect cracks from pavement images, and classify and 
rate the detected cracks to be assigned as distresses according to the FDOT protocol. 
After automated rating has been completed, you can perform an optional quality control 
check to investigate whether the automated rating was completed successfully and use 
the manual rating tools to make adjustments where necessary (semi-automated rating). 
Running the final summary batch processor will summarize both the automated and 
semi-automated rating results and export them in a comma-separated value (csv) file. 

If you want to skip the quality control step, you may select the ‘FDOT Flexible Pavement 
Rating Results Summary” processor together with the initial three batch processors for 
automated distress rating in the following order: 

This way, the selected section(s) will be processed using all four processors one after 
the other. To ensure the data quality, it is recommended to NOT skip the manual quality 
control step. 
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Lane Detection Processor 

Automated lane boundary detection can be completed on pavement images using the 
‘JPEG Lanes Detection Processor’. 

Lane Detection Options 

There are four groups of options for ‘JPEG Lanes Detection Processor’. 

• Detection 

Algorithm Version: Select algorithm version used for the lane detection. It is 
recommended to use the latest version. 

• Lane Width Range 

Default lane width: The default lane width to be stored when no lanes are detected. 
When lane stripes are detected, and the detected lane width is not within the range 
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identified by the minimum and maximum, this number will be stored. Please set this 
according to project specifics, e.g. 3.6 meters. 

Maximum lane width: Only lanes smaller than this value will be stored to the database. 
When the detected lane width is more than this threshold, the default lane width will be 
stored. 

Minimum lane width: Only lanes greater than this value will be stored to the database. 
When the detected lane width is smaller than this threshold, the default lane width will 
be stored. Please set this according to project specifics, e.g. 3.0 meters. 

• Memory/Performance 

Allow parallelization at session level: If set to true, whole sessions are processed in 
parallel while keeping all images of each session together. If set to False, images from 
multiple sessions can be processed simultaneously if the computer has adequate 
number of cores available for such an operation. This is set to false by default for 
improved speed. 

Use ideal CPU count: If parallelization at session level is set to True, this option will be 
available. If this is set to True, the number of CPU cores to use is determined 
automatically based on the hardware available and the amount of memory the 
processor uses. If this is set to False, the user should enter the number of CPU cores to 
use. 

• Process 

Matches tolerance: Tolerance threshold, which will extend the matches if the next 
option is set to True. 

Process only matches: If set to true, only the images contained in matches (parts of 
the sessions where collected data matches routed data) will be processed. It is 
recommended to keep this option at False to process all images in each session. 

Run on every Nth image: Run on every Nth image, after 1 frame is added to the 
output. For example, if set to ‘2’, it only processes every other image. 
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Cracks Detection Processor 

Automated crack detection can be completed on pavement images using the ‘JPEG 
Cracks Detection Processor’. 

Crack Detection Options 

There are three groups of options for ‘JPEG Cracks Detection Processor’. 

• Detection 

Detection Profile: Select the profile used for crack detection, as defined in the schema 
editor. It is recommended to select the ‘Learning based WiseCrax (LCMS)’ as detection 
profile if the LCMS range images are available. This profile was developed by training a 
machine learning algorithm on LCMS range (depth) images. The ‘Learning based 
WiseCrax (JPEG)’ option was developed by training a machine learning algorithm on 
intensity images. The other options on this list were developed for specific past projects 
and are not recommended to be used on new projects. 

• Memory/Performance 

Allow parallelization at session level: If set to true, whole sessions are processed in 
parallel while keeping all images of each session together. If set to False, images from 
multiple sessions can be processed simultaneously if the computer has adequate 
number of cores available for such an operation. This is set to false by default for 
improved speed. 

Use ideal CPU count: If parallelization at session level is set to True, this option will be 
available. If this is set to True, the number of CPU cores to use is determined 
automatically based on the hardware available and the amount of memory the 
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processor uses. If this is set to False, the user should enter the number of CPU cores to 
use. 

• Process 

Matches tolerance: Tolerance threshold, which will extend the matches if the next 
option is set to True. 

Process only matches: If set to true, only the images contained in matches (parts of 
the sessions where collected data matches routed data) will be processed. It is 
recommended to keep this option at False to process all images in each session. 

Run on every Nth image: Run on every Nth image, after 1 frame is added to the 
output. For example, if set to ‘2’, it only processes every other image. 

FDOT Flexible Pavement Distress Application (FFPDA) 

The ‘FDOT Flexible Pavement Distress Application’ is a crack classification and rating 
tool customized for FDOT according to classification and rating protocols defined in the 
FDOT Flexible Pavement Condition Survey Handbook. 

FFPDA Options 

There are four options that you need to select in the FFPDA batch processor. 
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• Memory/Performance 

Allow parallelization at session level: If set to true, whole sessions are processed in 
parallel while keeping all images of each session together. If set to False, images from 
multiple sessions can be processed simultaneously if the computer has adequate 
number of cores available for such an operation. This is set to false by default for 
improved speed. 

Use ideal CPU count: If parallelization at session level is set to True, this option will be 
available. If this is set to True, the number of CPU cores to use is determined 
automatically based on the hardware available and the amount of memory the 
processor uses. If this is set to False, the user should enter the number of CPU cores to 
use. 

• Settings 

Output Folder for Rating Results: This is the file location to save the rating results, a 
csv file. 

Rating Distress in Different Road Zone? (True or False): The batch processor 
provides two ways to rate the distress. It is recommended to use the default value, 
which is True. 

1. False: First classify and rate the distresses, then divide the rated distresses 
into different road zones. 

2. True: First divide the cracks into the different road zones, and then classify 
and rate them. 

RoadZone Type: use FDOT for the FDOT defined wheel paths and use HPMS for 
FHWA defined wheel paths for calculating Percent Cracking. 
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FFPDA Results 

The Rating Results are saved as a ‘distressRecord.csv’ file in the output folder that you 
had chosen in the settings. If FFPDA is executed multiple times with the same folder 
selected for output, then the csv file created in the initial run will be amended with 
results from the following runs. The table in the csv file includes the following fields: 

• DistressID: ID of the specific distress within the entire section. 

• SectionID: ID of the specific section. 

• RunID: ID of Run on the specific section. In the sample data, each section 
has been collected for three times. The RunID ranges from 1 to 3 in that 
example. 

• Type: Type of distress, alligator, branch or single cracking. 

• SeverityID: severity level of distress, value can be 1B, II or III. 

• IsWheelPath: a Boolean value, true means the distress is within wheel path 
road zones (CW), ‘False’ means the distress is outside wheel path road 
zones (CO). 

• TransExtent: transverse extent (in feet) of the distress bounding box. 

• LongiExtent: longitudinal extent (in feet) of the distress bounding box. 

• Area: distress area (in square feet). For alligator cracking the area is the 
TransExtent multiplied by LongiExtent. For single cracking and branch 
cracking, the area is distress length (the diagonal length of the distress 
bounding box) multiplied by 1ft. 

• ImageName: the corresponding range (depth) image file path (including the 
file name), which contains the distress. 
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• DistanceStamp: distance of distress from the beginning of the session (in 
feet). 

The following is an example screen shot of the output file format: 

Automated Rating Results Summary 

The ‘FDOT Flexible Pavement Rating Results Summary’ processor has been designed 
to summarize all the rating results either directly following the FFPDA automated rating 
or after conducting a manual QC of the FFPDA results. This batch processor exports 
the summarized results into a csv file. 

Summary Options 

There are two options that you need to select in the ‘FDOT Flexible Pavement Rating 
Results Summary’. 

• Memory/Performance 
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Allow parallelization at session level: If set to true, whole sessions are processed in 
parallel while keeping all images of each session together. If set to False, images from 
multiple sessions can be processed simultaneously if the computer has adequate 
number of cores available for such an operation. This is set to false by default for 
improved speed. 

Use ideal CPU count: If parallelization at session level is set to True, this option will be 
available. If this is set to True, the number of CPU cores to use is determined 
automatically based on the hardware available and the amount of memory the 
processor uses. If this is set to False, the user should enter the number of CPU cores to 
use. 

1. Settings 

Output Folder for Rating Results Summary: This is the file location to save the rating 
results, a csv file. 

Summary Results 

The rating results are saved as ‘distressResultSummary.csv’ in the output folder that 
you had chosen in the settings. The table in the csv file includes the following fields: 

• SectionID: ID of the specific section. 

• RunID: ID of Run on the specific section. In the sample data, each section 
has been collected for three times. The RunID ranges from 1 to 3 in that 
example. 

• Section_Length (ft): 

• Avg_Section_Width (ft): 

• Section_Area (sq ft): 

• CW (%): Percentage area of section wheel paths with distress. 

• CO (%): Percentage area of section non-wheel path zones with distress. 
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•  SeverityID_WP: predominant severity level of distress in the wheel paths, 
value can be 1B, II or III.  

•  SeverityID_NWP: predominant severity level of distress in the non-wheel path  
zones, value can be 1B, II  or III.  

•  Code_WP: assigned according to the FDOT Fl exible Pavement Condition  
Survey Handbook.  

•  Code_NWP: assigned  according to  the FDOT Flexible Pavement Condition  
Survey Handbook.  

•  SectionScore: calculated according to  the FDOT Flexible Pavement Condition  
Survey Handbook.  
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Quality Control of Automated Distress Rating Results 

In this optional step, you can modify or delete the automatically identified distresses, or 
add a new distress that was not detected by the automated process. For example, you 
might want to increase the severity level of a distress or identify an area of patching or 
raveling that cannot be automatically identified. 

Setup for Distress Rating 

Select the Pavement Distress module from the Rate menu located along the Vision 
toolbar to rate pavement distress: 

Switching Image Type 

The default image displayed is LCMS 3D image, which is the combination of both 
intensity image and depth image. You can change the displayed image to Range image, 
and Intensity image using the LCMS button. 
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Pavement Image Control 

To scroll image forward or backward, place cursor on the left edge to see the blue 
arrows. The scroll speed is controlled by placement of the cursor along the left edge. 
Speed increases as cursor position is further away from the middle zone along the left 
edge and speed decreases as cursor position is closer to the middle. Placing the cursor 
in the middle zone or moving it away from the left edge will stop the scrolling. 
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Segmentation Status Check 

Click on the check-mark icon at the bottom left side of the pavement image. From the 
menu, click on the Segmentation Status Legend, which will appear on the left edge of 
the screen when turned on to indicate whether the current pavement image is 
segmented: 
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It will show a navy-blue line for segmented, light blue line for non-segmented, and red 
for rejected, along the left edge of the pavement image: 

This allows you to differentiate between the different sections, i.e. segmented, non-
segmented or rejected. If any part of the image is not segmented, the data processing 
cannot be saved. Please refer to the section on Segmentation at the end of this 
Appendix for segmentation instructions. 

Pavement Image Adjustment 

You can edit the appearance of pavement imagery to facilitate manual rating of the 

pavement images. The button from the top of the pavement image provides an 
Image Adjustment window as in the following screen to edit properties such as 
sharpness, brightness, and contrast. These modifications will only affect the image 
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appearance for manual rating, and will not affect the automated distress identification 
process. 

‘Lock’ Sessions 

Before you can start a manual distress survey on any pavement section, that specific 
session/section needs to be "locked" under your name. This ensures that only one 
person at a time can have access to add/edit pavement distresses on that section. As a 
general rule, automated processes can be executed without locking sessions, but any 
manual adjustments would require you to lock the session. 
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Click on the lock icon on the top left side and select Lock from the menu to lock that 
section under your user name. 
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Select Assignments from the menu and you can see a list of assignments for each 
user and the status of the assignments. If you are the administrator, you can select a 
user, Assign them an activity, Lock or Unlock the section under their user name, and 
mark that assignment as Complete. 

Manual Rating of Pavement Distress (Semi-Automated Survey) 

The available distress types and the corresponding severity levels are preset using the 
Distress Schema. Please refer to the section on Advanced Project Settings in this 
Appendix for setting up the Distress Schema for each Project. There are a variety of 
tools for drawing cracks and distresses on pavement surface. 

Adjust Lane Edge 

At the first step, you will need to identify the edges of the lane that you would like to 

rate. Using this button you can drag and adjust the lane edges on the left and 
right. The lane edge adjustment will need to happen at specified intervals or wherever 
you deem necessary. 
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Click on left/right half of the image, left click your mouse and select Adjust Lane Edge 
(left/right): 

Draw Distresses 

You can use the Distress button on the top to draw distresses. If you would like to 
identify linear distresses such as spalling, you should left-click the beginning and the 
end points for the crack, and depending on the angle of the created line (less than or 
more than 45 degrees), the software will give you options to select from the available 
distresses. You should also select from the defined list of severity levels. For example, 
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you can see a longitudinal crack in the following example, which can be a Single or 
Branch crack: 

If you would like to identify an area type distress (fatigue cracking, patching, etc.), then 
you should left-click and drag to draw a box, and the software will give you the available 
distress options and severity levels for each. For example, you can see an area distress 
in the following example, which can be Block Cracking, Alligator Cracking, Patching, or 
Raveling: 
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If you would like to identify a point type distress (counting the number of joints with 
defined condition, or number of shattered slabs), then you should double-click on the 
pavement image and the software will give you the available distress options and 
severity levels for each distress type. 

Erase Distresses 

If you would like to erase a distress you can use the Eraser button and you can 
identify the distresses that you would like to erase. An alternative option would be to use 

the Delete button for which, the distress needs to be selected before using this 
button. 
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Modify Distress Type and Severity Level 

To modify a distress type or severity, you can use the Modify Distress button: 

Modify Distress Size 

To modify the size of a manually drawn distress, first use the Select ( ) button to 

select the distress and then click the Resize Distress button: In the following 
example, distress record 1406 is being modified. The coordinates of the bottom of the 
distress have been selected as the anchor for this resizing. The horizontal and vertical 
scroll bars help change the length and angle of the selected linear distress. If this was 
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an area distress, the horizontal and vertical scroll bars would change the dimensions of 
the selected distress. You cannot modify the size of an automatically identified distress. 

Manual Measurements 

If you need to measure distress dimensions to assign appropriate severity levels, you 

can use the Measure button. 

Finish Manual Changes 

If you would like others to be able to see the results of your distress survey, you should 

save your work with the Save button. Be CAUTIOUS as the Reload button 
will undo all of the distresses that you have drawn on the pavement image since the last 
time that you hit the save button. Make sure you Unlock the section after you have 
completed any manual changes. 
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Recommendations 

The following are recommendations for FDOT staff to consider while using the software. 

Build Workspace 

It is recommended to build your own work space by using Dock, Undock, New 
Horizontal Tab Group and New Vertical Tab Group. Vision provides you with 
flexibility when building your workspace. If you are using dual monitors, you may wish to 
undock your video or your map views and move them to a second monitor. 

Undock a Window: To undock a window from its tabbed location, right click on the tab of 
the window and select Undock. 

Dock a Window: 

1. To dock a floating window into a tabbed location, click on the Dock window icon on 
the toolbar. 

2. From the dropdown list, select the view you wish to dock as a tab in the Vision 
window. 

3. The floating window now becomes a tab in the main Vision window. 
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Create Split Window: Split Windows provide you with the capability to split your 
workspace views into frames; providing the advantage of having all of your views in one 
workspace. 

1. Right click on the tab you wish to move into the split window. 

2. Select between New Horizontal Tab Group or New Vertical Tab Group, and the 
active tab now appears in a split window below or to the right, respectively. 

3. Continue to split tabs using either horizontal or vertical splits until you have achieved 
the views that work for you. Then go to the File menu and select Save Workspace to 
save these settings. Next time you open Vision, you can go to the File menu and Select 
Workspace to reload the same settings. 
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Check Segmentation status 

You should check the segmentation status (page 559) frequently to make sure the 
manual rating is only conducted on pavement images in the segmented sections, which 
are within the provided mileage range. 

Use LCMS Range Image and ROW Image 

It is recommended to use both LCMS range image and ROW image as references for 
manual quality control of the automated results. 

Wheel Path Crack and Non-Wheel Path Crack 

You don’t need to differentiate between wheel path crack and non-wheel path crack 
when conducting the manual rating. The developed SQL code in the ‘FDOT Flexible 
Pavement Rating Results Summary’ processor will separate them based on their x 
coordinates. These x coordinates are affected by the adjusted lane lines and vehicle 
wander. If lanes are adjusted after distress identification, the summary processor will 
use the adjusted lanes to identify the wheel path zones. Vehicle wander is always an 
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issue and drivers need to do their best to drive in the middle of the lane. However, if 
there are clear lane markings on the pavement, vehicle wander will not impact the lane 
detection significantly and thereby the location of the wheel paths would not be 
impacted either. 

L.3. Installation Instructions for Vision Platform and the FFPDA 

0) Uninstall the current Fugro Roadware Vision 

1) Install Fugro Roadware Vision 3.1.1 using the provided msi file. 

If there is an error regarding C++ (see below), install the vcredist_x64.exe file and then 
install Vision. 

Please note that for the Vision software, you will need to enter the licence key to extend 
the availability of the software from 30 days to 365 days. Please contact Fugro for a 
license key if you have not been provided one. 

3) Copy the following Roadware.Algorithm.FDOT.Rating.dll file into this folder: 
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C:\Program Files\Fugro Roadware\Fugro Roadware Vision\ 

4) Copy the Roadware.Processing.FDOT.FlexibleCrackRating.dll file into this folder: 

C:\Program Files\Fugro Roadware\Fugro Roadware Vision\PlugIn\Processors\Cracks\ 

5) Now, run Vision and connect to the following test database to test if everything is 
working fine: 

database name: FDOT_LRIS_TEST_Final 
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L.4. The Difference Between Crack and Distress 

The following provides a clarification on the Crack and Distress nomenclature in Vision 
software. Cracks are linear features detected from pavement surface images. 

Crack Cracks Rated as Distress Distress 

After classification and rating, type and severity are assigned to cracks. Then the cracks 
become distresses. 

The length of crack is the actual length of the crack lines. 

We use diagonal lengths of distress bounding boxes in order to match the semi-
automated result and what raters do in reality. 

574 



 
 

 
 

    

  
  

  
 

        

  
   

 
    

  
 

 

  
  

 

 

    
  

   
  

 

L.5. Project Advanced Settings 

It is recommended that only a professional user (project database owner) would setup 
these advanced settings on each project. After the professional user conducts these 
preliminary settings, the parameters will be saved against the corresponding project 
SQL database. Therefore, any other user who accesses the project will not need to 
modify these settings. 

Connecting to the Images for the Project (Professional User) 

If this is the first time you or any of your colleagues are accessing this database, then 
you need to make sure that the project contains the correct links to the directory where 
the corresponding images are stored. This setting would also be required if the project 
images have been moved to a new location on the server. Go to the File System 
Mapper under the Tools menu. Select the image type(s) for which you would like to 
specify a directory and then click on Remap: 

Then you will be able to enter a new directory address for those images and click OK. 
then you will see a list of all the images found. Click on Check >> Destination. If the 
images exist, the destination addresses will turn bold: 

Now you can click on Map and the correct image paths will be restored. Please note 
that this will update the image paths for this project for all users. Therefore, this needs 
to be done once, preferably by the administrator of that project and then everyone will 
be able to see the images. In order for Vision to run faster, it is recommended that the 
images be stored on the FDOT server. 
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Preliminary Adjustments (Professional User) 

The correct ‘Distress Schema’ needs to be loaded before running the application. The 
schema specifies the included distress types and their severities. Fugro engineers 
create project specific schema that can be saved, emailed, and loaded. If you do not 
have a distress schema, or if you would like to create one for a specific different project, 
then you need to use the process for ‘Setting Up a Schema,’ which is explained at the 
end of this Appendix. It is recommended that the new users would refrain from creating 
or modifying distress schema, unless approved by a more professional user. Different 
profiles will impact the detection results a lot, because each profile contains different 
parameter settings for the detection process. It is very important that you use the 
detection profile specifically created for you by a professional user. Once a schema is 
loaded for a project, other users can access it. Therefore, it is recommended that a 
professional user loads the schema. 

The following screen captures show where the professional user can load a previously 
saved schema. Click the ‘Schema’ button to go to the ‘Distress Schema Editor’. 
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Then go to the ‘Profiles’ tab, and load the schema file from the saved location on your 
hard drive or server. 

Distress Schema Setup (Professional User) 

Click on the New button in the ‘Distress Schema Editor’ window. Create Distress Types 
(Distress Name and category listed as follows):  
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Create distress type by using the Distress Type Editor: 

You can create and/or modify severity levels by using the Severity Editor. The rated 
crack would be displayed according to severity level. 
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L.6. Segmentation 

Vision software relies on location referencing data provided by roadway owners, also 
known as Routing data to collect inventory and condition data. Routing data is the list of 
all the roads to be collected, defined using locators, GPS markers, associated 
chainages etc. and Routing is the process that prepares that data for collection. 

The Routing data is imported twice during the span of data collection to processing, 
using the ‘Routing Importer’ tool. First, the Routing data is imported into the ARAN 
Collection Software (ACS) to inform the truck-operators which roads they need to 
collect. Second, the Routing data is imported into the processing database for all sorts 
of data handling using Vision software, including especially the Segmentation process. 
Vision software accepts a certain format of Routing data to be imported for these 
purposes. 

Segmentation is a combination of multiple processes (match, transfer, order, reject, 
etc.), which evaluate the Routing expected data, that is linear references, GPS 
positions, landmarks, etc. and compare them against the collected data. 

This assessment can be performed using two concepts: ‘rubber-banding’ and ‘re-
chaining’. For example, if the Routing data (before collection) suggest that a piece of 
road is 100 feet and the collected data suggest it is 110 feet, but the owner desires the 
data to be tagged according to their own system as 100 feet, you can rubber-band the 
data. On the other hand, if the owner desires to correct their system according to the 
collected data, then you can re-chain the data. In other words, rubber-banding is used 
when there is more confidence in the Routing package and re-chaining is used when 
there is more confidence in the actual collected data than the pre-collection Routing 
information. 

The Section Composition module in addition to a few other modules allow you to 
perform all of these complex tasks through a simple user interface. 

Segmentation Workflow 

The steps below are simplified instructions for the segmentation process: 

1. Connect to the project database. 

2. Review the project-specific location referencing data to get familiar with the 
sections and their boundaries. 
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Section Composition in View Section Composition in the 
Menu Segment drop down menu. 

3. Perform auto-matching (See instructions in the remainder of this Appendix for 
more details) if a standard Routing package is available. NOTE: The Java code 
developed for this research project for transferring data into a Vision database is 
already conducting the automated matching and there is no need for a Routing 
package if this Java code is executed. 

4. Manual matching can be used to QC the results of the automated matching. In 
the ‘Section Composition’ module, go to each ‘session’ (section), QC the 
matching results and if any corrections are needed, perform the manual matching 
steps explained below. 

5. ‘Save’, ‘Check-In’, and ‘Complete’ to submit your segmentation work. 

The following will focus on details in steps 4 and 5 of the above workflow. 

Manual Matching 

The following will start with the introduction of the Section Composition View to help you 
get familiar with this interface. Then the procedure of performing manual matching in 
Section Composition is explained. 

Section Composition View 

The Section Composition View presents a linear representation of all the sections that 
have been collected, and allows you to match the collected data with the routed data 
through automatic or manual matching. To perform matching, the Section Composition 
view is used along with the Map View, Image Stream and the Web Map. 

To launch the Section Composition View, click on View drop down menu and select 
Section Composition or select it from the Segment drop down menu. 
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There are three main components in the Section Composition as shown in the figure 
below: two bars (highlighted in blue), a tool bar on the top (highlighted in red) and two 
tables on the left hand side (highlighted in green). 

581 



 
 

 
 

   
      

   

 

    
    

  

   

  

The tool bar on top provides general tools that will be discussed in this Appendix and it 
also shows the length of the matched section in the white box. Of the two bars 
highlighted in blue in the following picture, the top bar shows the routed section and the 
bottom bar shows the collected section. 

Located at the top left, the Section table provides locator information and the associated 
values. Located below the Section table, the Session table provides information about 
the session, such as Time, Date, Collection Vehicle, and current user. 

Section table Session table 
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Navigation Tool bar: Below the Section and Session tables is a Navigation Tool bar. 

Action drop down list: The cursor icon in Navigation Tool bar (see above) opens the 
actions drop down list. For instructions on how to use these actions, see the remainder 
of this Appendix. 

Following the first cursor icon ( ), there are four pointers, A, B, C and D. 
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The table below explains functions of these four pointers. 

Icon Description 

First pointer (A) Jump to the beginning chainage 

Previous pointer (B) Navigate to previous landmark 

Next pointer (C) Navigate to next landmark 

Last pointer (D) Jump to the end chainage 

Go: If there are multiple collected segments in one session (typically this happens 
because collection was started ahead of the intended section and/or ended after the 

end of the intended section), this button ( ) selects one of the segments in the 
Section Composition view. 

Cursor: Use the pink cursor shown below to navigate to different positions along the 
Section Composition View. The cursor is useful as a visual aid to help line up the nodes 
when performing manual matches or making adjustments. 
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Click and drag the cursor to the desired location. All views, including the Map View, 
Image Stream and the Web Map will reflect the new location. 

Perform Manual Matching 

Performing manual matching in the Section Composition includes two steps: 

1. Open the Section Composition view. 

2. Right click on the collected session (the bottom bar), click ‘Add Match’ and select 
the ‘All’ option. 
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The option to Add Match will be available if the segment is not already matched. If the 
segment has already been matched, the option for Ad Match will be greyed out and the 
option to Delete Match will be available. 
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The Match Editor will open (as shown below). 

3. Select how to adjust the chainage, i.e rubber-band or re-chain, depending on the 
project protocol. 
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Note: Rubber-band will match the beginning and end chainages of the collected data to 
the routed data, while re-chain will modify the routed landmark’s start or end chainage 
based on the collected data, depending on the direction of propagation. 

4. Insert a comment into the Comments box. 

5. Click on OK to add match. 

Save, Check-In and Complete 

After segmenting is complete, it needs to be saved and marked completed. 

‘Save’ Segmentation Work 

Saving is required to protect what you have accomplished thus far for a particular 
section from getting lost. Saving will still leave a section checked out to the initial user 
that checked out the file or had it assigned to them initially. 

1. Click on the ‘Save’ icon from the upper tool-bar in Section Composition view: 

The following window appears: 
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2. Insert a Comment into the comment box (OPTIONAL). 

3. Click on OK. 

‘Check-In’ 

Once a section is partially or fully segmented, you can ‘Check-In’ the file. This task 
unlocks the file so that other users may ‘Check-out’ the section and perform more 
segmenting adjustments on that particular file. The process of checking in a file also 
saves a file, and unlocks it for other users to access. The process of checking files in 
and out is implemented so that there is no conflict if two users try to access the same 
file at the same time. 

1. Click on the ‘Check-In’ icon from the upper tool-bar in Section Composition view: 

The following window appears: 
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2. Insert a Comment into the comment box (OPTIONAL). 

3. Click on OK. 

‘Complete’ 

The last option is to ‘Complete’ a file. Marking a file as complete, checks-in and saves 
and also marks the file with a green check mark. This is beneficial to users when they 
are trying to figure out when a file has been fully segmented to the point of completion. 

1. Click on the ‘Complete’ icon from the upper tool-bar in Section Composition view: 
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The following window appears: 

2. Insert a Comment into the comment box (OPTIONAL). 

3. Click on OK. 

Automatic Matching (PROFESSIONAL USER) 

The Java code developed for this research project for transferring data into a Vision 
database is already conducting the automated matching. If there is a Routing package 
developed for a project in the Vision format, then the instructions in this Appendix can 
be used to conduct auto-matching of collected data to the Routing package. 

With Fugro Vision 3.1.1, you have the option to perform auto-matching via either one of 
the following methods: 

1. Perform auto matching on several sessions at once using a Batch Processor 
called ‘Auto Segmentation Processor’. 

2. Perform auto matching on each session/section using the Section Composition 

Perform Auto Matching in the Batch Processor 

Automated Matching can be completed using ‘Auto Segmentation Processor’. 
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Options 

There are six groups of options for Auto Segmentation Processor. 

1. Matching Mode: 

Auto-matching mode based on GPS or on Events 

2. Discrepancy 

Matches tolerance (m): Tolerance threshold which will be used to discard matches that 
are further away from the landmarks than the specified value 

3. Process 
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a) Auto Fill: If set to true, the unmatched fragments between matches within the 
same collection/session will be distributed evenly to fill the gaps 

b) Ignore completed sessions: If set to true, the sections that belong to sessions 
marked as Complete will be ignored. 

c) Partial Matches: If set to true, partial matches will be created. Otherwise only 
full segment matches will be created and if a segment cannot be filled, it will 
be left unmatched. 

d) Sessions Order: Select the order in which the available fragments from 
sessions will be processed. 

e) Snap mode: designated how nodes are matched. Snap matches begin and 
ends to the closest position within the data stream (images, station data) that 
was selected, if one was selected. Otherwise, it will just snap the match 
based on GPS. 

4. Events: This option has been disabled since Vision 3.1.1 to avoid confusion. 
Please ignore. 

5. Memory/Performance 

If set to true, whole sessions are processed in parallel. If false, some processors split 
each session and process parts of it in parallel. 

6. Process 

If set to true, matches for the sessions will be deleted before doing auto segmenting. 

Perform Auto Matching in the Section Composition 

Automatic matching within the Composition can be done on a section by section basis 
or on a per session basis. 

1. Check out the section you wish to segment by clicking the lock icon on the Section 
Composition toolbar. 
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2. The two different methods to perform Auto matching as mentioned, include 
performing the task on a section level or on a session by session basis as shown in the 
table below. If performing on a section level, right click on the top routing bar and select 
Auto match. If performing on a per session level, right click on the bar corresponding to 
the session you want to match, and the menu will display. 

Section Action Menu Session Action Menu 
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3. The Automatic Section Matching dialog box appears. 

NOTE: If you have not checked out the file; the section composition checkout dialog box 
appears. You can then check the file out and right click on the file again and select auto 
match. 

4. Make your desired selections within this dialog box and click Run. 
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Auto Matching Parameter Descriptions 

The table below provides descriptions for the parameters in the Automatic Section 
Matching dialog box. 

Parameter Description 

Auto matching using 
GPS 

Match customer data to collected data based on GPS 
location 

Auto matching using 
Events 

Match customer data to collected data based on ARAN 
Events set. 

Autofill Using 
Continuous Collection 

Assumes ARAN travels from point A to point B and if GPS 
or Event matches cannot be made, length of data will be 
resolved equally across segments unable to be matched. 

Tolerated discrepancy 
Data 

Data will be matched using the nearest GPS points within 
the tolerance set by this parameter. 

Matching Candidates A list of sessions that can be selected to match using the 
parameters that were selected. 

Unmatch the Automatic Matching for the Entire Section 

1. Select the section you wish to Unmatch 

2. From the section tool menu, select the X icon (Delete All Matches). 

3. The section will revert back to being completely unmatched. 

Other Segmentation Tasks (PROFESSIONAL USER) 

Besides matching, segmenting involves other functionalities such as the following: 

Landmark Editing 

In certain scenarios, landmarks need to be edited to meet customer requirements or to 
provide feedback to customers. 

Insert Landmark: Inserts a new landmark into a selected section. 

1. Click on the exact chainage where the landmark needs to be inserted, 
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2. Click on Landmark Editing >Insert Landmark. 
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The following window appears. If the pink bar is at the beginning of the section and you 
want to Insert Landmark, then automatically the Extend option is selected. If the pink 
bar is at the middle of the matched section, then automatically, the Split option is 
selected. 

• Verify the chainage or enter a new value (highlighted in red) 

• Enter an Event type and Description (highlighted in blue) 

• Click on OK 

Edit Landmark: Changes the position, event type, description etc. of current landmarks. 
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Select the landmark to be edited and click on Landmark Editing >Edit Landmark from 
the upper tool-bar in Section Composition. 
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The following window appears: 

• Select the chainage to where the landmark needs to be moved (highlighted in 
red) 

• Change the Event type and Description (highlighted in blue) if necessary 

• Select the rechaining effect (highlighted in green), i.e either to propagate forward 
or backward etc. 

• Click on OK 

Create Gap 

Creates gaps between landmarks. 

Click the area between which two landmarks the gap needs to be created, and then 
click on Landmark Editing >Create gaps 
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The following window will appear: 

• Verify the chainage lengths and click on Yes. 

Merge Segments 

Merges two segments by removing the landmarks between them. 

Select the segment which needs to be merged and click on Landmark Editing >Merge 
Segments 
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The following window will appear: 

Choose the segment to merge (highlighted in red) and click on OK. 

Delete match 

Auto-matching is not always accurate and to perform certain tasks such as align, 
transfer and reject, the match needs to be deleted and then re-matched. 
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1. To delete a match, right-click on the matched, collected section 

2. To delete all matches, click Delete Match >All. 

3. To delete the current match from the section, i.e the portion between the two 
landmarks, 

click Delete Match >Current 
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4. To delete a selected matched portion from the section, select a portion of the 
section and 

click Delete Match >Selected. 

Align 

During certain occasions, landmarks need to be moved / shifted / flipped depending on 
collection or network data. This is also used when one section has multiple segments 
which need to be aligned. Note: Aligning cannot be done after the sections are 
matched, hence the match needs to be deleted or aligning needs to be performed 
before matching. 

1. Shifting: Shifts the begin/end landmarks of the collected section to a new 
position, keeping the collected length the same. 

2. Moving: Moves the begin/end landmarks of the collected section to a new 
position by stretching/compressing the collected length. 

3. Flipping: Flips the whole section (this needs to be done when the collected 
section in the Section 

Composition is opposite to all other views, for example moving forward in the Section 
Composition 

takes the ROW images backward.) 

• Right-click on the collected section and select Align 
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• Select Shift Begin to shift the beginning landmark 

• Select Shift End to shift the end landmark. 

• Select Move Begin to move the beginning landmark 

• Select Move End to move the end landmark 

• Select Flip to flip the whole section 

• Select Reload to undo any changes 
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Order 

When one section has multiple segments, the segments are not always correctly 
ordered. 

1. To order segments, right-click on the segment to be moved up/down. 

2. Select Order >Move Up to move the selected segment up. 

3. Select Order >Move Down to move the selected segment down. 

Transfer 

When a fragment of a section/segment belongs to the wrong collection, then that 
fragment needs to be transferred to the correct section. 

607 



 
 

 
 

    
 

   

 

  

Note: Transferring cannot be done after the sections are matched, hence the match 
needs to be deleted or transferring needs to be performed before matching. 

1. Right-click on the section to be transferred and select Transfer 
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2. The following window appears: 

• Select the fragment to be transferred (highlighted in red) 

• Click on Select (highlighted in blue) to select the transfer location, i.e the section 
to which the fragment will be transferred. 

• Insert a comment into the Comment box (highlighted in green) 

• Click on OK. 

Reject 

During certain collections, certain sections might contain fragments with 
wrong/missing/not needed data, therefore the fragment is rejected. Note: Rejecting 
cannot be done after the sections are matched, hence the match needs to be deleted or 
rejecting needs to be performed before matching. 
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1. Right-click on the section to be rejected and select Reject. 

2. The following window will appear: 

• Select the fragment (highlighted in red) to be rejected 

• Insert a comment into the comment-box (highlighted in blue) 

• Click on OK. 
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Exceptions 

Certain collections might contain missing/poor images and/or GPS etc. which can be 
categorized and marked as errors, warnings or just information using the Exception 
Editor in Section Composition. 

1. Identify the exception using the appropriate view, such as too dark images using 
the Image Stream, and select the appropriate section. 

2. Right-click on the section and click on Exception Editor. 

3. The following window appears: 

611 



 
 

 
 

    

 

   

  
 

   

  

  

  

4. Click on Add Exception (highlighted in red) and the following window appears: 

• Select the fragment where the exception exists (highlighted in red) 

• Click on Select (highlighted in blue) to select the reason/category for the 
exception 

• Select the status (error/warning/info) of the exception (highlighted in green) 

• Insert a comment into the comment-box (highlighted in purple) 

• Click on OK 
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M. WORKFLOW FOR TRANSFER OF FDOT MPSV DATA TO VISION 
SOFTWARE 

Here are instructions that were developed as a customized means for transforming 
LRIS data from FDOT MPSV (provided at a specific folder structure and format) into a 
Vision database. 

M.1. Folder Instructions 

The folder structure should be the same as that finalized with FDOT and shown in 
Figure 233. 

Figure 233. Folder Structure for FDOT MPSV Data 

The encapsulating box in Figure 233 shows 6 folder names: 
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1. Duval&Hills-Vision: This is an example folder, and the name of this folder is not 
linked with the underlying code. Therefore, the name of this folder should provide 
a general description of what the folder contains, which in this case is data for 
Duvall and Hillsborough counties. 

2. 2017-2018: This folder represents the year. 

3. By County: This folder name indicates that the next child folder would have data 

broken down by counties; e.g. 10 Hillsborough and/or 72 Duvall. 

4. 10 Hillsborough: At this level, the data should be broken down by counties as 
explained in point 3. 

5. Rigid: At this level of the folder structure, the type of data is outlined; i.e. Rigid or 
Flexible. 

6. 10190000L1_01: At this level, the folder name displays as Roadway ID_Run 
Number 

7. Images: This level of the folder structure can be seen inside the 10190000L1_01 
folder. All the images for this county should be stored here 

The Roadway ID_Run Number folder (i.e. 10190000L1_01 in the example above) 
should contain four files starting with the Roadway ID_Run Number and ending with 
.G01, .N01, _Img_3.csv, and _six_01.csv. In this example, the four files would be 
named 10190000L1_01.G01, 10190000L1_01.N01, 10190000L1_01_Img_3.csv, and 
10190000L1_01_six_01.csv. 

M.2. Steps to Converting the Data Format 

The detailed queries for converting the data into a format compatible with Vision 
database are listed below. For this purpose, a Java code was developed. The zipped 
Java App (file name: ListFolder.zip) has been provided to FDOT. This Java code 
conducts the following steps: 

1. Lists full path of files except for the image files 

2. Renames the xxxx_img_3.csv file, xxxx.N01 files and xxxx.G01 files. 
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3. Changes the image path and Filename in xxxx_Img_3.csv and xxxx.N01 files to 
make Vision work. At the same time, the xxxx_Img_3.csv and xxxx.G01 files are 
split into separate img_3.csv and .G01 files for each segment. The new created 
_Img3.csv files are named in this format: 
(Segment#)_[(Section)(SubSection)(Lane+Lane#)]_(Run#), for example, 
0_50010000L1_01_Img_3.csv is the _Img_3.csv file for the first segment 
(segment index starts from 0). 

The following steps need to be executed in the following sequence to run this Java 
code. If your machine was already installed with Java, please skip steps 1 and 2, and 
jump to step 3. 

1. Download the latest version of Java. Go to this web page, and follow the 
instructions 
https://www.java.com/en/download/help/windows_offline_download.xml 

2. Set Up the Java Path for Windows. Assuming you have installed Java in 
C:\Program Files\java\jdk directory, right-click on 'My Computer' and select 
'Properties'. Click the 'Environment variables' button under the 'Advanced' tab. 
Alter the 'Path' variable so that it also contains the path to the Java executable. 
For example, if the path is currently set to 'C:\WINDOWS\SYSTEM32', then 
change your path to read 'C:\Program Files\java\jdk\bin'. 

3. Run the ListFolder.Segment java apps. Open the command prompt window by 
typing cmd in the Windows search bar. Change the current directory to the 
directory where you put the java code (e.g. C:\JavaDir) by typing this command 
in the command prompt: cd /d C:\JavaDir. Type this command in the cmd 
window: java ListFolder.Segment. Follows instructions in the cmd window; it will 
ask for the full file path (including folder name) of the root folder. Copy and paste 
the root folder name in the cmd window. 

M.3. Steps to Transfer the Converted Data into a Vision Database 

The following are the steps to transfer the converted data into a Vision database: 

1. STEP1: Use Roadware DBGen software (see Figure 234) to create a blank 
Vision database by selecting the Server under ‘Step 1: Connection Settings’ and 
selecting the ‘Create a New Database’ option under ‘Step 2: Select Database’ 
and give the database a name (e.g. call it Test_16). 
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Figure 234. Screen Capture of Roadware DBGen 

2. STEP2: Execute the first SQL code that will conduct the following: 

• 2-1: Add extra tables and functions to the Vision database 

• 2-2: Grab the paired _Img_3.csv and .G01 file names into the T_G01 and 
Timg3 tables, suggest using the following commands to check whether the 
files are paired: 
select * from T_G01 
select * from Timg3 

• 2-3: Importing all the data 

• 2-4: Populate the locator, ‘uniquerun’ info and the GPS data, 
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• 2-5: Populate the images info. Note: the physical dimension info can't be 
found from the pavement JPG provided so the size is evaluated e.g 
assuming the width is 4 meters and the length of the pavement is 
evaluated by the average value of the station interval in each ‘uniquerun’. 

• 2-6: Populate routing (predefined segments) info and assigned the 
matched segments info. 

• 2-7: Clean the extra records in the image tables. 

The first SQL code for step 2 is as following according to the steps described above: 

STEP 2-1: 

use "DBName" 
GO 
create table T (txt varchar(max)) 
BULK INSERT T FROM 'fullPath\files_f.csv' 
WITH ( FIRSTROW = 1, 
FIELDTERMINATOR = ',', 
ROWTERMINATOR = '\n' ) 

SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 
create function [dbo].[fn_GetGPStimefromUTCtime] ( 
@UTCtime datetime 
) 
returns float 
AS 
BEGIN 
return (DATEPART ( WEEKDAY, @UTCtime)-1)*86400 ---day 
+DATEPART ( HOUR, @UTCtime)*3600 ---hour 
+DATEPART ( MINUTE, @UTCtime)*60 ----minutes 
+DATEPART ( SECOND, @UTCtime) ---second 
+(DATEPART ( MILLISECOND, @UTCtime))*0.001 ---ms 
+(DATEPART ( MICROSECOND, @UTCtime))*0.000001 ---us 
+16 ----leap seconds 
end; 

GO 
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------------------

create FUNCTION [dbo].[udf_Split]( @Text NVARCHAR(2000),@Splitor CHAR(1) ) 
RETURNS @Result TABLE ( id int identity, value NVARCHAR(50)) 
AS 
BEGIN 
DECLARE @PathInd INT 
Set @Text+=@Splitor 
WHILE LEN(@Text) > 0 
BEGIN 
SET @PathInd=PATINDEX('%'+@Splitor+'%',@Text) 
INSERT INTO @Result VALUES(SUBSTRING(@Text, 0, @PathInd)) 
SET @Text= SUBSTRING(@Text, @PathInd+1, LEN(@Text)) 
END 
RETURN 
END 
GO 

create FUNCTION [dbo].[udf_lastpos_Split]( @Text NVARCHAR(2000),@Splitor 
CHAR(1) ) 
RETURNS int 
AS 
BEGIN 
DECLARE @PathInd INT 
DECLARE @returnPathInd INT =0 
Set @Text+=@Splitor 
WHILE LEN(@Text) > 0 
BEGIN 
SET @PathInd=PATINDEX('%'+@Splitor+'%',@Text) 
SET @Text= SUBSTRING(@Text, @PathInd+1, LEN(@Text)) 
set @returnPathInd=@returnPathInd+@PathInd 
END 
RETURN @returnPathInd-@PathInd 
END 
GO 

create table TImgpath(IDsession int, filename varchar(30), imgpath varchar(300)) 
create table Img_3_staging( 
Num int , 
ImageNum varchar(10), 
AdjDmi int , 
FromDist float, 
ToDist float, 
Latitude varchar(20), 
LatDir varchar(10), 
Longitude varchar(20), 
LongDir varchar(10), 
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--------

Q int, 
Sat int, 
HDOP float, 
Height float, 
HeightU varchar(10), 
GeoSep varchar(8), 
GeoSepU varchar(8), 
AgeDif varchar(8), 
Track varchar(8), 
TrackU varchar(8), 
GpsSpeed float, 
SpeedU varchar(10), 
UTCTime varchar(20), 
DeltaUTCTime float, 
AccumDist float, 
GPSDist float, 
DeltaAccumDist float, 
DeltaGPSDist varchar(20) , 
Time float, 
DiffDist float, 
DBF int , 
Filename varchar(30), 
FromCounty varchar(10) , 
ToCounty varchar(10) , 
FromRoute varchar(255), 
ToRoute varchar(255), 
FromSect varchar(12), 
FromAdjRP float, 
ToSect varchar(12), 
ToAdjRP float, 
DateCollected varchar(20), 
TimeCollected varchar(20), 
ImagePath varchar(255)) 

create table G01_staging(DBF int , 
Filename varchar(30), 
FromCounty int , 
ToCounty int , 
FromRoute varchar(255), 
ToRoute varchar(255), 
FromSect varchar(12), 
FromAdjRP float, 
ToSect varchar(12), 
ToAdjRP float, 
DateCollected Datetime, 
TimeCollected Datetime, 
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ImageNum varchar(8), 
Dontknow1 varchar(8), 
Dontknow2 int , 
AdjDmi int , 
SpeedU varchar(10), 
FromDist float, 
Latitude float, 
LatDir varchar(10), 
Longitude float, 
LongDir varchar(10), 
Q int, 
Sat int, 
HDOP float, 
Height float, 
HeightU varchar(10), 
GeoSep varchar(8), 
GeoSepU varchar(8), 
AgeDif varchar(8), 
Track varchar(8), 
TrackU varchar(8), 
GpsSpeed float, 
Dontknow3 varchar(10), 
UTCTime varchar(12), 
Dontknow4 int, 
Dontknow5 int, 
AdjDmi2 int, ------------- pre sign as GPSDist 
GPSDist float, -------------pre sign as DeltaAccumDist 
GPSDist2 float, -------------pre sign as DeltaGPSDist 
Dontknow6 varchar(8)) 

STEP 2-2: 

Select * into T_G01 from T where txt like '%.G01' AND txt not like '%orig%' 
Select REPLACE(txt,'.G01', '_Img_3.csv') as txt into Timg3 from T_G01 
GO 

STEP 2-3: 

declare @query varchar(1000) 
DECLARE @table_name varchar(1000); 
DECLARE table_cursor CURSOR FOR 
select txt from T_G01; 
OPEN table_cursor; 
FETCH NEXT FROM table_cursor INTO @table_name; 
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----------

-----------

WHILE @@FETCH_STATUS = 0 BEGIN 
--SELECT @query = 'BULK INSERT G01_staging FROM 
'+QUOTENAME(@table_name,'''')+' WITH ( FIRSTROW = 1, 
SELECT @query = 'BULK INSERT G01_staging FROM '''+@table_name+''' WITH ( 
FIRSTROW = 1, 
FIELDTERMINATOR = '','', 
ROWTERMINATOR = ''\n'' )'; 
print @query 
EXEC (@query ); 
FETCH NEXT FROM table_cursor INTO @table_name; 
END 
CLOSE table_cursor; 
DEALLOCATE table_cursor; 

DECLARE table_cursor CURSOR FOR 
select txt from TImg3; 
OPEN table_cursor; 
FETCH NEXT FROM table_cursor INTO @table_name; 
WHILE @@FETCH_STATUS = 0 BEGIN 
--SELECT @query = 'BULK INSERT Img_3_staging FROM 
'+QUOTENAME(@table_name,'''')+' WITH ( FIRSTROW = 1, 
SELECT @query = 'BULK INSERT Img_3_staging FROM '''+@table_name+''' WITH ( 
FIRSTROW = 1, 
FIELDTERMINATOR = '','', 
ROWTERMINATOR = ''\n'' )'; 
print @query 
EXEC (@query ); 
FETCH NEXT FROM table_cursor INTO @table_name; 
END 
CLOSE table_cursor; 
DEALLOCATE table_cursor; 

update Img_3_staging 
set Latitude=replace(Latitude,'"',''), 
LatDir=replace(LatDir,'"',''), 
Longitude=replace(Longitude,'"',''), 
UTCTime=replace(UTCTime,'"',''), 
FromCounty=replace(FromCounty,'"',''), 
ToCounty=replace(ToCounty,'"',''), 
FromRoute=replace(FromRoute,'"',''), 
ToRoute=replace(ToRoute,'"',''), 
DateCollected=replace(DateCollected,'"',''), 
TimeCollected=replace(TimeCollected,'"',''), 
ImagePath=replace(ImagePath,'"',''), 
LongDir=replace(LongDir,'"',''), 
Filename=replace(Filename,'"',''), 
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HeightU=replace(HeightU,'"',''), 
GeoSepU=replace(GeoSepU,'"',''), 
TrackU=replace(TrackU,'"',''), 
SpeedU=replace(SpeedU,'"','') 
GO 

STEP 2-4: 

alter table Locators add Section varchar(15), 
County varchar(3),RouteName varchar(50), 
Direction varchar(2), 
Lane varchar(2), TestSection varchar(2),RunNumber varchar(2) 
GO 

select distinct identity(int,1,1) as IDLocator,filename, fromcounty, fromroute 
into Tlocator 
from Img_3_staging order by filename 

set identity_insert Locators on 
insert into Locators(IDLocator, 
Section,County,RouteName,Lane,TestSection,RunNumber) 
select IDlocator, LEFT(filename,11), FromCounty, fromroute, 
SUBSTRING(filename,12,2), 
IDlocator, SUBSTRING(filename,16,1) 
from Tlocator 
set identity_insert Locators off 

update Locators 
set Direction=(CASE WHEN Lane LIKE 'L%' THEN '-' WHEN Lane LIKE 'R%' THEN '+' 
ELSE NULL END) 

-----AccumDist (ft) convert to meter as DS, from/toDist (Mile) convert to mmile as 
distancestamp---------
set identity_insert DCSessions on 
Insert into DCsessions(IDSession, IDLocator, UniqueRun, 
StartDistanceStamp, EndDistanceStamp,StartChainage, 
EndChainage,DCSTimeStamp) 
select b.IDlocator, b.IDLocator,left(a.filename,16), 
MIN(AccumDist*0.3048), MAX(AccumDist*0.3048), 
(select distinct FromDist from Img_3_staging where Filename=a.filename and 
AdjDmi=MIN(a.adjDmi))*1000, 
(select distinct ToDist from Img_3_staging where Filename=a.filename and 
AdjDmi=Max(a.adjDmi))*1000, 
cast (replace(DateCollected,'/','-')+' '+ min(TimeCollected) as datetime) 
from Img_3_staging a inner join Tlocator b on a.Filename=b.filename 
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where a.AccumDist is not null group by a.filename, a.DateCollected, b.IDLocator 
set identity_insert DCSessions off 
--- make chainage = distancestamp *0.6213712, ~ 4-8 mmile difference 
update DCSessions set Endchainage = case when StartChainage<EndChainage then 
round(startchainage+(EndDistanceStamp-StartDistanceStamp)*0.6213712,0) 
else round(startchainage-(EndDistanceStamp-StartDistanceStamp)*0.6213712,0) end 

--- elapsedtime may not correct-------
set identity_insert stationdata on 
Insert into stationdata(IDStation, 
IDSession, DistanceStamp, Chainage, ElapsedTime, Speed, 
StationTime, 
PositionStatus, Interpolated, Latitude, Longitude, Elevation) 
select ROW_NUMBER() over (order by b.IDLocator, a.AdjDmi), 
b.IDlocator, AccumDist*0.3048, FromDist*1000,time,GpsSpeed*0.44704, 
[dbo].[fn_GetGPStimefromUTCtime](cast (replace(DateCollected,'/','-')+' '+ a.UTCTime 
as datetime)), 
'CADifferential','GPSReceiverOutput', Latitude*PI()/180, Longitude*PI()/180, 
Height*0.3048 
from Img_3_staging a inner join Tlocator b on a.Filename=b.filename 
order by b.IDLocator, a.AdjDmi 
set identity_insert stationdata off 
--------the GPSDist/AccumDist has offset b/w G01_staging and Img_3_staging----
(GPSDist-offsetdist) to approximally equal to AccumDist in img_3--
set identity_insert VehiclePositions on 
insert into VehiclePositions (IDVehiclePosition, Status, Interpolated, Satellites, HDOP, 
IDSession, GPSTime, Latitude, 
Longitude, Elevation, DistanceStamp) 
select ROW_NUMBER() over (order by y.IDlocator, x.DateCollected+x.UTCtime), 
'CADifferential', 'GPSReceiverOutput',x.Sat, 
x.HDOP,y.IDlocator,[dbo].[fn_GetGPStimefromUTCtime](x.DateCollected+x.UTCtime), 
x.latitude*PI()/180,x.longitude*PI()/180,x.height*0.3048, (x.GPSDist-z.offsetdist)*0.3048 
from 
(select a.DateCollected,a.UTCtime,a.Sat, a.HDOP,a.latitude,a.longitude,a.height, 
a.GPSDist, a.filename, a.adjdmi 
from G01_staging a inner join ( 
select DateCollected,min(UTCtime) as UTCtime, filename, AdjDmi from G01_staging 
group by DateCollected, filename, AdjDmi) b 
on a.filename=b.filename and a.UTCtime=b.UTCtime) x inner join 
(select a.Filename,b.IDLocator,MIN(AccumDist) as mindist, MAX(AccumDist) as 
maxdist, 
MIN(cast (replace(DateCollected,'/','-')+' '+ a.UTCTime as datetime)) as minUTC, 
MAX(cast (replace(DateCollected,'/','-')+' '+ a.UTCTime as datetime)) as maxUTC 
from Img_3_staging a inner join Tlocator b on a.Filename=b.filename group by 
a.filename, a.DateCollected, b.IDLocator) y 
on x.Filename=y.Filename and 
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x.DateCollected+x.UTCtime between y.minUTC and y.maxUTC 
inner join ( 
select filename, AVG(offset) as offsetdist from ( 
select a.AccumDist, b.GPSDist, (b.GPSDist- a.AccumDist) as offset, a.filename 
from Img_3_staging a inner join G01_staging b 
on a.Filename=b.Filename and a.AdjDmi=b.AdjDmi) results group by filename) z 
on x.Filename=z.Filename 
order by y.IDlocator, x.DateCollected+x.UTCtime 
set identity_insert VehiclePositions off 

GO 

STEP 2-5: 

---images----
delete from TImgpath 
insert into TImgpath(imgpath,filename) 
select distinct LEFT(txt,[dbo].[udf_lastpos_Split](txt,'\')),right(txt,len(txt)-
([dbo].[udf_lastpos_Split](txt,'\'))) from T where txt like '%_Img_3.csv%' AND txt not 
like '%orig%' 
update TImgpath set imgpath=imgpath+'Images\', filename=replace(filename, 
'_Img_3.csv', '.N01') 
update a set IDsession=b.IDsession from TImgpath a inner join DCsessions b on 
left(a.filename, len(a.filename)-4)=b.uniquerun 
----------CCDWidth/Height=ourvalue in DB * FDOTpixel/ourpixel 
set identity_insert ImageStreams on 
Insert into ImageStreams(IDImageStream, 
IDSession, CameraID, Name, ImagePath,ImageCompression, CCDWidth, CCDHeight) 
select ROW_NUMBER() over (order by IDLocator), 
IDlocator, '4','Pavement',LEFT(b.imgPath,[dbo].[udf_lastpos_Split](b.imgPath,'Images\')-
1), 
3, round(1392*1.618895116,0), round(1040*1.497734139,0) 
from Tlocator a inner join Timgpath b on a.filename=b.filename order by IDLocator 
set identity_insert ImageStreams off 

select a.*, 
substring(b.txt, len(a.imgpath)+1,100) as Imgname,cast(right(substring(b.txt, 
len(a.imgpath)+1,100),12) as varchar(12)) as jpgname 
into Tjpg 
from Timgpath a inner join 
(select REPLACE(txt, 'JPG', 'jpg') as txt from T where UPPER(right(txt,3))='JPG') b 
on a.imgpath=left(b.txt, len(a.imgpath)) 
go 
create index ixT1 on Tjpg(IDSession, jpgname) 
go 
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--------imagename includes subfolder to make Vision work-------
set identity_insert ImageFrames on 
Insert into ImageFrames(IDImageFrame, IDImageStream, ImageName, 
DistanceStamp) 
select ROW_NUMBER() over (order by b.IDLocator, a.AdjDmi), 
b.IDlocator, right(c.imgpath,len(c.Imgpath)-
[dbo].[udf_lastpos_Split](c.imgpath,'Flexible\')-
8)+ltrim(a.ImageNum+'.jpg'),AccumDist*0.3048 
from Img_3_staging a inner join Tlocator b on a.Filename=b.filename 
inner join Tjpg c on a.filename=c.filename and 
ltrim(a.ImageNum+'.jpg')=ltrim(c.jpgname) 
where a.AccumDist is not null 
order by b.IDLocator, a.AdjDmi 
set identity_insert ImageFrames off 
update ImageFrames 
set ImageName=right(ImageName,len(ImageName)-
[dbo].[udf_lastpos_Split](ImageName,'Images\')+1) 

----------sourceframes table has more records than Images-----
set identity_insert distress.SourceFrames on 
Insert into distress.SourceFrames(IDSourceFrame, SourceFrameType, IDSession, 
DistanceStamp, LeftLaneOffset, RightLaneOffset) 
select ROW_NUMBER() over (order by IDLocator, DS),'JPEG',IDlocator,DS,0,0 from 
(select distinct b.IDlocator, AccumDist*0.3048 as DS 
from Img_3_staging a inner join Tlocator b on a.Filename=b.filename 
where a.AccumDist is not null) x 
order by IDLocator, DS 
set identity_insert distress.SourceFrames off 
------- Imageheight in meter may be an issue b/c the varible station length---------
set identity_insert distress.SourceFramesDimensions on 
Insert into distress.SourceFramesDimensions(IDSourceFramesDimensions, IDSession, 
ImageWidthInPixels, ImageHeightInPixels, 
ImageWidthInMeters, ImageHeightInMeters) 
select a.IDLocator, a.IDlocator, 4044, 5949, 4, b.avgdeltadist 
from Tlocator a inner join ( 
select AVG(DeltaAccumDist)*0.3048 as avgdeltadist, Filename from Img_3_staging 
group by Filename) b 
on a.filename=b.Filename 
order by a.IDLocator 
set identity_insert distress.SourceFramesDimensions off 
-------clean extra data and GPS 
delete x from stationdata x left join (select distinct a.*, b.IDsession, c.uniquerun+'.N01' 
as filename, c.IDLocator from ( 
select min(distancestamp) minDS, max(distancestamp) maxDS, IDImagestream from 
imageframes group by IDImagestream) a 
inner join ImageStreams b on a.IDImageStream=b.IDImageStream 
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inner join DCSessions c on b.IDSession=c.IDsession) y 
on x.IDsession=y.IDsession and x.Distancestamp between y.minDS-0.5 and 
y.maxDS+0.5 
where y.IDsession is null 
delete x from vehiclepositions x left join (select distinct a.*, b.IDsession, 
c.uniquerun+'.N01' as filename, c.IDLocator from ( 
select min(distancestamp) minDS, max(distancestamp) maxDS, IDImagestream from 
imageframes group by IDImagestream) a 
inner join ImageStreams b on a.IDImageStream=b.IDImageStream 
inner join DCSessions c on b.IDSession=c.IDsession) y 
on x.IDsession=y.IDsession and x.Distancestamp between y.minDS-0.5 and 
y.maxDS+0.5 
where y.IDsession is null 

set identity_insert VehicleOrientations on 
insert into VehicleOrientations(IDVehicleOrientation,GPSTime,IDSession, 
DistanceStamp) 
select IDVehiclePosition,GPSTime,IDSession, DistanceStamp 
from VehiclePositions order by IDVehiclePosition 
set identity_insert VehicleOrientations off 

STEP 2-6: 

------routing info, 
set identity_insert Sections on 
insert into sections(IDSection,IsRouted,IDLocator) 
select IDLocator,1,IDLocator from Tlocator 
set identity_insert Sections off 
-------use the data with the physical JPG parts as the mathed segment and use it clean 
the extra data from the stationdata and GPS 
select ROW_NUMBER() over (order by y.IDlocator, y.IDsession, y.minDS) as 
IDsegment,y.IDLocator,y.Filename, 
y.minDS as begDS,y.maxDS as endDS, 
(select distinct FromAdjRP from Img_3_staging where Filename=y.filename and 
AccumDist*0.3048=y.minDS)*1000 as Begchg, 
(select distinct ToAdjRP from Img_3_staging where Filename=y.filename and 
AccumDist*0.3048=y.maxDS)*1000 as endchg, 
(select distinct Latitude from Img_3_staging where Filename=y.filename and 
AccumDist*0.3048=y.minDS)*PI()/180 as BegLat, 
(select distinct Latitude from Img_3_staging where Filename=y.filename and 
AccumDist*0.3048=y.maxDS)*PI()/180 as EndLat, 
(select distinct Longitude from Img_3_staging where Filename=y.filename and 
AccumDist*0.3048=y.minDS)*PI()/180 as BegLong, 
(select distinct Longitude from Img_3_staging where Filename=y.filename and 
AccumDist*0.3048=y.maxDS)*PI()/180 as Endlong 
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---

into Tsegments 
from ( 
select distinct a.*, b.IDsession, c.uniquerun+'.N01' as filename, c.IDLocator from ( 
select min(distancestamp) minDS, max(distancestamp) maxDS, IDImagestream from 
imageframes group by IDImagestream) a 
inner join ImageStreams b on a.IDImageStream=b.IDImageStream 
inner join DCSessions c on b.IDSession=c.IDsession) y 
set identity_insert Nodes on 
Insert into Nodes(IDNode, Latitude, Longitude) 
select ROW_NUMBER() over (order by IDsegment, DS),lat,long from ( 
select IDsegment, IDLocator, begDS as DS, Begchg as chainage, BegLat as lat, 
BegLong as long 
from Tsegments 
union 
select IDsegment, IDLocator, EndDS as DS, Endchg as chainage, EndLat as lat, 
EndLong as long 
from Tsegments) a 
order by IDsegment, DS 
set identity_insert Nodes off 

set identity_insert Landmarks on 
Insert into Landmarks(IDLandmark, Chainage, IsAnchor,IsRouted,IDSection,IDNode) 
select ROW_NUMBER() over (order by IDsegment, DS),Chainage,1,1,IDLocator, 
ROW_NUMBER() over (order by IDsegment, DS) 
from ( 
select IDsegment, IDLocator, begDS as DS, Begchg as chainage, BegLat as lat, 
BegLong as long 
from Tsegments 
union 
select IDsegment, IDLocator, EndDS as DS, Endchg as chainage, EndLat as lat, 
EndLong as long 
from Tsegments) a 
order by IDsegment, DS 
set identity_insert Landmarks off 
set identity_insert routedsegments on 
insert into routedsegments( 
IDRoutedSegment, Direction, Lane, SegmentRoutingId, SegmentLength, 
IDBeginLandmark, IDEndLandmark, IDSection, SequenceIndex) 
select IDsegment,case when Begchg>endchg then '5' else '6' 
end,1,IDsegment,abs(Begchg-endchg), 
IDsegment*2-1, IDsegment*2, IDLocator,1 from Tsegments 
set identity_insert routedsegments off 
update a 
set endDS=b.begDS 
from Tsegments a 
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inner join Tsegments b on a.IDLocator=b.IDlocator and a.IDSegment=b.IDsegment-1 
where abs(a.endDS-b.begDS)<3.5 

insert into matches(IDSegment, BeginChainage,EndChainage, BeginDistanceStamp, 
EndDistanceStamp, 
Mode, Status, IDSession) 
select IDsegment,Begchg, endchg,begds,endds,'Manual','Good',IDLocator from 
Tsegments 
order by IDsegment 

STEP 2-7: 

update m 
set ImageHeightInMeters=n.deltaheight 
from distress.SourceFramesDimensions m inner join ( 
select IDImagestream, avg(deltaDS) as deltaheight from ( 
select a.IDImagestream, (b.Distancestamp-a.Distancestamp) as deltaDS from 
imageframes a inner join 
imageframes b on a.IDImagestream=b.IDImagestream and 
a.IDImageframe=b.IDImageframe-1) x group by IDImagestream) n 
on m.IDsession=n.IDImagestream 

update a 
set StartChainage=b.begchg, EndChainage=b.endchg, StartDistanceStamp=b.begDS, 
EndDistanceStamp=b.endDS 
from dcsessions a inner join Tsegments b on a.IDLocator=b.IDlocator 

3. STEP 3: Add necessary SQL permission to the database, and then open it in 
Vision software, and run the "Vehicle Positions Processor" from the batch 
processor menu once. 

4. STEP 4: remove gaps and overlaps between consecutive images using the 
following SQL code: 

use FDOT_LRIS_TEST ------------if DB name is changed, please use the actual name 
instead. 
go 
alter table distress.SourceFrames add odistancestamp float 
alter table ImageFrames add odistancestamp float 
alter table distress.SourceFramesDimensions add oImageHeightInMeters float 
go 
update distress.SourceFramesDimensions set 
oImageHeightInMeters=ImageHeightInMeters 
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update distress.SourceFrames set odistancestamp = DistanceStamp 
update ImageFrames set odistancestamp = DistanceStamp 
delete a 
from distress.SourceFrames a left join ImageFrames b 
on a.IDSession=b.IDImageStream and a.DistanceStamp=b.DistanceStamp 
where b.DistanceStamp is null 
select MIN(IDImageframe) as minID,IDImagestream into #t1 from ImageFrames group 
by IDImagestream 
update a 
set DistanceStamp=(a.IDImageFrame-b.minID)*6.11 
+(select top 1 odistancestamp from ImageFrames where 
IDImageStream=a.IDImageStream and IDImageFrame=b.minID) 
from ImageFrames a inner join #t1 b on a.IDImageStream=b.IDImageStream 
update a 
set distancestamp=b.distancestamp 
from distress.SourceFrames a inner join ImageFrames b on 
a.IDSession=b.IDImageStream and a.oDistanceStamp=b.oDistanceStamp 
update distress.SourceFramesDimensions set ImageHeightInMeters=6.11 

--change the unit from millimile to mile 
UPDATE DCSessions 
set StartChainage=StartChainage/1000 
UPDATE DCSessions 
set EndChainage=EndChainage/1000 
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N. WORKFLOW FOR TRANSFER OF FDOT CONTRACTOR DATA TO 
VISION SOFTWARE 

Here are instructions that were developed as a customized means for transforming 
LCMS data (provided at a specific folder structure and format) into a Vision database. 
These instructions were tested successfully on the data collected by an FDOT 
contractor on Florida Interstate Highways. 

N.1. Folder Instructions 

The folder structure should be the same as that finalized with FDOT and shown in 
Figure 235. 

Figure 235. Folder Structure for FDOT Data 

In Figure 235, the "Shared DB SA" is the parent folder in this example and has no 
significance. There are no restrictions on folder name, it could be anything that explains 
the data collected. 

The folders inside "Shared DB SA" are required to be as identified, that is: “fis” folder 
should contain all the fis files, “LCMS3D” folder should contain all the 3D images, 
“LCMSIntensity” folder should contain all the Intensity images, and “LCMSRange” folder 
should contain all the Range images. 
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There are three required files in this folder: 

1. FDOT ARA Interstate List 2018.csv contains a list of all PCS sections and the 
relevant attributes of each section 

2. I275_13130000_bridge_01.csv contains a division of all tenth mile sections and 
an indication of bridges that needs to be excluded from the data 

3. I275_13130000_Img_2_01.csv contains the Image names and the relevant 
attributes (This file is generated through the Fugro INI for WinPro) 

N.2. Transferring the Data into a Vision Database 

Open the Roadware DBGen software and create a new database by selecting the 
Server under ‘Step 1: Connection Settings’ and selecting the ‘Create a New Database’ 
option under ‘Step 2: Select Database’ and give the database a name (see Figure 236). 

Figure 236. Roadware DBGen Software Screen Capture 
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Click ‘Next’ to get to database options and choose the latest version (see for example 
Figure 237). 

Figure 237. Database Settings in Roadware DBGen software 
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After creating a new Vision database, Open the ‘FDOT Vision Controller’ interface (see 
Figure 238). This interface can be used to run the SQL code that is included at the end 
of this Appendix. 

Figure 238. FDOT Vision Controller Blank Interface 
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Figure 239 is a filled-out image of the interface. Follow these steps: 

1. Select the server by opening the Server drop-down. 

2. Select the Database that you just created using Roadware DBGen. 

3. Select the type of data that you want to process i.e. Flexible or Rigid. 

4. Click the Open Folder button to select the folder that contains the data as 
mentioned in the Folder Instructions portion of this appendix. 

5. The panel in the interface will indicate if all the required files are available, if not it 
would give a warning. 

634 



 
 

 
 

 

   
  

Figure 239. FDOT Vision Controller Interface with Options Selected 
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Click the Go button to process the files. Once done, the panel will say "Done!" as shown 
in Figure 240. 

Figure 240. FDOT Vision Controller Interface After Running the SQL Code 

If the folder structure and file formats are followed, the SQL code can transfer the data 
into a Vision database. The SQL code that is executed using the ‘FDOT Vision 
Controller’ interface is as follows: 

SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 
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create function [dbo].[fn_GetGPStimefromUTCtime] ( 
@UTCtime datetime 
) 
returns float 
AS 
BEGIN 
return (DATEPART ( WEEKDAY, @UTCtime)-1)*86400 
+DATEPART ( HOUR, @UTCtime)*3600 
+DATEPART ( MINUTE, @UTCtime)*60 
+DATEPART ( SECOND, @UTCtime) 
+(DATEPART ( MILLISECOND, @UTCtime))*0.001 
+(DATEPART ( MICROSECOND, @UTCtime))*0.000001 
+16 
end 
GO 

create FUNCTION [dbo].[udf_Split]( @Text NVARCHAR(2000),@Splitor CHAR(1) ) 
RETURNS @Result TABLE ( id int identity, value NVARCHAR(50)) 
AS 
BEGIN 
DECLARE @PathInd INT 
Set @Text+=@Splitor 
WHILE LEN(@Text) > 0 
BEGIN 
SET @PathInd=PATINDEX('%'+@Splitor+'%',@Text) 
INSERT INTO @Result VALUES(SUBSTRING(@Text, 0, @PathInd)) 
SET @Text= SUBSTRING(@Text, @PathInd+1, LEN(@Text)) 
END 
RETURN 
END 
go 

create FUNCTION [dbo].[udf_lastpos_Split]( @Text NVARCHAR(2000),@Splitor 
CHAR(1) ) 
RETURNS int 
AS 
BEGIN 
DECLARE @PathInd INT 
DECLARE @returnPathInd INT =0 
Set @Text+=@Splitor 
WHILE LEN(@Text) > 0 
BEGIN 
SET @PathInd=PATINDEX('%'+@Splitor+'%',@Text) 
SET @Text= SUBSTRING(@Text, @PathInd+1, LEN(@Text)) 
set @returnPathInd=@returnPathInd+@PathInd 
END 
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RETURN @returnPathInd-@PathInd 
END 
GO 

create table TImgpath 
( 
IDsession int, 
filename varchar(30), 
imgpath varchar(300) 
); 
create table Img_3_staging 
( 
Num varchar(15) , 
ImageNum varchar(10), 
AdjDmi varchar(15) , 
FromDist varchar(15), 
ToDist varchar(15), 
Latitude varchar(20), 
LatDir varchar(10), 
Longitude varchar(20), 
LongDir varchar(10), 
Q varchar(15) , 
Sat int, 
HDOP float, 
Height varchar(15), 
HeightU varchar(10), 
GeoSep varchar(8), 
GeoSepU varchar(8), 
AgeDif varchar(8), 
Track varchar(8), 
TrackU varchar(8), 
GpsSpeed varchar(15), 
SpeedU varchar(10), 
UTCTime varchar(20), 
GPSDistance varchar(15), 
DeltaUTCTime varchar(15), 
AccumDist varchar(15), 
GPSDist varchar(15), 
DeltaAccumDist varchar(15), 
DeltaGPSDist varchar(20) , 
Time varchar(15), 
DiffDist varchar(15), 
DBF varchar(15) , 
Filename varchar(30), 
FromCounty varchar(10), 
ToCounty varchar(10) , 
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FromRoute varchar(255), 
ToRoute varchar(255), 
FromSect varchar(12), 
FromAdjRP varchar(15), 
ToSect varchar(12), 
ToAdjRP varchar(15), 
DateCollected varchar(20), 
TimeCollected varchar(20), 
ImagePath varchar(255) 
); 

create table bridge_staging 
( 
Filename varchar(30), 
DateCollected varchar(30) , 
TimeCollected varchar(30) , 
Operator varchar(255), 
Route varchar(255), 
HdrLane varchar(12), 
Direction varchar(30) , 
BeginningRef varchar(30) , 
DCF varchar(30) , 
Vehicle varchar(30) , 
SampleDistance varchar(30) , 
SensorCalDate varchar(30) , 
AvgSpeed varchar(30) , 
Frm varchar(30) , 
RRCode varchar(30) , 
T varchar(30) , 
RghDist varchar(30) , 
Rut1 varchar(30) , 
Rut1Std varchar(30) , 
Rut2 varchar(30) , 
Rut2Std varchar(30) , 
AvgRut varchar(30) , 
STD varchar(30) , 
IRI1 varchar(30) , 
IRI2 varchar(30) , 
AvgIRI varchar(30) , 
Latitude varchar(30) , 
LatDir varchar(30) , 
Longitude varchar(30) , 
LongDir varchar(30) , 
Height varchar(30) , 
HeightU varchar(30) , 
Q varchar(30) , 
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Sat varchar(30) , 
Msg varchar(30) 
); 

create table ARA_staging-->>2/21 
( 
District varchar(15), 
RoadwayID varchar(30), 
SR varchar(30) , 
US varchar(30) , 
System varchar(255), 
Roadway varchar(255), 
Type varchar(12), 
BMP varchar(12), 
EMP varchar(12), 
Lanes varchar(15), 
R_LN varchar(15), 
Length varchar(12), 
Surface varchar(50) 
); 

select * into Timg3 from T1 where txt like '%_Img_%' 
select * into Tbrdg from T1 where txt like '%_bridge_%' 
select * into TARA from T1 where txt like '%ARA%' 
declare @query varchar(1000) 
DECLARE @table_name varchar(1000); 

DECLARE table_cursor CURSOR FOR 
select Concat(fullpath,'\',txt) from TImg3; 
OPEN table_cursor; 
FETCH NEXT FROM table_cursor INTO @table_name; 
WHILE @@FETCH_STATUS = 0 BEGIN 

SELECT @query = 'BULK INSERT Img_3_staging FROM '''+@table_name+''' WITH ( 
FIRSTROW = 2, 
FIELDTERMINATOR = '','', 
ROWTERMINATOR = ''\n'' )'; 
print @query 
EXEC (@query ); 
FETCH NEXT FROM table_cursor INTO @table_name; 
END 
CLOSE table_cursor; 
DEALLOCATE table_cursor; 
DECLARE table_cursor CURSOR FOR 
select Concat(fullpath,'\',txt) from Tbrdg; 
OPEN table_cursor; 
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FETCH NEXT FROM table_cursor INTO @table_name; 
WHILE @@FETCH_STATUS = 0 BEGIN 

SELECT @query = 'BULK INSERT bridge_staging FROM '''+@table_name+''' WITH ( 
FIRSTROW = 2, 
FIELDTERMINATOR = '','', 
ROWTERMINATOR = ''\n'' )'; 
print @query 
EXEC (@query ); 
FETCH NEXT FROM table_cursor INTO @table_name; 
END 
CLOSE table_cursor; 
DEALLOCATE table_cursor; 
DECLARE table_cursor CURSOR FOR 
select Concat(fullpath,'\',txt) from TARA; 
OPEN table_cursor; 
FETCH NEXT FROM table_cursor INTO @table_name; 
WHILE @@FETCH_STATUS = 0 BEGIN 

SELECT @query = 'BULK INSERT ARA_staging FROM '''+@table_name+''' WITH ( 
FIRSTROW = 2, 
FIELDTERMINATOR = '','', 
ROWTERMINATOR = ''\n'' )'; 
print @query 
EXEC (@query ); 
FETCH NEXT FROM table_cursor INTO @table_name; 
END 
CLOSE table_cursor; 
DEALLOCATE table_cursor; 

delete from Img_3_staging where Num='Num' 
delete from bridge_staging where FileName='FileName' 
delete from ARA_staging where RoadwayID='RDWYID' 
update Img_3_staging 
set Latitude=replace(Latitude,'"',''), 
AccumDist=Replace(AccumDist,'*',''), 
LatDir=replace(LatDir,'"',''), 
Longitude=replace(Longitude,'"',''), 
UTCTime=replace(UTCTime,'"',''), 
FromCounty=replace(FromCounty,'"',''), 
ToCounty=replace(ToCounty,'"',''), 
FromRoute=replace(FromRoute,'"',''), 
ToRoute=replace(ToRoute,'"',''), 
DateCollected=replace(DateCollected,'"',''), 
TimeCollected=replace(TimeCollected,'"',''), 
ImagePath=replace(ImagePath,'"',''), 
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LongDir=replace(LongDir,'"',''), 
Filename=replace(Filename,'"',''), 
HeightU=replace(HeightU,'"',''), 

TrackU=replace(TrackU,'"',''), 
SpeedU=replace(SpeedU,'"',''); 
Alter table Img_3_staging 
Alter column Num int; 
Alter table Img_3_staging 
Alter column AdjDmi int; 
Alter table Img_3_staging 
Alter column FromDist float; 
Alter table Img_3_staging 
Alter column ToDist float; 
Alter table Img_3_staging 
Alter column Q int; 
Alter table Img_3_staging 
Alter column Height float; 
Alter table Img_3_staging 
Alter column GPSSpeed float; 
Alter table Img_3_staging 
Alter column DeltaUTCTime float; 
Alter table Img_3_staging 
Alter column AccumDist float; 
Alter table Img_3_staging 
Alter column GPSDist float; 
Alter table Img_3_staging 
Alter column DeltaAccumDist float; 
Alter table Img_3_staging 
Alter column Time float; 
Alter table Img_3_staging 
Alter column DiffDist float; 
Alter table Img_3_staging 
Alter column DBF int; 
Alter table Img_3_staging 
Alter column FromAdjRP float; 
Alter table Img_3_staging 
Alter column ToAdjRP float; 
Alter table bridge_staging 
Alter column Frm float; 
Alter table bridge_staging 
Alter column T float; 
Go 
SELECT distinct identity(int,1,1) id,* 
into ogX 

642 



 
 

 
 

  
 

 
 

 
  

  
  
 

  

 
 

 
 

 
  

    
 

  
 

 
 

 
 

 
  
 

 
 

 
  

 
   

 
   

 

 
 

 
   

 

FROM [bridge_staging] 
order by Frm; 

;with cte as 
( 
select top 1 * 
from ogX tab 
order by tab.id 
union all 
select tab.id,tab.[Filename],tab.[DateCollected] ,tab.[TimeCollected] 
,tab.[Operator],tab.[Route],tab.[HdrLane],tab.[Direction] ,tab.[BeginningRef] ,tab.[DCF] 
,tab.[Vehicle] ,tab.[SampleDistance],tab.[SensorCalDate] 
,tab.[AvgSpeed],tab.[Frm] ,tab.[RRCode],tab.[T] ,tab.[RghDist] ,tab.[Rut1],tab.[Rut1Std] 
,tab.[Rut2],tab.[Rut2Std],tab.[AvgRut],tab.[STD],tab.[IRI1],tab.[IRI2],tab.[AvgIRI],tab.[Lat 
itude],tab.[LatDir],tab.[Longitude] 
,tab.[LongDir],tab.[Height],tab.[HeightU],tab.[Q],tab.[Sat], case when tab.msg = '' and 
cte.msg = ' (S)BB ' then cte.msg else tab.msg end 
from ogX tab 
inner join cte cte on cte.id + 1 = tab.id 
) 
select * 
into bridge_staging_final 
from cte 
option (maxrecursion 0); 
drop table ogX 
Update bridge_staging_final 
set msg='' where msg=' (R)(S) ' or msg like '%PLAZA'; 
delete from bridge_staging_final where msg=' (S)BB '; 
delete from ARA_staging where Surface like 'EXCLUSION%' or Surface like 
'BRIDGE%' or Surface like ',,,%';-->>2/21 

Alter table bridge_staging_final 
Add Section varchar(30); 
Alter table ARA_staging 
Alter column BMP float; 
Alter table ARA_staging 
Alter column EMP float; 
Update bridge_staging_final 
Set 
Section=Concat(id,'_',Format(Convert(numeric,parsename(REPLACE(SUBSTRING(File 
Name, CHARINDEX('_', FileName), LEN(FileName)), '_', ''),2)),'00000000')); 

Alter table Img_3_staging 
Alter column ToAdjRP float; 
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Declare @DType varchar(30) 
Set @DType='FLEXIBLE' 
Select distinct a.*,Left(a.RoadwayID,2) County, CASE WHEN Right(Direction,3) like 
'+%' THEN 'R' ELSE 'L' END Dir,b.* 
into bridge_staging_final2 
from 
bridge_staging_final b 
left join 
( 
select distinct * from ARA_staging Where Surface Like 'FLEXIBLE%'--<<This is updated 
to RIGID% ofr RIGID data 
) a 
on 
a.roadwayid=Format(Convert(numeric,parsename(REPLACE(SUBSTRING(FileName, 
CHARINDEX('_', FileName), LEN(FileName)), '_', ''),2)),'00000000') and (b.Frm + b.T) / 
2 >= a.BMP AND (b.Frm + b.T) / 2 < a.EMP; 

alter table Locators 
add Section varchar(30), 
County varchar(15), 
RoadwayID varchar(50), 
Direction varchar(2), 
Lane varchar(2), 
TestSection varchar(15), 
RunNumber varchar(15), 
L_Section varchar(30), 
L_Run varchar(15), 
-->>2/21 
District varchar(15), 
SR varchar(15), 
US varchar(15), 
System varchar(15), 
Type varchar(15), 
Lanes varchar(15), 
R_LN varchar(15), 
Surface varchar(15) 
GO 

Declare @pth varchar(225); 
select distinct @pth=fullpath from T1 where txt='LCMS3D';--This would need to be 
changed to fis if thats all that the user is required to provide 
Update Img_3_staging 
Set ImagePath=CONCAT(@pth,'\'); 
GO 
select distinct 
a.[RoadwayID] 
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-->>2/21 
,a.District 
,a.SR 
,a.us 
,a.system 
,a.type 
,a.lanes 
,a.r_ln 
,a.[County] 
,a.[Dir] 
,a.[id] 
,a.[Filename] fn 
,a.[DateCollected] dc 
,a.[TimeCollected] tc 
,a.[Operator] 
,a.[Route] 
,a.[HdrLane] 
,a.[Direction] 
,a.[BeginningRef] 
,a.[DCF] 
,a.[Vehicle] 
,a.[SampleDistance] 
,a.[SensorCalDate] 
,a.[AvgSpeed] 
,a.[Frm] 
,a.[RRCode] 
,a.[T] 
,a.[RghDist] 
,a.[Rut1] 
,a.[Rut1Std] 
,a.[Rut2] 
,a.[Rut2Std] 
,a.[AvgRut] 
,a.[STD] 
,a.[IRI1] 
,a.[IRI2] 
,a.[AvgIRI] 
,a.[Latitude] lat 
,a.[LatDir] ld 
,a.[Longitude] long 
,a.[LongDir]lod 
,a.[Height] hght 
,a.[HeightU] hghtU 
,a.[Q] qq 
,a.[Sat] saat 
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,a.[Msg] mssg 
,a.[Section] 
,b.[Num] 
,b.[ImageNum] 
,b.[AdjDmi] 
,b.[FromDist] 
,b.[ToDist] 
,b.[Latitude] 
,b.[LatDir] 
,b.[Longitude] 
,b.[LongDir] 
,b.[Q] 
,b.[Sat] 
,b.[HDOP] 
,b.[Height] 
,b.[HeightU] 
,b.[GeoSep] 
,b.[GeoSepU] 
,b.[AgeDif] 
,b.[Track] 
,b.[TrackU] 
,b.[GpsSpeed] 
,b.[SpeedU] 
,b.[UTCTime] 
,b.[GPSDistance] 
,b.[DeltaUTCTime] 
,b.[AccumDist] 
,b.[GPSDist] 
,b.[DeltaAccumDist] 
,b.[DeltaGPSDist] 
,b.[Time] 
,b.[DiffDist] 
,b.[DBF] 
,b.[Filename] 
,b.[FromCounty] 
,b.[ToCounty] 
,b.[FromRoute] 
,b.[ToRoute] 
,b.[FromSect] 
,b.[FromAdjRP] 
,b.[ToSect] 
,b.[ToAdjRP] 
,b.[DateCollected] 
,b.[TimeCollected] 
,b.[ImagePath] into bridge_img3_staging from bridge_staging_final2 a left join 
Img_3_Staging b on 
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Format(Convert(numeric,parsename(REPLACE(SUBSTRING(a.FileName, 
CHARINDEX('_', a.FileName), LEN(a.FileName)), '_', 
''),2)),'00000000')=Format(Convert(numeric,parsename(REPLACE(SUBSTRING(b.File 
Name, CHARINDEX('_', b.FileName), LEN(b.FileName)), '_', ''),2)),'00000000') and 
(b.FromDist + b.ToDist) / 2 >= a.Frm AND (b.FromDist + b.ToDist) / 2 < a.T; 
alter table bridge_img3_staging 
add realImg varchar(100); 

update bridge_img3_staging 
set bridge_img3_staging.realImg=parsename(Right(b.txt,Len(b.txt)+1-
patindex('%0%',b.txt)),2) 
from 
bridge_img3_staging a inner join T1 b on 
Right(a.imagenum,6)=parsename(Right(b.txt,Len(b.txt)+1-patindex('%0%',b.txt)),2); 
delete from bridge_img3_staging where realImg is NULL or realImg=''; 
select distinct 
identity(int,1,1) as IDLocator, 
y.section filename, y.county, y.roadwayid ,dir 
,Convert(int,LEFT(section, CHARINDEX('_', section) - 1)) tis 
-->>2/21 
,y.district,y.sr,y.us,y.system,y.type,y.lanes,y.r_ln 
into TLocator 
from bridge_img3_staging y where (y.county is not null or y.roadwayid is not null) 
order by tis; 

set identity_insert Locators on 
insert into Locators(IDLocator, 
Section,County,RoadwayID,Direction,TestSection,RunNumber 
-->>2/21 
,District,sr,us,System,Type,lanes,R_LN) 
select IDlocator, filename, County, roadwayid, dir,tis,1 
-->>2/21 
,district,sr,us,system,type,lanes,r_ln 
from Tlocator 
set identity_insert Locators off 
Go 
set identity_insert DCSessions on 
Insert into DCsessions(IDSession, IDLocator, UniqueRun, 
StartDistanceStamp, EndDistanceStamp,StartChainage, 
EndChainage,DCSTimeStamp) 
select b.IDlocator, b.IDLocator,a.Section, 
MIN(AccumDist*0.3048), MAX(AccumDist*0.3048), 
(select distinct FromDist from bridge_img3_staging where section=a.section and 
AdjDmi=MIN(a.adjDmi))*1000, 
(select distinct ToDist from bridge_img3_staging where section=a.section and 
AdjDmi=Max(a.adjDmi))*1000, 
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cast (replace(DateCollected,'/','-')+' '+ min(TimeCollected) as datetime) 
from bridge_img3_staging a inner join Tlocator b on a.Section=b.filename 
where a.AccumDist is not null group by a.section, a.DateCollected, b.IDLocator 
order by b.IDlocator 
set identity_insert DCSessions off 

update DCSessions set Endchainage = case when StartChainage<EndChainage then 
round(startchainage+(EndDistanceStamp-StartDistanceStamp)*0.6213712,0) 
else round(startchainage-(EndDistanceStamp-StartDistanceStamp)*0.6213712,0) end; 

set identity_insert stationdata on 
Insert into stationdata(IDStation, 
IDSession, DistanceStamp, Chainage, ElapsedTime, Speed, 
StationTime, 
PositionStatus, Interpolated, Latitude, Longitude, Elevation) 
select ROW_NUMBER() over (order by b.IDLocator, a.AdjDmi), 
b.IDlocator, AccumDist*0.3048, FromDist*1000,time,GpsSpeed*0.44704, 
[dbo].[fn_GetGPStimefromUTCtime](cast (replace(DateCollected,'/','-')+' '+ a.UTCTime 
as datetime)), 
'CADifferential','GPSReceiverOutput', Latitude*PI()/180, Longitude*PI()/180, 
Height*0.3048 
from bridge_Img3_staging a inner join Tlocator b on a.Section=b.filename 
order by b.IDLocator, a.AdjDmi 
set identity_insert stationdata off 

set identity_insert VehiclePositions on 
insert into VehiclePositions (IDVehiclePosition, Status, Interpolated, Satellites, HDOP, 
IDSession, GPSTime, Latitude, 
Longitude, Elevation, DistanceStamp) 
select 
ROW_NUMBER() over (order by y.IDlocator, x.DateCollected+x.UTCtime), 
'CADifferential', 
'GPSReceiverOutput', 
x.Sat, 
x.HDOP, 
y.IDlocator, 
[dbo].[fn_GetGPStimefromUTCtime](x.DateCollected+x.UTCtime), 
x.latitude*PI()/180, 
x.longitude*PI()/180, 
x.height*0.3048, 
(x.GPSDist-z.offsetdist)*0.3048 
from 
( 
select 
a.DateCollected, 
a.UTCtime, 
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a.Sat, 
a.HDOP, 
a.latitude, 
a.longitude, 
a.height, 
a.GPSDist, 
a.section, 
a.adjdmi 
from bridge_Img3_staging a 
inner join 
( 
select 
DateCollected, 
min(UTCtime) as UTCtime, 
section, 
AdjDmi 
from bridge_Img3_staging 
group by DateCollected, section, AdjDmi 
) b 
on a.section=b.section and a.UTCtime=b.UTCtime) x 
inner join 
( 
select 
a.Section, 
b.IDLocator, 
MIN(AccumDist) as mindist, 
MAX(AccumDist) as maxdist, 
MIN(cast (replace(DateCollected,'/','-')+' '+ a.UTCTime as datetime)) as minUTC, 
MAX(cast (replace(DateCollected,'/','-')+' '+ a.UTCTime as datetime)) as maxUTC 
from bridge_Img3_staging a 
inner join 
Tlocator b on a.section=b.filename group by a.section, a.DateCollected, b.IDLocator 
) y 
on x.Section=y.section and x.DateCollected+x.UTCtime between y.minUTC and 
y.maxUTC 
inner join 
( 
select 
section, 
AVG(offset) as offsetdist 
from 
( 
select 
AccumDist, 
GPSDist, 
(GPSDist- AccumDist) as offset, 
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section 
from bridge_Img3_staging 
) results 
group by section 
) z 
on x.section=z.section 
order by y.IDlocator, x.DateCollected+x.UTCtime 

set identity_insert VehiclePositions off 
go 
select distinct b.fullpath,section filename,Convert(int,LEFT(section, CHARINDEX('_', 
section) - 1)) tis 
into timg 
from bridge_img3_staging a left join T1 b on parsename(a.Filename,2)=left(b.txt,12) 
order by tis--since we dont need .n01 files anymore, the on condition tricks in getting 
just the right combination 
delete from TImgpath 
insert into TImgpath(imgpath,filename) 
select distinct fullpath,filename from timg 
update a set IDsession=b.IDsession from TImgpath a inner join DCsessions b on 
a.filename=b.uniquerun 

set identity_insert ImageStreams on 
Insert into ImageStreams(IDImageStream, 
IDSession, CameraID, Name, ImagePath,ImageCompression, CCDWidth, CCDHeight) 
select ROW_NUMBER() over (order by IDLocator,Nam),x.* from 
( 
select 
IDlocator, '9' Cam,'LCMSIntensity' Nam,Concat(b.imgPath,'\LCMSIntensity\') Imag, 
3 Comp, round(1392*1.618895116,0) CCDW, round(1040*1.497734139,0) CCDH 
from Tlocator a inner join Timgpath b on a.filename=b.filename 
Union all 
select 
IDlocator, '10' Cam,'LCMSRange' Nam,Concat(b.imgPath,'\LCMSRange\') Imag, 
3 Comp, round(1392*1.618895116,0) CCDW, round(1040*1.497734139,0) CCDH 
from Tlocator a inner join Timgpath b on a.filename=b.filename 
Union all 
select 
IDlocator, '11' Cam,'LCMS3D' Nam,Concat(b.imgPath,'\LCMS3D\') Imag, 
3 Comp, round(1392*1.618895116,0) CCDW, round(1040*1.497734139,0) CCDH 
from Tlocator a inner join Timgpath b on a.filename=b.filename 
) x order by IDLocator 
set identity_insert ImageStreams off 

select distinct a.IDsession,a.filename,b.fullpath as imgpath, 
b.txt as Imgname,b.txt as jpgname 
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into Tjpg 
from Timgpath a inner join 
(select REPLACE(txt, 'JPG', 'jpg') as txt,fullpath from T1 where 
UPPER(right(txt,3))='JPG') b 
on a.imgpath=left(b.fullpath, len(a.imgpath)) 
go 
create index ixT1 on Tjpg(IDSession, jpgname); 
go 
set identity_insert ImageFrames on 
Insert into ImageFrames(IDImageFrame, IDImageStream, ImageName, 
DistanceStamp) 
Select Row_number() over(order by y.idimagestream) 
idimageframe,y.idimagestream,x.Imgname,AdjDmi 
from 
( 
select ROW_NUMBER() over (order by b.IDLocator, a.AdjDmi) idimageframe, 
b.IDlocator idimagestream,c.Imgname,AccumDist*0.3048 AdjDmi,a.Section,CASE 
WHEN Imgname like '%Int%' then 'LCMSIntensity' WHEN Imgname like '%3D%' then 
'LCMS3D' WHEN Imgname like '%Rng%' then 'LCMSRange' Else NULL End name,b.tis 
from bridge_img3_staging a 
inner join Tlocator b on a.section=b.filename 
inner join Tjpg c on a.Section=c.filename 
and Right(a.ImageNum,6)=parsename(Right(Imgname,Len(Imgname)+1-
patindex('%0%',Imgname)),2) 
where a.AccumDist is not null 
) x 
join 
dbo.imagestreams y on x.idimagestream=y.idsession and x.name=y.name 
order by tis,x.name, AdjDmi; 

set identity_insert ImageFrames off 
go 
set identity_insert distress.SourceFrames on 
Insert into distress.SourceFrames(IDSourceFrame, SourceFrameType, IDSession, 
DistanceStamp, LeftLaneOffset, RightLaneOffset) 
select ROW_NUMBER() over (order by IDLocator, DS),'LCMS',IDlocator,DS,0,0 from 
(select distinct b.IDlocator, AccumDist*0.3048 as DS 
from bridge_img3_staging a inner join Tlocator b on a.section=b.filename 
where a.AccumDist is not null) x 
order by IDLocator, DS 
set identity_insert distress.SourceFrames off 
go 
set identity_insert distress.SourceFramesDimensions on 
Insert into distress.SourceFramesDimensions(IDSourceFramesDimensions, IDSession, 
ImageWidthInPixels, ImageHeightInPixels, 
ImageWidthInMeters, ImageHeightInMeters) 
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select a.IDLocator, a.IDlocator, 2067, 3048, 4, b.avgdeltadist 
from Tlocator a inner join ( 
select AVG(DeltaAccumDist)*0.3048 as avgdeltadist, section from bridge_img3_staging 
group by section) b 
on a.filename=b.section 
order by a.IDLocator 
set identity_insert distress.SourceFramesDimensions off 

delete x from stationdata x left join (select distinct a.*, b.IDsession, c.uniquerun as 
filename, c.IDLocator from ( 
select min(distancestamp) minDS, max(distancestamp) maxDS, IDImagestream from 
imageframes group by IDImagestream) a 
inner join ImageStreams b on a.IDImageStream=b.IDImageStream 
inner join DCSessions c on b.IDSession=c.IDsession) y 
on x.IDsession=y.IDsession and x.Distancestamp between y.minDS-0.5 and 
y.maxDS+0.5 
where y.IDsession is null; 
delete x from vehiclepositions x left join (select distinct a.*, b.IDsession, c.uniquerun as 
filename, c.IDLocator from ( 
select min(distancestamp) minDS, max(distancestamp) maxDS, IDImagestream from 
imageframes group by IDImagestream) a 
inner join ImageStreams b on a.IDImageStream=b.IDImageStream 
inner join DCSessions c on b.IDSession=c.IDsession) y 
on x.IDsession=y.IDsession and x.Distancestamp between y.minDS-0.5 and 
y.maxDS+0.5 
where y.IDsession is null; 
set identity_insert VehicleOrientations on 
insert into VehicleOrientations(IDVehicleOrientation,GPSTime,IDSession, 
DistanceStamp) 
select IDVehiclePosition,GPSTime,IDSession, DistanceStamp 
from VehiclePositions order by IDVehiclePosition 
set identity_insert VehicleOrientations off 

set identity_insert Sections on 
insert into sections(IDSection,IsRouted,IDLocator) 
select IDLocator,1,IDLocator from Tlocator 
set identity_insert Sections off 

select ROW_NUMBER() over (order by y.IDlocator, y.IDsession, y.minDS) as 
IDsegment,y.IDLocator,y.Filename, 
y.minDS as begDS,y.maxDS as endDS, 
(select distinct FromAdjRP from bridge_img3_staging where section=y.filename and 
AccumDist*0.3048=y.minDS)*1000 as Begchg, 
(select distinct ToAdjRP from bridge_img3_staging where section=y.filename and 
AccumDist*0.3048=y.maxDS)*1000 as endchg, 
(select distinct Latitude from bridge_img3_staging where section=y.filename and 
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AccumDist*0.3048=y.minDS)*PI()/180 as BegLat, 
(select distinct Latitude from bridge_img3_staging where section=y.filename and 
AccumDist*0.3048=y.maxDS)*PI()/180 as EndLat, 
(select distinct Longitude from bridge_img3_staging where section=y.filename and 
AccumDist*0.3048=y.minDS)*PI()/180 as BegLong, 
(select distinct Longitude from bridge_img3_staging where section=y.filename and 
AccumDist*0.3048=y.maxDS)*PI()/180 as Endlong 
into Tsegments 
from ( 
select distinct 
a.*, 
b.IDsession, 
c.uniquerun as filename, 
c.IDLocator 
from ( 
select 
min(distancestamp) minDS, 
max(distancestamp) maxDS, 
IDImagestream 
from imageframes 
group by IDImagestream 
) a 
left join ImageStreams b on a.IDImageStream=b.IDImageStream 
left join DCSessions c on b.IDSession=c.IDsession 
) y; 
set identity_insert Nodes on 
Insert into Nodes(IDNode, Latitude, Longitude) 
select ROW_NUMBER() over (order by IDsegment, DS),lat,long from ( 
select IDsegment, IDLocator, begDS as DS, Begchg as chainage, BegLat as lat, 
BegLong as long 
from Tsegments 
union 
select IDsegment, IDLocator, EndDS as DS, Endchg as chainage, EndLat as lat, 
EndLong as long 
from Tsegments) a 
order by IDsegment, DS 
set identity_insert Nodes off 

set identity_insert Landmarks on 
Insert into Landmarks(IDLandmark, Chainage, IsAnchor,IsRouted,IDSection,IDNode) 
select ROW_NUMBER() over (order by IDsegment, DS),Chainage,1,1,IDLocator, 
ROW_NUMBER() over (order by IDsegment, DS) 
from ( 
select IDsegment, IDLocator, begDS as DS, Begchg as chainage, BegLat as lat, 
BegLong as long 
from Tsegments 
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union 
select IDsegment, IDLocator, EndDS as DS, Endchg as chainage, EndLat as lat, 
EndLong as long 
from Tsegments) a 
order by IDsegment, DS 
set identity_insert Landmarks off 

set identity_insert routedsegments on 
insert into routedsegments( 
IDRoutedSegment, Direction, Lane, SegmentRoutingId, SegmentLength, 
IDBeginLandmark, IDEndLandmark, IDSection, SequenceIndex) 
select IDsegment,case when Begchg>endchg then '5' else '6' 
end,1,IDsegment,abs(Begchg-endchg), 
IDsegment*2-1, IDsegment*2, IDLocator,1 from Tsegments 
set identity_insert routedsegments off 
update a 
set endDS=b.begDS 
from Tsegments a 
inner join Tsegments b on a.IDLocator=b.IDlocator and a.IDSegment=b.IDsegment-1 
where abs(a.endDS-b.begDS)<3.5; 

insert into matches(IDSegment, BeginChainage,EndChainage, BeginDistanceStamp, 
EndDistanceStamp, 
Mode, Status, IDSession) 
select IDsegment,Begchg, endchg,begds,endds,'Manual','Good',IDLocator from 
Tsegments 
order by IDsegment; 

update m 
set ImageHeightInMeters=n.deltaheight 
from distress.SourceFramesDimensions m inner join ( 
select IDImagestream, avg(deltaDS) as deltaheight from ( 
select a.IDImagestream, (b.Distancestamp-a.Distancestamp) as deltaDS from 
imageframes a inner join 
imageframes b on a.IDImagestream=b.IDImagestream and 
a.IDImageframe=b.IDImageframe-1) x group by IDImagestream) n 
on m.IDsession=n.IDImagestream; 

update a 
set StartChainage=b.begchg, EndChainage=b.endchg, StartDistanceStamp=b.begDS, 
EndDistanceStamp=b.endDS 
from dcsessions a inner join Tsegments b on a.IDLocator=b.IDlocator; 

alter table distress.SourceFrames add odistancestamp float; 
alter table ImageFrames add odistancestamp float; 
alter table distress.SourceFramesDimensions add oImageHeightInMeters float; 
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go 
update distress.SourceFramesDimensions set 
oImageHeightInMeters=ImageHeightInMeters; 
update distress.SourceFrames set odistancestamp = DistanceStamp; 
update ImageFrames set odistancestamp = DistanceStamp; 
delete a 
from distress.SourceFrames a left join ImageFrames b 
on a.IDSession=b.IDImageStream and a.DistanceStamp=b.DistanceStamp 
where b.DistanceStamp is null; 
select MIN(IDImageframe) as minID,IDImagestream into t2 from ImageFrames group by 
IDImagestream; 
update a 
set DistanceStamp=(a.IDImageFrame-b.minID)*6.11 
+(select top 1 odistancestamp from ImageFrames where 
IDImageStream=a.IDImageStream and IDImageFrame=b.minID) 
from ImageFrames a inner join t2 b on a.IDImageStream=b.IDImageStream; 
drop table t2; 
update a 
set distancestamp=b.distancestamp 
from distress.SourceFrames a inner join ImageFrames b on 
a.IDSession=b.IDImageStream and a.oDistanceStamp=b.oDistanceStamp; 
update distress.SourceFramesDimensions set ImageHeightInMeters=6.809232; 
update distress.SourceFramesDimensions set ImageWidthInPixels=2067; 
update distress.SourceFramesDimensions set ImageHeightInPixels=3048; 

UPDATE DCSessions 
set StartChainage=StartChainage/1000; 
UPDATE DCSessions 
set EndChainage=EndChainage/1000; 

set identity_insert LCMSFisFrames on 
Insert into LCMSFisFrames(IDLCMSFisFrames, IDSession, Filename, 
FrameNumber, DistanceStamp,DistanceStampOrig) 
select 
ROW_NUMBER() over (order by substring(parsename(Right(a.txt,Len(a.txt)+1-
patindex('%0%',a.txt)),2), patindex('%[^0]%',parsename(Right(a.txt,Len(a.txt)+1-
patindex('%0%',a.txt)),2)), 10)) idfr 
,Dense_rank() over (order by c.id) den 
,Concat(a.fullpath,'\',txt) filename 
, substring(parsename(Right(a.txt,Len(a.txt)+1-patindex('%0%',a.txt)),2), 
patindex('%[^0]%',parsename(Right(a.txt,Len(a.txt)+1-patindex('%0%',a.txt)),2)), 10) 
framenumber 
,b.distancestamp 
,b.distancestamp 
from 
T1 a 
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inner join 
(select distinct substring(parsename(Right(Right(Imagename,LEN(Imagename)-
charindex('_',Imagename)),LEN(Right(Imagename,LEN(Imagename)-
charindex('_',Imagename)))-charindex('_',Right(Imagename,LEN(Imagename)-
charindex('_',Imagename)))),2), 
patindex('%[^0]%',parsename(Right(Right(Imagename,LEN(Imagename)-
charindex('_',Imagename)),LEN(Right(Imagename,LEN(Imagename)-
charindex('_',Imagename)))-charindex('_',Right(Imagename,LEN(Imagename)-
charindex('_',Imagename)))),2)), 10)name,distancestamp from Imageframes) b on 
substring(parsename(Right(a.txt,Len(a.txt)+1-patindex('%0%',a.txt)),2), 
patindex('%[^0]%',parsename(Right(a.txt,Len(a.txt)+1-patindex('%0%',a.txt)),2)), 
10)=b.name 
inner join 
bridge_Img3_staging c on substring(parsename(Right(a.txt,Len(a.txt)+1-
patindex('%0%',a.txt)),2), patindex('%[^0]%',parsename(Right(a.txt,Len(a.txt)+1-
patindex('%0%',a.txt)),2)), 10)=c.num 
where a.txt like '%.fis' 
order by c.id,framenumber 
set identity_insert LCMSFisFrames off 

update Locators 
set L_Section=TestSection, 
L_Run=RunNumber 
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	INTRODUCTION 
	INTRODUCTION 
	This research project was conducted with the objective of evaluating the viability of using an automated computer application to detect, classify, and quantify cracks on flexible and rigid pavement surfaces from digital images, to be implemented in the annual Pavement Condition Survey (PCS). Phase I of this project was focused on identification and quantification of the rigid pavement cracks from two-dimensional (2D) images collected using the FDOT data collection vehicle. The developed FDOT Rigid Pavement 
	-

	This Final Report is organized as follows: 
	• 
	• 
	• 
	Chapter 1: Task 1. Technology State of the Practice Assessment 

	• 
	• 
	Chapter 2: Task 2. Rigid Pavement Application Design 

	• 
	• 
	Chapter 3: Task 3. Rigid Pavement Application Development and Validation 

	• 
	• 
	Chapter 4: Task 4. LRIS Feasibility on Flexible Pavements 

	• 
	• 
	Chapter 5: Task 5. Flexible Pavement Application Design 

	• 
	• 
	Chapter 6: Task 6. Flexible Pavement Application Development and Validation 

	• 
	• 
	Chapter 7: Task 7. Automated Application Implementation 

	• 
	• 
	Chapter 8: Task 8. Technology Needs and Gaps Assessment 


	CHAPTER 1 – TECHNOLOGY STATE OF THE PRACTICE ASSESSMENT 
	Pavement evaluation can be a complex process. Many agencies have developed 
	procedures that they follow for conducting such evaluations. Where “manual” or human 
	raters were (or are still) involved, it was (is) fairly common to have an annual training and “calibration” to provide relatively consistent results, but there is limited data available on how much variability may actually exist within these existing procedures. 
	As technology advances and traffic concerns continue to test the limits of safety, automation continues to be evaluated as a potential substitute for existing procedures. 
	As is to be expected, questions arise regarding the “acceptability” of such automated data. Of course, this begs the question of what is “truly” acceptable. Each agency needs 
	to establish a context-sensitive and systematic approach to evaluate the accuracy, precision, and efficiency of potential automated distress identification systems for network and project level data collection objectives. 
	To conduct such an evaluation in a systematic fashion, it is first reasonable to conduct a review of the literature on automated technology for aiding in pavement evaluation. In this process, the current literature review report documents the following: 
	1. 
	1. 
	1. 
	Evolution of automated data collection hardware technology and future trends in the industry 

	2. 
	2. 
	Advancements in automated image analysis and processing for aiding in pavement evaluation, and future improvements 

	3. 
	3. 
	3. 
	Implementation considerations and initiatives, including: 

	a. 
	a. 
	a. 
	Metrics and analyses for conducting evaluations of accuracy and precision 

	b. 
	b. 
	Methods for calibration and verification of the technology 




	In subsequent tasks, the findings from this literature review will be applied to identify: 
	1. 
	1. 
	1. 
	How best to evaluate and compare the current procedures employed by Florida DOT to automated options. 

	2. 
	2. 
	Recommendations for getting the optimal results from the system currently available to the DOT. 

	3. 
	3. 
	Finally, recommendations for future considerations in the development and/or application of technology to satisfy the needs of Florida DOT. 


	Every effort has been made to be as thorough as possible in the conduct of this literature review, while keeping these stated objectives (of equal importance) in mind. 
	1.1 Introduction to the Literature Review 
	1.1 Introduction to the Literature Review 
	During Task 1, the research team reviewed the available literature on the state of the practice regarding technologies for automated crack data collection and analysis for rigid and flexible pavements. The corresponding literature can be divided into three segments; the first on automated distress data collection hardware and data management, the second on automated image analysis and processing, and the third on implementation considerations and initiatives. As displayed in the first two components compris
	Figure 1, 

	The NCHRP Synthesis number 334 provided a summary of the state of the automated pavement distress data collection practice in 2004 and was a relevant document to start the literature review. In addition, the NCHRP Synthesis number 401 reviewed the quality management practices being employed by public road and highway agencies for automated, semi-automated, and manual pavement condition data collection (Flintsch and McGhee 2009). 
	Figure
	Figure 1. The system concept for automated pavement data collection (McGhee 2004) 
	: The existing and emerging technologies for collecting pavement surface distress images were reviewed. The current practice by various State Highway Agencies (SHA) and other roadway authorities within the United States and across the world were examined. This examination included investigation of the following parameters: 
	Task 1a – state of the practice regarding automated crack data collection

	• 
	• 
	• 
	Imaging Technology Hardware and Capabilities (scan dimensions, speed, illumination, dynamic range, resolution, crack width, limitations, etc.) 

	• 
	• 
	Location Referencing Equipment 

	• 
	• 
	Image Sampling, Storage, and Compression Information 

	• 
	• 
	Advantages and Disadvantages to network-level condition surveys 


	: The existing and promising emerging tools for cracking data processing and interpretation were investigated. While the state of the art is constantly advancing, the literature review in Task 1 focused on practical techniques that show promise for implementation. This investigation included but was not limited to the following aspects of data analysis: 
	Task 1b – state of the art and practice regarding automated crack data analysis

	• 
	• 
	• 
	Image Display Tools 

	• 
	• 
	Automatic Crack Type and Severity Identification 

	• 
	• 
	Crack/distress editing and review tools 

	• 
	• 
	Cracking Extent Measurement and Location Referencing 

	• 
	• 
	Accuracy, Precision, and Reliability 

	• 
	• 
	Crack Sampling and Reporting Interval 

	• 
	• 
	Advantages and Disadvantages to network-level condition surveys 


	To gain from the experiences of past work in this area, the research team reviewed and summarized previous efforts that have been conducted in this area. Several of these are included in the following example reference documents: 
	• 
	• 
	• 
	NCHRP Project 1-27: Video Image Processing for Evaluating Pavement Surface Distress (Fundakowski 1991). 

	• 
	• 
	Paredes’s PAS: Automated Distress Measuring Device (Lee 1991). 

	• 
	• 
	University of Texas at Austin Center for Transportation Research (CTR): Automated Pavement Cracking Rating System (Xu and Huang 2003). 

	• 
	• 
	NCHRP IDEA Project 88: Automated Pavement Distress Survey through Stereovision (Wang 2004). 

	• 
	• 
	NCHRP IDEA Project 111: Automated Real-Time Pavement Crack Detection and Classification (Wang and Gong 2007). 

	• 
	• 
	Visual Retrieval of Concrete Crack Properties for Automated Post-Earthquake Structural Safety Evaluation (Zhu et al. 2011). 

	• 
	• 
	Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring (Zhang et al. 2014). 

	• 
	• 
	Multiscale Crack Fundamental Element Model for Real-World Pavement Crack Classification (Tsai et al. 2014). 

	• 
	• 
	US DOT RITA: A Remote Sensing and GIS-Enabled Asset Management System (RS-GAMS), (Tsai and Wang 2014). 


	In this task, the research team was looking for ideas, concepts and approaches to facilitate the codification of the proposed protocols. These findings were highlighted to aid in subsequent tasks of this project. Known deficiencies in current automated detection practices occur when the pavement is slightly damp, when the cracks are sealed, spalled, filled with salt or sand, where there is staining in fine cracks (this makes them evident in a forward image, but not necessarily in downward pavement views) or
	The current automation practices still focus on cracking related distresses and not on other common visual distresses such as bleeding, depressions, and patching. While cracking is the focus of this project, ravelling and patching among other distresses are also a concern and are captured in the current FDOT manual windshield surveys. 
	This chapter is organized in five sections. Following this introduction, Section provides a summary of the information reviewed on automated distress data collection hardware and data management. Section summarizes the findings on image applications, analysis and processing. Section addresses implementation considerations. This is considered of particular importance, as the actual implementation into practice has tended to present the greatest challenges in the advancement of the automation process. Section
	1.2 
	1.3 
	1.4 
	1.5 


	1.2 Automated Distress Data Collection Hardware and Data Management 
	1.2 Automated Distress Data Collection Hardware and Data Management 
	This section discusses the state of the practice regarding automated distress data collection hardware for identification and documentation of pavement surface distresses and related information, as well as the associated management of this data. The following technologies are discussed: 
	1. 
	1. 
	1. 
	The right of way cameras used for forward roadway images 

	2. 
	2. 
	Analog vs. digital pavement imaging 

	3. 
	3. 
	Area scan 

	4. 
	4. 
	Laser imaging 


	5. 3D imaging 
	6. Other technologies such as LiDAR, satellites, airplanes, unmanned aerial vehicles, and photogrammetry 
	1.2.1 Right of Way (ROW) Cameras 
	1.2.1 Right of Way (ROW) Cameras 
	One of the earliest methods of obtaining pavement images was simply to use a right of way camera and focus it down towards the pavement surface. This method was utilized 
	throughout the 1980’s when video cassette tapes were the main storage source for 
	video. The technology has advanced with time and is still used in some areas of the world with high resolution digital camera systems (PMS 2015). The advantage to this method is that it is cost effective and requires standard configurations of hardware, power, and computing power that are commercially available. The disadvantages are that it is susceptible to shadows and the image is on an angle, so some cracking will be difficult to see. The other significant disadvantage is that it does not facilitate aut

	1.2.2 Analog versus Digital Pavement Imaging 
	1.2.2 Analog versus Digital Pavement Imaging 
	The move from analog to digital imaging was a big advancement in the video log industry.  Digital images retained all the benefits of analog video but also provided a number of key advantages: 
	• 
	• 
	• 
	Centralized storage of images – images can all be stored on a central server that everyone can access so there is no longer the need to hunt down the correct video tape. 

	• 
	• 
	Increased access speed – analog video required you to find the video tape then fast forward to the correct spot using a VCR. With digital images users can access them from their own computers and jump right to the image(s) needed. 

	• 
	• 
	Distribution – Digital images can be easily e-mailed or copied and sent to others (Fugro Roadware 2004). 

	• 
	• 
	Quality – Digital image technologies have greatly improved the resolution and quality of images beyond the storage capacity of video cassettes. 


	As technology advances so do the advantages of using digital images. The cameras become faster, able to capture images more frequently, and with better quality than analog video. The evolution of digital technology in the pavement evaluation industry was largely a result of significant advancements in existing camera technologies and data storage capacity. 

	1.2.3 Area Scan 
	1.2.3 Area Scan 
	Pavement imagery using area scan technology consists of high-resolution cameras extending from the back of the vehicle. They point straight down at the pavement and 
	each takes an image of the pavement surface that is flat and consistent for measurement. Early on in development, the images were recorded and displayed side by side on the office workstation. As technology advanced, area scan cameras created digital images usually in Joint Photographic Experts Group (JPEG) format that could be stitched together to create continuous pavement images. 
	Advantages to area scan systems are that they are cost effective and as technology improves better quality cameras can be used to increase resolution and image quality. The image resolution and quality depend both on the quality of the used cameras and the lighting system. 
	The disadvantage to an area scan system is that it requires a light source to reduce shadows for trees, buildings or overpasses significantly increasing the power output required by the vehicle. This additional lighting is often a large draw of electrical power for the data collection vehicles requiring additional generators or power generation. 
	These 2D images were designed to be used for both automated and semi-automated pavement distress identification and were easily calibrated to measure within the images to quantify crack lengths, areas, and widths. The range in quality of the cameras can show a range of surface textures, but coarse-grained pavement textures can sometimes make it difficult to identify smaller width cracks and other defects between large aggregates. Also, area scan images are very susceptible to other optical challenges in the
	shows an older version of Fugro Roadware’s Automatic Road Analyzer (ARAN) vehicles equipped with an area scan system. 
	Figure 2 

	Figure
	Figure 2. Fugro Roadware’s ARAN equipped with area scan system 
	Figure 2. Fugro Roadware’s ARAN equipped with area scan system 
	Continuous Lighting 
	Continuous Lighting 
	To properly view the pavement surface, lighting was found to be very important in capturing conditions, as there needs to be enough lighting to adequately illuminate the surface and still show shadows within the cracks. Constant lighting was an older technology used to illuminate the pavement for imaging. As an example, the early FDOT line scan system utilized ten 150-watt lamps to illuminate the pavement surface for the camera (Gunaratne et al. 2003). The drawback to this method was that the illumination w
	Figure 3 

	Figure
	Figure 3. Road survey vehicle equipped with constant lighting 

	Strobe Lights 
	Strobe Lights 
	An effective light source for area scan cameras is the use of strobe lighting. These lights are synched with the camera to fire a high intensity light as the image is captured. Since these lights are strobes they can be a lot brighter than standard lights and consume less power. This allows collection of pavement images at any time of the day from bright sunlight to nighttime collection. shows a Fugro BRE Automated Distress Vehicle (ADV) with strobe lights, and a sample of the pavement surface images captur
	Figure 4 

	Figure
	Figure 4. Fugro BRE Automated Distress Vehicle (ADV) 



	1.2.4 Line Scan 
	1.2.4 Line Scan 
	Non-Laser Line Scan 
	Non-Laser Line Scan 
	Early line-scan cameras capture single lines which are then compiled to form a 2-D image. One of the advantages the line scan camera has over area scan is that many of the production systems were higher resolution images, up to 6,000 pixels per line (Gunaratne et al. 2003). The main disadvantage to line-scan cameras is that they require a higher light intensity than area scan. Shadows on the road can be picked up by the system and mistaken for distress if the lighting is not sufficient. Many of these 
	Early line-scan cameras capture single lines which are then compiled to form a 2-D image. One of the advantages the line scan camera has over area scan is that many of the production systems were higher resolution images, up to 6,000 pixels per line (Gunaratne et al. 2003). The main disadvantage to line-scan cameras is that they require a higher light intensity than area scan. Shadows on the road can be picked up by the system and mistaken for distress if the lighting is not sufficient. Many of these 
	systems had long dark streaks from shadows of mounted equipment that caused complications during crack identification. shows an example non-laser line-scan camera image with the shadows cast on the pavement surface (McGhee 2004). 
	Figure 5 


	Figure
	Figure 5. Example Line-Scan Pavement Image with Vehicle-Cast Shadow in Left Wheel Path (McGhee 2004) 

	Laser Road Imaging System (LRIS) 
	Laser Road Imaging System (LRIS) 
	Introduced in 2006 by the INO (Institut National d’Optique) of Quebec in Canada, Laser Road Imaging System (LRIS) is composed of two high resolution line-scan cameras and two illuminating lasers that are configured to capture images of full 4m transverse road sections with up to 1mm x 1mm resolution (4096 pixels/line) at speeds that can surpass 62 mph (INO 2014). This system uses two illuminating laser beams that are angled transversely onto the road and then two cameras that pick up this laser line. Becaus
	Figure 6 
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	Figure
	Figure 6. LRIS system on inspection vehicle 
	The main advantage of the LRIS system over other camera-based systems is that it is not dependent on light as it can collect through shadows or at night with the same quality of image due to the intensity of the lasers. Another advantage to this system is that because it uses laser illumination it consumes less power, about 200 watts versus thousands of watts of traditional lighting systems (Wang and Smadi 2011). The LRIS is also more compact than the area scan systems. The high resolution and consistency o
	A disadvantage to the LRIS system is that because it creates images line by line any dirt or dust on the camera lens can create streaks in the image. These streaks result in black lines appearing in the images and can cause difficulty with automated crack detection software that uses the light and dark contrast to identify cracks. shows an example LRIS pavement image showing dark streaks that cannot be seen on the ROW image. 
	Figure 7 

	Figure
	Figure 7. Example LRIS pavement image (right) showing dark streaks that cannot be seen on the ROW image (left) 


	1.2.5 3D Pavement Imaging Systems 
	1.2.5 3D Pavement Imaging Systems 
	3D pavement systems use synchronized scanning lasers that are projected onto the pavement surface which are then captured by one or more cameras. The lasers can also measure the distance to the surface to give the image a depth. This is where the advantage to these systems lie, the depth measurement makes crack detection much easier than 2D pavement systems where pavement texture and lighting can make fine cracks hard to distinguish. Another advantage to 3D systems is that they are less sensitive to the pro
	3D pavement systems are quickly becoming the most popular method of collecting pavement data due to the additional information available, high resolution images, and repeatable results. Many large road agencies have already or are currently transitioning to the use of a 3D laser pavement system and it looks like this trend will continue. 
	Laser Crack Measurement System (LCMS) 
	Laser Crack Measurement System (LCMS) 
	The most commonly used 3D imaging technology globally is the Laser Crack Measurement System (LCMS) developed by INO and provided by Pavemetrics Systems Inc. The LCMS consists of two high-speed cameras, custom optics and laser 
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	line projectors to acquire both the intensity of reflected light and depth ranging information of infrastructure surfaces at speeds up to 62 mph (Habel et al. 2014). The LCMS system has a resolution of up to 4,096 points and captures 5,600 profiles per second for a transverse spacing between profiles of 5 mm (0.2 in) at 62 mph (Fugro Roadware 2012). The two lasers are projected onto the surface to be inspected and its image is captured by a camera system on a different . This allows the sensors to simultane
	angle (Figure 8)

	scanned. This data is recorded in a proprietary and licensed file format known as a FIS file. Through post processing of these FIS files, automatic distress detection can be completed along with creation of the orthogonal images for viewing. 
	 surfaces (Figure 9)

	Figure
	Figure 8. LCMS sensors mounted on a survey vehicle 
	Figure
	(a) (b) (c) 
	Figure 9. LCMS image types; (a) range, (b) intensity, (c) merged 3D 
	The LCMS is often used by data collection device integrators and vendors including: APSA (Administracion de Pimientos Sociedad Anomia), Australian Road Research Board (ARRB), Dynatec, enterInfo, EuroConsult, Fugro Roadware, International Cybernetics Corporation (ICC), Mandi Communications, Rambolt, Ronda’s, and Vectra. The LCMS is the most widely used pavement imaging technology for new vehicles in 2015. 

	Others in Development 
	Others in Development 
	Waylon Systems has developed the PaveVision3D which is a multi-camera system for 1mm resolution in all dimensions of pavement surface 3D imaging. This system utilizes up to 4 cameras on each side of the lane to collect the surface information on higher frequencies. Data stitching algorithms are used to assemble the measurements on each side of the lane and then both sides are stitched together into a single file with 1mm x 1mm resolution for both the intensity and range data (Wang 2011). The disadvantage to
	Waylink Systems has also been experimenting with other frequency lasers to improve the accuracy of the measurements with high frequency, short wavelengths of light. There are distinct advantages to the measurements with other frequencies. However, 
	Waylink Systems has also been experimenting with other frequency lasers to improve the accuracy of the measurements with high frequency, short wavelengths of light. There are distinct advantages to the measurements with other frequencies. However, 
	the increased power also changes the health and safety class of these lasers, which may have challenges with testing on open roads. 



	1.2.6 Other Technologies 
	1.2.6 Other Technologies 
	LiDAR 
	LiDAR 
	Light Detection And Ranging (LiDAR) is a laser-based technology that measures distance by lighting a target with a laser beam and analyzing the reflected light. LiDAR is very useful for surveying applications like digital terrain modeling from airplanes or road geometry and assets inventory for transportation agencies. The biggest drawback for the use of current LiDAR systems for pavement imagery is the resolution and frequency of collection on current models. Currently LiDAR can get an accuracy of up to 10
	Figure
	Figure 10. A LiDAR survey of a highway (left), and a LiDAR antenna (right) 

	Satellite 
	Satellite 
	Satellites can cover large areas very quickly but are limited by revisit times, atmospheric interferences, and spatial resolution (Schnebele et al. 2015). In the future if satellite imagery was able to improve on the resolution, they would still be affected by things like lighting and line of sight caused by overpasses, traffic, and trees. 

	Air Based Surveys 
	Air Based Surveys 
	Air based surveys (both fixed wing and rotary wing) can get better resolutions than satellites due to the reduced elevations and can be fitted with various sensors and recording devices (Schnebele et al. 2015). Currently airplanes and helicopters are used for various remote sensing applications but when it comes to pavement imagery there are limitations. Due to the speed that airplanes travel it would be hard to achieve the required resolution to create usable pavement images due to motion blur.  Aircraft a
	Air based surveys (both fixed wing and rotary wing) can get better resolutions than satellites due to the reduced elevations and can be fitted with various sensors and recording devices (Schnebele et al. 2015). Currently airplanes and helicopters are used for various remote sensing applications but when it comes to pavement imagery there are limitations. Due to the speed that airplanes travel it would be hard to achieve the required resolution to create usable pavement images due to motion blur.  Aircraft a
	also susceptible to wind shear and turbulence that would make getting constant imagery difficult and like satellites they would be subject to line of sight and lighting concerns. Operating aircraft is also expensive and requires properly trained personnel to operate. Airspace restrictions also are another concern as many network surveys are conducted around urban areas that could have security concerns and reduced visibility due to structures. shows Fugro’s FLI-MAP 400 system, which provides high accuracy t
	Figure 11 


	Figure
	Figure 11. Fugro’s FLI-MAP400 (Fast Laser Imaging -Mapping and Profiling) system 
	Figure 11. Fugro’s FLI-MAP400 (Fast Laser Imaging -Mapping and Profiling) system 



	Unmanned Aerial Vehicle 
	Unmanned Aerial Vehicle 
	Unmanned Aerial Vehicles (UAV) or Drones are a less expensive alternative to 
	airplanes or satellites and can provide high resolution, near real-time imagery 
	(Schnebele et al. 2015). An UAV has a few advantages over other aircraft with respect 
	to collecting pavement images. UAV’s are cheaper, can fly at lower altitudes and are 
	quicker to deploy than most manned aircraft. With changing government regulations, 
	these will also not have all the airspace restrictions that the larger aircraft would have 
	and are much more maneuverable although more susceptible to wind shear. UAV’s can 
	currently be effective for collecting data on gravel roads where high-resolution distress 
	imagery is not required. Limitations include objects blocking road surfaces like traffic, 
	bridges, trees, and buildings. As with the other airborne methods lighting is an issue 
	where shadows from trees, vehicles, and power lines can affect the quality of imagery. 
	Aircraft options for pavement imagery have possibilities but currently have not been 
	explored thoroughly. Current technology for vehicle surveys has limitations when 
	applied to aerial platforms such as distance, location accuracy and collection path. 

	Photogrammetry 
	Photogrammetry 
	Photogrammetry is a stereo vision technique that involves taking multiple images of the same object from multiple angles and using these images to generate a 3D image of the object. Initial investigations show significant potential for 3D distress detection and modelling with higher spatial precision and a higher level of automation than laser-based 3D profilers (Ahmed and Haas 2010). This system could also be easily upgraded over time as new technologies and higher resolution cameras become available. The 


	1.2.7 Image Capturing Specifications and their Effects on Crack Identification 
	1.2.7 Image Capturing Specifications and their Effects on Crack Identification 
	The image quality plays a crucial role in gathering the most accurate and comprehensive data on distress from pavement images collected using the area scan technology. The ideal pavement image is crisp with no motion blur, evenly and well lit, and of high enough resolution to view details. The quality of digital image can be affected by the illumination, dynamic range, shutter speed, resolution, optic quality, size of pixels and the image sensor capabilities. 
	To capture high quality pavement images, illumination or brightness is an important element, which is proportionally dependent on the wavelength and the surface reflectance (Sokolic 2004). Image brightness is also dependent on the exposure time controlled by the shutter speed and aperture, and the sensitivity of the image sensor. Brightness resolution refers to the number of brightness levels that can be recorded in any given pixel. In an 8-bit grayscale black and white image, each pixel is black, white or 
	Dynamic range defines the ability of an imaging device to record or display the full range of optical density. Theoretically, higher dynamic range can detect greater image detail in dark shadow areas of photographic images (Wang and Smadi 2011). Dynamic range for pavement images is normally 8, 10 or 12 bits. Currently 24-bit color images are used only in right-of-way color images for asset management applications. 
	The shutter speed of an area scan camera is measured in two ways; number of images captured per unit time, and absolute time the camera shutter is open for one image collection. As the shutter speed increases, more images can be taken within a given timeframe, which translates to a higher operating speed with less blur. But as the shutter speed increases, there must be an adjustment since the exposure time is decreased. This means that for the image to be properly lit there must be an adjustment to either a
	The shutter speed of an area scan camera is measured in two ways; number of images captured per unit time, and absolute time the camera shutter is open for one image collection. As the shutter speed increases, more images can be taken within a given timeframe, which translates to a higher operating speed with less blur. But as the shutter speed increases, there must be an adjustment since the exposure time is decreased. This means that for the image to be properly lit there must be an adjustment to either a
	one pavement image every 2 to 3 feet. Typically, ROW images are taken once every 

	26.4 feet, and travelling at 60 mph, a shutter speed of 3 or 4 fps is sufficient for this purpose (Fugro Roadware 2004). 
	One of the image quality indicators is the degree of resolution in terms of pixels per area. In general, the higher the number of pixels per area, the more likely it is that pavement surface details are picked up. It is important that the other aspects of image quality (e.g. optimum illumination) are also satisfied to ensure that the data reflected in the pixels are accurate. 
	For example, a line scan camera with a resolution of 4096 pixels/profile ensures areas as small as 1 mm can be detected. Typically, it is expected that two pixels are required to identify patterns such as cracks. This indicates a 1mm resolution is capable of recognizing cracks with a width as small as 1mm and more reliably 2mm. shows the theoretical minimum visible crack widths corresponding to camera resolution using both line scan and area scan cameras. However, determining crack width from the images is 
	Table 1 

	Table 1. Image resolution and theoretical minimum visible crack width (Wang and Smadi 2011) 
	Transverse Resolution (pixel) 
	Transverse Resolution (pixel) 
	Transverse Resolution (pixel) 
	1,300 
	2,048 
	4,096 

	Visible Crack Width (mm) 
	Visible Crack Width (mm) 
	3 
	2 
	1 


	The specific technical details such as shutter speed, aperture, depth of field, lens quality, sensor type, dynamic range, focus range, and resolution varies with the model and build of the imaging system used, but an example of both an area-scan and line-scan camera are listed in 
	Table 2. 

	Table 2. Example specs for line-scan and area-scan cameras 
	Area Scan Camera 
	Area Scan Camera 
	Area Scan Camera 
	Hitashi KP-F120 
	Line Scan Camera 
	LRIS 

	Shutter Speed (fps) 
	Shutter Speed (fps) 
	15, 30, 60, or 120 
	Line Rate (lps) 
	28,000 

	Image Resolution 
	Image Resolution 
	1392 x 1040 pixels 
	Image Resolution 
	4096 pixels/line 



	1.2.8 Image Quality Management 
	1.2.8 Image Quality Management 
	Pavement surface imagery is typically collected in compliance with the American Association of State Highway and Transportation Officials (AASHTO) provisional protocol (PP) number 68 (AASHTO 2014a), which was later adopted as AASHTO 
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	Standard R86-18 (AASHTO 2018b). This standard calls for these requirements in terms of image quality: 
	“4.3.1. The images must provide sufficient difference between data point values representing distressed and non-distressed areas that subsequent distress detection techniques can delineate a minimum of 33 percent of all cracks under 3 mm (0.12 in.), 60 percent of all cracks present from 3 mm (0.12 in.) and under 5 mm (0.2 in.) wide, and 85 percent of all cracks 5 mm (0.2 in.) wide or wider regardless of orientation or type. The determination of this capability will be made utilizing a minimum of ten 0.03-km
	4.3.2. The images should be sufficiently void of erroneous differences between data point values that a section of pavement without distress, discontinuities, or pavement markings contains less than 3 m (10 ft) total length of detected false cracking in 50 m2 (540 ft2) of pavement. The determination of this capability will be made utilizing a minimum of ten 0.03-km (100-ft) samples of various types that meet the criteria.” 
	There are no other standards that would recommend more comprehensive requirements for quality management measures taken for pavement images for crack identification. This is an important topic that has received little attention. There are two ways to filter through the collected images, automated or manual. One example of an image QA procedure is to run the collected images through software designed to review the range of values recorded in images. These pixel values will indicate if the images are too brig
	The following two documents are the predominant source of information regarding the state of practice in quality management of pavement data collection. While they address some aspects of pavement images, they do not provide specific guidelines to ensure pavement image quality. 
	• 
	• 
	• 
	NCHRP Synthesis 401, Quality Management of Pavement Condition Data Collection (Flintsch & McGhee, 2009) 

	• 
	• 
	FHWA Practical Guide for Quality Management of Pavement Condition Data Collection (Pierce et al. 2013) 


	Recognizing the need for a unifying image format that can facilitate data analysis, reporting, sharing, and evaluation, the Federal Highway Administration has recently issued a request for quote on Standard Data Format for 2D/3D Pavement Image Data. 
	Expected benefits include facilitating workable protocols for condition surveys, improving implementation of new technologies, and accelerating the development potential of analysis tools for pavement condition. 

	1.2.9 Image Storage, Compression, and Database Management 
	1.2.9 Image Storage, Compression, and Database Management 
	The collected pavement images are a valuable resource due to the large amounts of data they provide, but they come with large file sizes. This raises issues with the image storage, compression, and database management. While collecting the data, there must be enough memory to store at least one run’s worth of data on-board the vehicle. An example of the vehicle memory capacities of the on-board system is a computer for each camera system with removable hard drives with sizes proportional to the length of ro
	1.3 GB per lane-mile for the pavement image data and 76 MB per lane-mile for high definition ROW images. Some imaging technologies are proprietary and require software license information to review contained data. 
	The images are often compressed to optimize the amount of data available and the storage requirements. Different file types have different balance of files size reduction and potential reduction in data quality. Traditionally, the imaging data was often saved as a JPEG file with around 75% compression at the end of the run before being sent to the workstation, but later a compression format called JPEG 2000 was found to compress the image from around 1.4 MB to 400 KB, with comparable image quality (Gunaratn
	To obtain greater compression ratio, the JPEG algorithm used in pavement imaging is lossy, which means some information is lost during the compression process and original raw image cannot be restored (Wang and Smadi 2011). Database tables are commonly used to store the location data, sensor data, image location and other relevant details regarding the field operation. Custom software can be made for easy and rapid access to the compressed images through the computer networks. 

	1.2.10 Location Referencing 
	1.2.10 Location Referencing 
	The collected road data must be provided with location context, and there are a couple of systems that can be used in conjunction or isolation. The three most commonly used types are Global Positioning System (GPS), inertial aided GPS systems, and linear referencing systems. The advantages and limitations of each system are summarized in 
	Table 3. 

	Table 3. Advantages and limitations of location referencing systems 
	System 
	System 
	System 
	GPS 
	Inertial 
	Linear Distance 

	Description 
	Description 
	Uses satellites and triangulation for location and time information 
	Uses GPS, accelerometers and gyroscopes to calculate data on acceleration, angular rotation, vehicle orientation, grade, and road curvature 
	Measures linear distance and velocity travelled by the vehicle 

	Advantages 
	Advantages 
	Detailed information 
	Highly accurate even with vehicle motion 
	Simple; reliable; not affected by speed 

	Limitations 
	Limitations 
	Clock errors; delays or occasional data loss; noise and bias 
	Still requires GPS for start and end position; errors can accumulate between high quality GPS positions. 
	Limited data; requires external reference for start and end position; systematic error grows with distance traveled 

	Best Uses 
	Best Uses 
	In open locations, travelling at low speeds, good weather, and minimum of 4 visible satellites 
	For short-term observations 
	Used in conjunction with another system to provide more context 


	The GPS uses triangulation and satellite information to provide location and time information most commonly in terms of latitude, longitude and elevation. This system provides a high level of detail and information. But there are limitations such as loss of signal and reduced accuracy (Gunaratne et al. 2003). 
	The inertial measurement unit (IMU) is a self-contained unit (working in tandem with a GPS system), which measures relative displacement from a start point based on three accelerometers (one for each of the primary axes), and three gyroscopes. The combination of these six units measure acceleration in all directions to determine change in position, as well as angular rotations, vehicle orientation, grade and road curvature. The benefit for using this system while it is coupled with the GPS results is that i
	The inertial measurement unit (IMU) is a self-contained unit (working in tandem with a GPS system), which measures relative displacement from a start point based on three accelerometers (one for each of the primary axes), and three gyroscopes. The combination of these six units measure acceleration in all directions to determine change in position, as well as angular rotations, vehicle orientation, grade and road curvature. The benefit for using this system while it is coupled with the GPS results is that i
	vehicle role, pitch, and yaw to vehicle position allows for the measurement of other factors such as pavement cross-slope, longitudinal grade, and measurements within ROW images (Gunaratne et al. 2003). 

	A linear DMI system is one which measures the linear distance that the vehicle has travelled. This particular system is simple, reliable, but like the inertial system, needs an external reference start position. As the system only provides linear measurements, it does not provide detailed enough information when used in isolation. There are two broad methods to measuring linear distance: contact and non-contact. Contact DMI’s require frequent calibration but offer an increased accuracy compared to non-conta
	DMI’s. 
	Most vehicles collecting pavement data are equipped with a combination of the above systems to mitigate the drawbacks to each and provide reliable location data for every point along the run. For example, the ProGPS-DMI system integrated by Ames Engineering uses GPS and a linear distance measuring instrument (DMI) to achieve a reported location measurement accuracy of 0.05%. 
	In summary of this section, it should be noted that significant advancements in automated distress data collection hardware have occurred over the past decade. It should be expected that similar advancements will likely be experienced in the decade ahead. With this in mind, implementation efforts should be modular and flexible in nature to take advantage of the technology evolution. 


	1.3 Automated Image Analysis and Processing 
	1.3 Automated Image Analysis and Processing 
	This section discusses the results of the literature review regarding the state of the art and practice of automated crack detection software. Knowing pavement conditions and symptoms of the deterioration type is critical to maintaining road networks in a safe and cost-effective manner, and to make informed decisions, there must be reliable data on which to make such evaluations. Traditional methods of obtaining data include manual and semi-automated surveys, which involve significant human intervention and
	1.3.1 Basic Image Processing Concepts 
	1.3.1 Basic Image Processing Concepts 
	As it was discussed in Section 1.2 of this document, there are a variety of mediums which can be used to collect the pavement images such as lasers, 2D or 3D imaging systems. Once the data is collected, it is often pre-processed to be fit for use for manual or automated distress detection. The focus of the current project is mainly on cracking distresses. A cracking distress is a crevice or an opening on the pavement surface as a 
	As it was discussed in Section 1.2 of this document, there are a variety of mediums which can be used to collect the pavement images such as lasers, 2D or 3D imaging systems. Once the data is collected, it is often pre-processed to be fit for use for manual or automated distress detection. The focus of the current project is mainly on cracking distresses. A cracking distress is a crevice or an opening on the pavement surface as a 
	result of stresses caused by traffic loading or environmental conditions. Each occurrence of cracking is described by its features. To collect crack features, such as length, orientation, and width, the potential cracks must be identified in calibrated images. Once the locations of cracks are identified, width, shape, and patterns are extracted. 

	Due to the proprietary nature of most of the available software, the details of the crack detection algorithms are not published in the literature. illustrates an example of general steps for feature (crack) detection, quantification, and classification procedures, which are typically followed to conceptualize pavement crack detection algorithms. The steps illustrated in can be succinctly described as follows: 
	Figure 12 
	Figure 12 

	(Step 1) Image Normalization: The first step of the process is to normalize the image depending on the road surface type. If this step is not performed, then automated crack detection would not be possible across many surface types since a heavily textured road (i.e. open graded) would output many false positive cracks. This is corrected by using a depth threshold parameter which is determined automatically using the local texture information of the road surface. For roadways with rougher surface texture, t
	Appropriate transformations are applied to the input image to normalize the intensity response. This normalization is necessary to neutralize the effect of: 
	1) Ambient lighting 
	2) Artificial lighting 
	3) Difference in sensor impulse response 
	4) White balance of images 
	There are several transformations that may be employed for this purpose, and the selection of a suitable one depends on the image configuration. A few of the common transformations are: 
	a) 
	a) 
	a) 
	Histogram equalization 

	b) 
	b) 
	Histogram matching 


	c) 
	c) 
	c) 
	Color transforms 

	d) 
	d) 
	Shadow identification and removal 

	e) 
	e) 
	Gamma correction 


	Figure
	Figure 12. General example procedure for crack detection, quantification, and classification 
	Figure 12. General example procedure for crack detection, quantification, and classification 


	(Step 2) Pre-Filtering: The pavement surface image is divided into smaller regions and each region is then subjected to a battery of tests of increasing complexity to quickly identify regions where it can be trivially concluded no feature of interest (specifically cracks) exists. This helps save processing time by limiting the computationally expensive detection operations to be limited only to regions where there is a high chance of occurrence of cracks. It also helps reduce the number of false positives. 
	a) 
	a) 
	a) 
	Rectangular tiles 

	b) 
	b) 
	Super pixel 

	c) 
	c) 
	Texture analysis 

	d) 
	d) 
	Segmentation 
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	The common tests to identify such regions can be based on: 
	a) 
	a) 
	a) 
	Histogram 

	b) 
	b) 
	First order and second order statistics 

	c) 
	c) 
	Texture properties 

	d) 
	d) 
	Local binary patterns 

	e) 
	e) 
	Steerable filters 

	f) 
	f) 
	Difference of Gaussian features 

	g) 
	g) 
	Integral images 


	(Step 3) Pixel Probability Computation: In this step, each pixel in the identified regions (where there is a high chance of occurrence of cracks) is assigned a probability score to indicate the possibility of it belonging to a feature (specifically a crack). The higher the score, the more likely it is to belong to a feature. These scores may be computed using one of the following methodologies: 
	1) A pixel can be assigned a sum of tuned filters (e.g. Gabor filter) response. 
	2) A pixel can be assigned a weighted sum of pixel features in the neighborhood. The optimal weights can be determined using Supervised/Unsupervised Machine Learning techniques (for example Support Vector Machines, or Neural Networks) from prior example sets. 
	3) In the case of a crack, it can also be computed as the difference of pixel value from the median/mean value of pixel intensity in the neighborhood. 
	The computed pixel probability map can be combined with a similar map from other calibrated sensors (for example a Range Sensor, or GPR) to improve the probability estimates. The final probability map is then filtered using morphological operations, as the expected features (cracks) have a structure to them. Pixels belonging to the true feature are not significantly affected by these operations, but the pixels having high probability due to noise are suppressed. 
	(Step 4) Feature Detection: The final pixel probability map is divided into regions as in the pre-filtering step and in each region the multiple features (for example two cracks, one longitudinal and one transverse) are extracted. The extraction can be done by: 
	a) 
	a) 
	a) 
	Dynamic programming-based path selection 

	b) 
	b) 
	Flood fill followed by boundary/skeleton detection 

	c) 
	c) 
	Connected pixel tree/graph extraction based on adaptive threshold 


	(Step 5) Feature Description: For each detected feature, various properties can be computed to describe the feature. The properties can be: 
	1) Geometric properties like length, width, area, bounding box, axis of orientations 
	2) Photometric properties like texture parameters, average intensity, intensity variations 
	3) Feature specific properties like in the case of cracks it can be crack width, crack density in neighborhood, crack nodes 
	4) Longitudinal and transverse linear and spatial location referencing 
	(Step 6) Feature Classification: For each detected feature, the descriptor can be used to classify the feature. In case of cracks it may be as follows: 
	1) Axis of orientation can be used to classify Transverse and Longitudinal cracks 
	2) Crack density can be used to classify pattern cracking (such as map cracking or fatigue) 
	3) Width, density, and position of cracks can be used to classify cracks by severity 
	4) Proximity to other detected cracks or joints 

	1.3.2 2D Image Processing 
	1.3.2 2D Image Processing 
	The following sections will focus on the state of the practice in application of 2D pavement images for the general steps of image enhancement, identification of potential cracks, and classification of crack features. 
	Image Enhancement: Normalization and Pre-Filtering 
	Image Enhancement: Normalization and Pre-Filtering 
	To mitigate noisy data and improve crack visibility from the raw 2D pavement images, there have been a variety of research efforts in refining pre-processing methods to enhance these images. This step aims to reduce the crack detection sensitivity to lighting conditions and pavement texture to focus solely on cracks (Sy et al. 2008). Most image enhancement methods involve the initial segmentation of the pavement images to grey-scale, image equalization, or combinations including the use of morphological too
	Table 4 

	Often, the underlying assumptions govern exactly what the image enhancement focuses on. For example, if cracks are identified as having darker intensity than surrounding cells, a histogram equalization method can be used in conjunction with a gray-scale thresholding method to filter the images (Sy et al. 2008; Gavilan et al. 2011). But in most cases, these filtering methods need to be adapted to support the specific texture conditions, and even still will reduce effectiveness at detecting cracks in highly t
	Table 4. Major techniques used for pre-processing pavement images 
	Pre-Processing Technique 
	Pre-Processing Technique 
	Pre-Processing Technique 
	Description 
	Advantages 
	Limitations 

	Texture Analysis and Self Organizing Map (SOM) 
	Texture Analysis and Self Organizing Map (SOM) 
	Define 5 texture properties to identify different surfaces (distinguish different surfaces through overall texture), then the SOM splits the pavement image into several sub-images based on pavement normal background 
	Reduces noise based on pavement texture by isolating cracks into areas with relatively uniform background texture 
	Used in conjunction with SOM (which requires program training and sensitive to under or over fitting), precision of roughly 75% 

	Gradient 
	Gradient 
	Define crack pixel 
	Filters out noise 
	Often thresholds are 

	Histogram 
	Histogram 
	intensity as darker than 
	and is simple 
	empirical or must be 

	Analysis 
	Analysis 
	non-crack pixels based on histogram analysis of pavement images 
	adjusted per pavement surface variations and lighting conditions 

	Bi-Dimensional Empirical Mode Decomposition (BEMD) 
	Bi-Dimensional Empirical Mode Decomposition (BEMD) 
	BEMD removes noise via transform by sifting the data to validate instantaneous frequency 
	Allows for separation of filtering from certain crack edge detection methods 
	Not well researched and thus not very effective 



	Identifying Potential Cracks: Feature Detection 
	Identifying Potential Cracks: Feature Detection 
	Most methods for crack identification on 2D pavement images fall under one of the five general categories: 
	1) intensity-threshold-based 
	2) edge detection 
	3) transform-based 
	4) seed-based 
	5) machine-based 
	Generally, the intensity-threshold-based methods define cracks as having a darker intensity than surrounding non-crack area. The edge detection methods define a crack edge as the local maximum of the gradient (measured as a change in intensity), and as 
	Generally, the intensity-threshold-based methods define cracks as having a darker intensity than surrounding non-crack area. The edge detection methods define a crack edge as the local maximum of the gradient (measured as a change in intensity), and as 
	such defines a crack map (Zou et al. 2012). Transform-based methods use a transformation such as Fourier transform to take the data extracted from pavement images to different domains (coordinates or states), to find the locations and sometimes the properties of cracks. The seed-based methods initiate by identifying certain cells as crack seeds, and then grow connecting paths by either percolation or calculation of normalized distance to create the crack areas. Lastly machine-based methods involve 

	training of a machine learning network to learn a human rater’s response to a series of 
	pavement images representative of various field conditions (Gavilan et al. 2011). 
	The histogram-methods are the basic type of intensity-based methods, they are simple, but often produce noisy results. They are also unsuccessful in changing pavement environments, sensitive to changing light conditions, and can produce disjointed crack fragments. There has been work on improving the use of these methods through more effective filtering and using these principles in other methods (Zou et al. 2012). 
	Edge detection is effective but usually doesn’t adhere to crack connectivity, rather 
	identifies disjoint crack fragments and may mistake noise as crack fragments (Peng et al. 2014). Some examples of edge detectors are the Sobel edge detector, and the widely-used Canny edge detector (Ayenu-Prah and Attoh-Okine 2008). 
	The transform-based methods like Wavelet-transform based models were found to be reliable, but they do not perform well for cracks with high-curvature and with low continuity (Zou et al. 2012). A widely-known example of a transform-based method is the fuzzy logic approach, which uses multiple transformations to define cracks. Following transformation of the image from the difference domain to the brightness domain, an intensity-based method is applied to define pixels having brightness less than a certain t
	The seed-based methods consider crack connectivity well but are dependent on lighting conditions as they use intensity values to determine whether a cell is a crack seed or not (Gunaratne et al. 2008). The ability of the seed-based method to successfully identify crack areas depends on the path-growing technique. There has been research on the different path-growing techniques; the most widely used being the percolation technique due to its relatively lower computational cost (Gavilan et al. 2011). 
	The machine-based methods are more sophisticated, but often involve a learning nature which requires a large number of samples to accurately represent the specific 
	conditions (Gavilan et al. 2011). Additionally, since the learning is done as local methods on sub-images, the software may not always connect cracks over image boundaries (Zou et al. 2012). Section includes more detail on machine vision techniques for crack detection. 
	1.3.4 


	Classifying Crack Features 
	Classifying Crack Features 
	Automatically retrieving the crack features like length, orientation, and width has not been as fully documented as the previous steps have been. There are a couple of general methods in order to gather properties from an original crack map; the first uses image thinning to create a crack skeleton in order to retrieve crack properties, the second uses a distance transform to create a distance field for properties. Other methods included the use of ANNs to gather crack properties (Zhu et al. 2011). shows som
	Table 5 

	Table 5. Example methods for classifying crack features 
	Type 
	Type 
	Type 
	Description 
	Advantages 
	Limitations 

	Crack Skeletons 
	Crack Skeletons 
	Crack skeletons (segment information) gathered from maps through binary image thinning and a distance field was created from a Euclidean transform 
	Crack maps are common output for many methods of crack identification 
	Average precision for this method is roughly 60% 

	Graph search 
	Graph search 
	Visual tool to gather crack geometry properties after manual start and end input from user 
	Efficient process 
	Requires manual input on start and end points of crack 

	Artificial Neural Networks 
	Artificial Neural Networks 
	Used learning methods to identify crack properties from images 
	Efficient process after ANN is trained 
	Challenging process to form network training data 

	Closing & Thinning Algorithms with Hough Transform 
	Closing & Thinning Algorithms with Hough Transform 
	Properties are directly determined from using algorithms and transforms on the preprocessed images 
	No crack map or skeleton needed 
	Process not well documented 


	In addition to crack length and width, Amarasiri at al. (2010) used the optical modeling of the image formation process and the subsequent analysis of the variation in pixel intensity profiles within digital images to evaluate crack depth. Using the variation of reflection properties at surface discontinuities, a bidirectional reflection distribution function was employed to model shallow longitudinal and transverse cracks as well as joints in concrete pavements. This preliminary study revealed a definitive
	In addition to crack length and width, Amarasiri at al. (2010) used the optical modeling of the image formation process and the subsequent analysis of the variation in pixel intensity profiles within digital images to evaluate crack depth. Using the variation of reflection properties at surface discontinuities, a bidirectional reflection distribution function was employed to model shallow longitudinal and transverse cracks as well as joints in concrete pavements. This preliminary study revealed a definitive
	and joints against those of identical cracks formed in concrete pavements. The model predictions of crack depths were also verified using actual crack data not used in the calibration. This preliminary study showed promising results in terms of using the generated depth information in differentiating cracks from joints on concrete pavements (Amarasiri, Gunaratne, & Sarkar, 2010). 



	1.3.3 The Use of 3D Imaging for Crack Detection 
	1.3.3 The Use of 3D Imaging for Crack Detection 
	Although there have been many methods addressing the issues inherent with the use of 2D imaging for 3D distress information, the potential for the use of 3D data is promising. If 3D data were used in conjunction with pavement images, many of these issues would be addressed (Peng et al. 2014). The most common method for collecting 3D data (which is essentially depth data collected as a line scan across the road) is using laser sensors for road profiling. By collecting both 2D and 3D data simultaneously, the 
	Sponsored by the U.S. Department of Transportation (US DOT) Research Innovative Technology Administration (RITA) program, Tsai and Li (2012) evaluated the feasibility of using elevation data from 3D laser technology as opposed to 2D intensity data to detect cracks under different lighting and poor intensity contrast conditions. Cracks ranging from 1 to 5 mm wide were measured in a laboratory setting to evaluate the performance of a 3D data acquisition and crack segmentation method based on dynamic optimizat

	1.3.4 Machine Vision 
	1.3.4 Machine Vision 
	The process of automated detection and the measuring of pavement cracks is one application of machine vision, which in general terms captures and analyzes visual information. Machine vision takes advantage of a subset of computational intelligence techniques called machine learning (ML) techniques. ML techniques typically involve massive networks of parallel processing nodes that become capable of recognition without definition, after proper training on a representative data set. The ML network uses a serie
	The process of automated detection and the measuring of pavement cracks is one application of machine vision, which in general terms captures and analyzes visual information. Machine vision takes advantage of a subset of computational intelligence techniques called machine learning (ML) techniques. ML techniques typically involve massive networks of parallel processing nodes that become capable of recognition without definition, after proper training on a representative data set. The ML network uses a serie
	(and differentiating) the pattern (from the noise) within the data. ML algorithms have demonstrated great generalization capability and have been successfully used in pattern recognition, prediction, and control applications among others. 

	These similar networks of processors are trained using different learning paradigms to estimate model parameters based on observed input-output data records. While Artificial Neural Networks (ANNs) are inspired by biological neurons, Radial Basis Function (RBF) networks and Support Vector Machines (SVMs) are based on statistical learning theory. The learning paradigm for ANN is a recursive stochastic approximation used in supervised training of multi-layer perceptrons (MLP). Network parameters are randomly 
	Most related topics discussed in the literature are components of machine vision systems, the hardware capturing the information and the software providing the analysis of the data (Najarian et al. 2011). Omer used a machine vision system for monitoring the condition of a winter road surface, automating the procedure. This system included the use of a machine learning technique called a Support Vector Machine (SVM), trained through a localized model approach with images that were smoothed and normalized (Om
	Best used for situations where there is a large amount of data with difficult to describe variables, machine learning has found applications in many fields, such as pharmaceutical, business, as well as in the pavement engineering sector. One specific method of machine learning is the use of Artificial Neural Networks. ANNs use a learning strategy similar to the human brain in exploiting the strength and flexibility of connections between simple processing elements (Fieguth and Sinha 1999; Mathavan et al. 20
	Artificial Neural Networks 
	The learning style of ANNs fall under one of three categories, supervised (user-defined input and expected output to give the system inference of the relations), unsupervised (only input is provided and the system recognizes patterns), and reinforcement learning (trial and error based method), all of which adapt values of free parameters according to the training (Gao 2009; Mathavan et al. 2013; Lu et al. 2002). 
	Within supervised learning, there are two more sub-divisions: parametric and nonparametric learning. Parametric learning uses pre-defined knowledge on the data, like probability distributions, where non-parametric has classifiers that do not have the conditional probability distributions. The advantage of using parametric learning is that it requires less training data, but non-parametric does not make assumptions or need information on the distribution of the data. Oliveria and Correia performed supervised
	-

	The application to crack detection done by Mathavan et al. used unsupervised learning to remove human subjectivity from the training of the computer to identify cracks. By allowing the computer to distinguish crack regions from non-crack regions after a series of training images, the texture analysis software was able to reach a detection precision of 77% and true detection of 73% for highly textured pavements (Mathavan et al. 2013). 
	In a research project sponsored by FDOT, ANNs were trained using manual ratings of transverse cracks to estimate crack depth. In addition to pavement related parameters (type, age, material, functional class, and traffic) and the transverse cracking information, data on geometry of the cracks from laser sensors (installed on a manually operated push-car) were used to identify and estimate the depth of cracks at walking speed. Through supervised training and testing, the developed system found field cracks w

	1.3.5 Currently Available Software 
	1.3.5 Currently Available Software 
	Mirroring the large amount of research efforts, the industry has produced many different systems aiming to automate pavement distress collection and analysis. In the following sections, ten systems were reviewed for general reported function and performance (in alphabetical order). Due to the proprietary nature of the majority of available software, the details of the crack detection algorithms are not published in the literature. 
	Automated Distress Analyzer (ADA) – Kelvin Wang, University of Arkansas 
	Automated Distress Analyzer (ADA) – Kelvin Wang, University of Arkansas 
	Working with the Digital Highway Data Vehicle (DHDV) and the line-scan images, the ADA detects and calculates the lengths and widths of longitudinal, transverse, block and alligator cracking in real-time up to 40 mph as claimed by the developer (Wang and Gong 2007). Another function of the software is to analyze pavement distresses such as rutting and roughness (Gunaratne et al. 2008). The software takes advantage of multiple on-board computers with multiple CPUs each to employ a real-time database and run 

	CrackScope – International Cybernetics 
	CrackScope – International Cybernetics 
	CrackScope can operate both offline and online (real-time with a vehicle operating at highway speed), operating with a crack-seed method to determine punch-outs, spalled, transverse, longitudinal, alligator and block cracking (International Cybernetics 2015). The CrackScope system uses a line-scan camera and laser illumination (Shah et al. 2010). 

	LcmsRoadInspect -Pavemetrics 
	LcmsRoadInspect -Pavemetrics 
	The LcmsRoadInspect software combines 2D and 3D data collected at speeds up to 62 mph, to detect and analyze cracks, and other distresses such as rutting, patches, potholes, and ravelling (Pavemetrics Inc. 2015). Basically, the LcmsRoadInspect application is built using the LCMS Data Processing Library (DLL library of C/C++ functions). Pavemetrics also supply an acquisition software called LcmsAcquisitionControl. 

	PAVUE – Ramboll 
	PAVUE – Ramboll 
	This system uses area or line scan cameras with strobe lights that can capture pictures up to 55 mph, where the PAVUE analysis parameters must be manually selected to extract crack data (Kim 2008). The system uses transformations to produce crack boundaries, where features are then extracted for the user (Timm and McQueen 2004). After the overlay type and macro texture settings are defined for each pavement section, the automated analysis can be run (Aijo, 2005). 

	PicCrack – Hosin (David) Lee, University of Iowa 
	PicCrack – Hosin (David) Lee, University of Iowa 
	PicCrack’s main image analysis methods are edge detection, binarizarion (image binarization converts an image of up to 256 gray levels to a black and white image, where a threshold value is chosen to classify all pixels with values above this threshold as white and all other pixels as black), morphology (shape analysis), and the use of a Hough Transform. All of the crack detection and analysis is completed offline (Cheng and Glazier, 2007). By using an ANN, PicCrack is an adaptive machine learning system 
	PicCrack’s main image analysis methods are edge detection, binarizarion (image binarization converts an image of up to 256 gray levels to a black and white image, where a threshold value is chosen to classify all pixels with values above this threshold as white and all other pixels as black), morphology (shape analysis), and the use of a Hough Transform. All of the crack detection and analysis is completed offline (Cheng and Glazier, 2007). By using an ANN, PicCrack is an adaptive machine learning system 
	that has been reported to have a crack detection accuracy of about 95% (Lee et al. 2004). 


	RoadCrack -ARRB 
	RoadCrack -ARRB 
	Developed by the Australian Commonwealth Scientific and Industrial Research Organization (CSIRO) and the Australian Road Research Board (ARRB), the RoadCrack system uses line-scan cameras, lasers, and a seed-based approach to detect road cracks as small as 1 mm wide (Mathavan et al. 2013). The system can operate at night at speeds up to 65 mph with real-time crack detection and classification, allowing a report on type, severity and extent of cracks to be generated (Kim 2008). 

	uniANALYZE – Adhara Systems 
	uniANALYZE – Adhara Systems 
	Using a seed-based method, uniANALYZE allows both manual and automatic crack identification and measurement (Adhara Systems n.d.). This system first completes image segmentation by dividing the pavement into grids; the image is then filtered for noise and run under a white line detection filter to reduce white line errors. After these three steps, a crack detection analysis is run to distinguish crack cells from non-crack cells (Aijo, 2005). 

	VCrack – Texas DOT 
	VCrack – Texas DOT 
	Using a line-scan camera and LED linear lighting, the image analysis software VCrack classifies punch-outs, longitudinal, transverse, block, alligator and spalled cracks through a seed-based method. The system can record images up to 70 mph, and generate real-time crack maps for speeds less than 45 mph (Gunaratne et al. 2008). Using a grid-cell analysis technique, VCrack produced a repeatability score consistently over 0.95 – calculated as a correlation coefficient for the analysis of multiple runs on the s

	WiseCrax – Fugro Roadware 
	WiseCrax – Fugro Roadware 
	Out of the 30 highway agencies surveyed in a 2004 study (McGhee 2004), 8 reported using the WiseCrax software for an interactive crack detection process. Using data from area or line scan cameras, strobe lighting and/or infrared lighting from an Automatic Road Analyzer (ARAN) system, WiseCrax can detect cracks as small as 1 mm wide through an offline system (Gunaratne et al. 2008). The system can operate either manually or automatically, working to identify cracks by first establishing the start and end poi
	An initial step involves selection of representative pavement images for each project. The program uses these representative images to identify an optimum set of detection parameters according to pavement type, texture, pixel by pixel grayscale variation as related to crack contrast and brightness. Following this initial step, WiseCrax can be used in an interactive or fully automated mode. Typically, users run the software in automated mode and then use the interactive mode for modifying the results. 


	1.3.6 Challenges and Future Development 
	1.3.6 Challenges and Future Development 
	Challenges 
	Challenges 
	Most systems have focused on asphalt concrete surfaced roads, presumably because it is significantly more prevalent than any other pavement type. As a result, less experience with Portland Cement Concrete (PCC) surface roads is documented. There are several unique features of PCC that present challenges in the process of automated crack detection. 
	Tine texturing of PCC pavements (commonly applied during construction to provide for skid resistance) typically masks cracking in PCC pavements. While texturing follows a definite pattern, it is not uncommon for some finer (narrower) cracks to be hidden (or lost) in the tine pattern. 
	Similarly, jointed concrete pavements (JCP) have ‘constructed cracks’ (joints) built into 
	them. While joints look (and act) like cracks, they are typically handled quite differently in pavement evaluation. Joint detection is required to establish where slabs begin and end, so that distresses associated with a slab can be quantified. However, great care is required to not include joints as cracks or vice versa. Several options are available to use pavement profile data to detect JCP joints. 
	Typically, the width of cracks in PCC pavements can also tend to be much narrower. While most systems today claim to detect crack widths down to 1mm, the crack widths of PCC truly challenge this claim. Many of the materials related distresses such a durability cracking and alkali silicate reactions cause very fine cracking with little or no measurable depth. 
	For asphalt concrete surfaced roads, this has not yet been considered as a significant concern, perhaps because there is enough other distress to focus on. For PCC surfaced roads however, any working cracking is a concern (perhaps because of the efforts taken to avoid or eliminate cracking or the expense to repair). Considering that some PCC pavements are reinforced to reduce the potential for cracking (or at least hold the cracks tightly together, if they do occur), this combination makes the detection of 
	For asphalt concrete surfaced roads, this has not yet been considered as a significant concern, perhaps because there is enough other distress to focus on. For PCC surfaced roads however, any working cracking is a concern (perhaps because of the efforts taken to avoid or eliminate cracking or the expense to repair). Considering that some PCC pavements are reinforced to reduce the potential for cracking (or at least hold the cracks tightly together, if they do occur), this combination makes the detection of 
	challenging in JRCP and CRCP. However, the vast majority of concrete pavements in Florida are jointed plain concrete pavements (JPCP). 

	Finally, just the difference in color of PCC surfaced roads tends to create some unique challenges for pavement evaluation. Light tends to reflect differently off of the lighter PCC surfaced road. While this can be adjusted for, a system needs to be able to recognize such differences in pavement surface type and make the necessary adjustments accordingly. 
	Regarding flexible pavement distress identification, one of the challenges is detection of cracks in heavily weathered and raveled pavement sections, where the deep surface texture results in patterns that are perceived as cracks by the automated algorithms. These misleading features are often called “phantom” cracks, and this issue is also prevalent during manual distress surveys. 
	Another challenge on asphalt concrete pavements is the automated identification of patching areas. Several solutions have been proposed in the past, but a robust methodology is yet to be created. The most promising technique in this regard has been the application of the texture information provided by 3D images. 
	Regardless of pavement surface type, there are a couple of other significant challenges that remain. One of these is establishing a true reference on which the capabilities of crack detection system can be judged. Precision and bias for detection systems are not readily available because of the lack of agreement on a true reference. As a result, it is difficult (if not impossible) to establish what systems work ‘better’ and/or how much so. This challenge has significantly stymied the advancement of the evol
	The other significant challenge (as previously noted in the discussion on hardware) is depth perception. Cracks that have been sealed (or filled) are treated differently in evaluation systems. This distinction is in part, because the actual width of such cracks is masked, but it is also important to record the number and length of cracks that have already been addressed. 

	Future Development 
	Future Development 
	Significant effort is under way nationally to address the issue of depth perception. With the advent of 3D systems, this concern is expected to be significantly diminished in the near future. 
	Efforts are underway to establish reference standards on which comparison can be made (AASHTO 2014b; UK Roads Board, 2009), but until a more universally accepted 
	‘ground truth’ is established, future development will continue to be challenging. 
	To address some of the challenges described above, multiple research studies have applied the learning capabilities of machine vision systems to simulate the manual ratings of the collected images by human raters. These machine learning techniques need to be further investigated to evaluate their reliability before being employed in practice. 



	1.4 Implementation of Automated Crack Detection 
	1.4 Implementation of Automated Crack Detection 
	This section of the literature review focuses on initiatives to implement an automated distress data collection. The discussed topics include the major previous implementation efforts, the success metrics used to evaluate the effectiveness, efficiency, and reliability of automated distress identification techniques, and finally the considerations required for integration of automated distress surveys into practice. 
	1.4.1 Previous Implementations of Automated Distress Collection 
	1.4.1 Previous Implementations of Automated Distress Collection 
	In semi-automated condition evaluations, professional raters process pavement images to identify and calculate various pavement distress quantities and severity levels. Using a point and trace manual method, the type, extent, and severity of pavement surface distresses are examined one image at a time by a rater at an office work station. This approach is very time consuming especially for long projects and network level evaluation. Currently, most State Highway Agencies (SHA) are using this semiautomated a
	-
	-

	The fully automated distress evaluations are conducted using image processing and pattern recognition software for distress identification and quantification. Along with quality assurance testing of the software, professional raters are used to perform quality control of the software distress ratings. 
	A range of national, international, and state specific standards have been created to facilitate automation, such as the AASHTO provisional protocol (PP) number 67 (AASHTO 2014b) and United Kingdom’s Surface Condition Assessment of the National Network of Roads (SCANNER) specifications (UK Roads Board, 2009), but such standards are still in various stages of adoption. In the AASHTO PP 67-14 standard, the pavement surface area is divided into five zones across the lane width: two outer edge zones, two wheel-
	 (Figure 13)

	Unlike the manual (and semi-automated) distress identification procedures, distresses are not identified according to the crack generation mechanism, but according to the geometric characteristics. For example, in lieu of identifying fatigue (or alligator) 
	cracking, the amount and severity of “pattern” cracking is measured within each of the 
	five identified zones. Also, instead of discrete severity levels, continuous average crack width is recorded to account for the intensity of surface distresses (McGhee 2004). 
	In NCHRP Synthesis Report 334 on automated pavement distress collection techniques, the researchers published the results of surveying 43 State Highway Agencies (SHA) and 10 Canadian provinces or territories (McGhee 2004). The results indicated that 30 of the surveyed agencies were collecting pavement forward, lateral, or downward images through automated means at highway speeds. However, only 14 of those agencies were using an automated procedure to identify and summarize pavement distress data from the co
	-

	Figure
	Figure 13. Typical pavement cross section and the identified zones for automated distress identification (AASHTO 2014b) 
	Figure 13. Typical pavement cross section and the identified zones for automated distress identification (AASHTO 2014b) 


	Studies conducted in 2004 and updated in 2008 show that among the 50 states, Puerto Rico, 11 Canadian provinces and the Eastern Federal lands, 44 out of 65 (68%) use automated pavement data collection (Pierce et al. 2013). A summary of the findings is included in which demonstrates that most of the highway agencies while 
	Table 6, 
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	collecting the pavement imagery are still reluctant to use a fully automated approach. A 
	large range of methods are currently used, and many advances have been made over 
	the years (Attoh-Okine and Adarkwa 2013). Unlike the advanced data collection 
	technology available in the pavement industry, pattern recognition software are 
	perceived to be in need of further enhancements to accurately detect and classify the 
	various types of pavement surface distress (although, without a true reference, it is not 
	possible to accurately establish the true effectiveness of such systems). 
	Table 6. Summary of pavement condition data collection methods (Pierce et al. 2013) 
	Process 
	Process 
	Process 
	Method 
	Number of Agencies 

	Agencies 
	Agencies 
	Vendors 
	Total (Percentage) 

	Collection 
	Collection 
	Automated 
	23 
	21 
	44 (68%) 

	Manual 
	Manual 
	19 
	2 
	21 (32%) 

	Processing 
	Processing 
	Fully-Automated 
	7 
	7 
	14 (32%) 

	Semi-automated 
	Semi-automated 
	16 
	14 
	30 (68%) 


	The data and images collected today provide an opportunity for reprocessing in future years when crack detection software are more capable and faster with the future increased computing powers. This means that collecting the data today may have additional long-term analysis potential. The same is true for monitoring the potential deterioration of other roadside assets such as signs and guiderails. More effort should be made today in developing calibration and quality standards for image collection equipment
	Use of Semi-Automated Distress Surveys 
	Use of Semi-Automated Distress Surveys 
	Many SHAs in the US use a semi-automated . This approach involves digital image collection and some level of manual post-processing and distress identification by professional raters. 
	approach (Table 6)

	Pennsylvania Department of Transportation (PennDOT) had implemented a semiautomated pavement distress condition surveying program based on pavement video-logging. Additionally, the automated data collection provides pavement roughness data, geometric information, and other features that are uploaded and stored in PennDOT Roadway Management System. Data collection for PennDOT is conducted with a vehicle equipped with ROW camera, area scan pavement images and other condition sensors (Pennsylvania DOT 2015a; P
	-

	Virginia Department of Transportation (VDOT) and North Carolina Department of Transportation (NCDOT) have adopted a similar semi-automated approach, evaluating pavement distress using digital images. The data collected is interpreted and processed with some level of human intervention. Pavement distress data is used to determine pavement condition index (PCI) values which in turn are used to estimate the required pavement maintenance and rehabilitation treatments. When the automated pavement distress identi
	Oklahoma Department of Transportation (OK DOT) also uses contractors to collect the pavement condition images and manually measure and record the pavement distresses according to ODOT protocols (Oklahoma DOT 2005). 

	Use of Fully-Automated Distress Evaluations 
	Use of Fully-Automated Distress Evaluations 
	There are several States that are actively moving towards using a fully automated approach. However, a rigorous quality control, acceptance testing, and independent verification is typically required. While most agencies explore the concept of full automation, many fall back to some level of human intervention out of lack of confidence in the results being obtained. Many of the agencies that use the fully-automated approach perform the data collection with in-house staff and equipment. 
	Vermont DOT uses a fully automated approach to identify the location and type of all distresses in their network since 2001. The cracking information is primarily divided into longitudinal, transverse, and alligator cracking. They do some manual adjustment of the results only to identify which of the cracks found have been sealed (Papagiannakis et al. 2009). 
	Maryland SHA uses a fully automated approach to crack detection with a sampling QC to better understand the limitations and results. As a standard part of the Maryland data 
	collection procedure, Fugro’s Wisecrax software is used to measure the length of 
	cracking in any given portion of the pavement (Groeger et al. 2003a). The results of this analysis are a modified version of the AASHTO PP 67-14 results, including distribution of cracking length by road zone and by severity (AASHTO 2014b). 
	In addition to the fully automated approach, Maryland SHA staff members conduct a manual review and adjustment of a small sample of the pavement imagery to determine the impact of manual review and adjustment (Groeger et al. 2003b). Then adjustment factors are created based on the difference between the fully automated approach and the samples in which adjustments have been made. These adjustment factors are 
	In addition to the fully automated approach, Maryland SHA staff members conduct a manual review and adjustment of a small sample of the pavement imagery to determine the impact of manual review and adjustment (Groeger et al. 2003b). Then adjustment factors are created based on the difference between the fully automated approach and the samples in which adjustments have been made. These adjustment factors are 
	applied to the fully automated data on pavement sections that have similar conditions to the reviewed sample sections. 


	Research Studies 
	Research Studies 
	Automated Distress identification has been investigated by a range of academic and research organizations over time to get a better objective rating of pavement distress. 
	Oregon Department of Transportation (ODOT) completed a research study in automated data collection equipment for monitoring highway condition (Mullis et al. 2005). Some of the research objectives were the evaluation of accuracy of Oregon’s current pavement condition data collection, the accuracy and consistency of available ADC technology, and the potential to combine data collection efforts using automated technology. The ADC equipment were provided by four vendors: Fugro-BRE, Infrastructure Management Ser
	Eight test sections (6 AC and 2 CRCP) were selected, having in total 187 segments of 
	0.1 mile each. These sections were selected to cover a range of pavement types and a variety of pavement conditions. Two sections were rated twice by each rater to test repeatability. Each test section was rated by three ODOT rating crews and by four ADC system vendors. A walking survey and rating was done by experienced Oregon pavement personnel to establish a baseline (ground truth) to which ODOT rating crews and vendor’s equipment could be compared. They found that the ADC and manual distress were signif
	A study conducted for the Texas DOT (Serigos et al. 2015) compared a range of methods including semi-automated and fully automated distress to a detailed manual survey. The initial assessment showed that the fully automated data showed a large variability around the manually established “ground truth”. Also, this study showed that the accuracy improved after applying manual post-processing (visual interpretation and correction of the results produced by the vendors algorithms), and the number of false posit
	This was because all service providers used 3D systems that are less prone to challenges faced by 2D systems in identifying cracks on rough textures. 
	In a 2002 study, Groeger et al. compared two automated crack detection algorithms based on cumulative length of longitudinal and transverse cracking on a network of approximately 2000 data points (Groeger et al. 2003a). Three experienced evaluators classified the test section based on a five-level condition scale (very good to very poor) and established the reference values. That study found that 94 percent of the time, both examined automated procedures had matched the reference condition rating by one dev
	The Ontario Ministry of Transportation conducted a comparison study between their in-house manual distress survey results and automated and semi-automated distress surveys provided by three service providers (Tighe et al. 2008). This study used the summary quantity of the overall pavement condition called distress manifestation index (DMI). The study concluded that automated results were generally comparable with manual surveys. However, the authors emphasized that some of the distresses were difficult to i
	(e.g. ravelling, stripping, or spalling) were more difficult to identify as opposed to cracking and rutting distresses. 
	To develop an automated crack classification methodology, Tsai et al. (2014) proposed a multi-scale crack fundamental element (CFE) model, which provides crack topological properties at three different scales (Tsai et al. 2014): 
	1) Fundamental crack properties, which describe the physical properties of each crack including length, width, depth, etc. 
	2) Aggregated crack properties, which focus more on patterns within the CFE and represent the interaction of cracks with one another, such as intersections, polygons, crack density, etc. 
	3) Clustered CFE geometrical properties, which describe the overall properties of each CFE including element center, orientation, length, and width. 
	This concept is illustrated in (Tsai and Wang 2014), which shows crack properties at three scales defined in the CFE model. 
	Figure 14 

	Figure
	Figure 14. The multi-scale crack fundamental element concept (Tsai and Wang 2014) 
	Figure 14. The multi-scale crack fundamental element concept (Tsai and Wang 2014) 


	To handle the diversity among different distress identification protocols used by various 
	highway agencies, the authors used this model to standardize crack performance 
	measures for different transportation agencies. The authors argue that experienced 
	pavement engineers tend to first identify a group of cracks to be clustered together as 
	one element (CFE), and then look at the pattern inside that element, and finally 
	measure the length and width of individual cracks (Tsai et al. 2014). The model input is 
	the automatically detected crack map, which can be delivered through either 2D or 3D 
	systems. This research study, which was sponsored by the US DOT RITA program 
	reported promising results in terms of precision and recall (the ratio of correctly 
	classified cases to total actual cases). 
	In an effort to create an overall pavement condition index based on the AASHTO provisional protocol 67 (AASHTO 2014b) for flexible pavements, Wang et al. (2015) 
	proposed application of the analytical hierarchy process (AHP) concept to a hierarchical framework as demonstrated in  The severity and intensity of each crack type are calculated using the Fuzzy set theory based on the average width and the total length of each crack, respectively. The classic pairwise comparison method developed in the AHP concept is employed to determine the weighing factors required for the linear combination of the various cracks in each zone and the multiple zones for each pavement se
	Figure 15.

	Figure
	Figure 15. Framework of the proposed overall crack evaluation index (Wang, et al., 2015) 
	Figure 15. Framework of the proposed overall crack evaluation index (Wang, et al., 2015) 




	1.4.2 Success Metrics 
	1.4.2 Success Metrics 
	The three principal success metrics of any process are effectiveness, efficiency, and reliability. With respect to automated condition evaluations, these three metrics could be considered for two aspects of the process, first for the detection and classification of individual surface defects (cracks), and second for the overall evaluation and quantification of the pavement condition in a distinct section. 
	In the context of automated distress identification, effectiveness can be expressed in terms of accuracy of the crack detection software when compared to a reference baseline. Accuracy is a qualitative term referring to whether there is agreement between a measurement made on an object and its true (target or reference) value. Bias is a quantitative term describing the difference (or error) between the average of measurements made on the same object and its true value. 
	Reliability of automated distress surveys is often expressed in terms of precision. Precision is also a qualitative term describing the degree of repeatability of a measurement value. Variance and standard deviation of error are quantitative estimates of precision. Accuracy and precision (or the corresponding quantitative estimates: bias 
	Reliability of automated distress surveys is often expressed in terms of precision. Precision is also a qualitative term describing the degree of repeatability of a measurement value. Variance and standard deviation of error are quantitative estimates of precision. Accuracy and precision (or the corresponding quantitative estimates: bias 
	and variance) ultimately define how effective and reliable a system is as described in greater detail below. 

	Verification of Identified Cracking: “Ground Truth”, False Positives, and Missed Cracks 
	Verification of Identified Cracking: “Ground Truth”, False Positives, and Missed Cracks 
	Multiple research efforts in the past have introduced various methods to establish 
	reference values or “ground truth” for pavement surface defects by using the “most appropriate” methodology available (Flintsch and McGhee 2009). The major types of reference values include: 
	1. 
	1. 
	1. 
	: In this method, professional (trained and experienced) distress raters are used to identify the surface distresses on a set of pavement sections that are deemed representative of conditions across a network. 
	Manual distress identification


	2. 
	2. 
	: This method is similar to the manual method, but the professional raters use the images collected by monitoring vehicle to identify the distresses. 
	Semi-automated detection


	3. 
	3. 
	: In this method, cracks are designed and fissured into steel plates or cut into an existing asphalt surface, so the precise dimensions of the defects are known. This method is mostly used to resolve image distortion issues caused by the camera lens or the image sensor. 
	Artificially fabricated distress



	Each method has its own advantages and limitations. The manual method simulates the actual distress identification process that has been in use by many SHA for a long period; however, there is a low degree of agreement among different professional raters which renders the “ground truth” as a highly variable measure. 
	The LTPP program conducts annual accreditation workshops for the LTPP certified distress raters, during which the identification methods of various pavement distresses are clarified, maximum harmonization among different raters is sought, and the potentially required modifications to the LTPP Distress Identification Manual (Miller and Bellinger 2014) are identified. In a 1999 study (Rada, et al., 1999), the variability of the LTPP manual distress ratings was investigated based on 9 different workshops, incl
	For AC pavements, shows accuracy as the bias between the reference values and the corresponding group means, and precision as the standard deviation among various raters interpolated across various workshops. To overcome the often very small quantities of some distresses, the coefficient of variation (COV), in percentages, was estimated by plotting the standard deviation versus mean for each distress type/severity level combination and fitting the best line through these data. The slope of the best-fit line
	Table 7 

	It was found that combining distresses of a particular type across all severity levels resulted in significantly lower bias and precision values for the total sums than for individual severity levels. As indicated in there was a better agreement among different raters in terms of the total length of transverse cracks (COV of 9% or 91% agreement) as opposed to the total length of longitudinal wheel path cracking (67% agreement), or the total area of fatigue cracking (62% agreement) on AC pavements. 
	Table 7, 

	Table 7. Accuracy and precision for LTPP manual ratings of AC pavements (Rada, et al., 1999) 
	Distress Type 
	Distress Type 
	Distress Type 
	Unit 
	Distress Severity 
	Pooled Reference 
	Group Statistics 

	Mean 
	Mean 
	Std. Dev. 
	COV (%) 
	Bias 

	Fatigue Cracking 
	Fatigue Cracking 
	Sq. meters 
	All Levels (Total) 
	14.2 
	16.5 
	6.2 
	38 
	2.3 

	Longitudinal Cracking WP 
	Longitudinal Cracking WP 
	meters 
	All Levels (Total) 
	18.4 
	18.3 
	6.0 
	33 
	-0.2 

	Longitudinal Cracking NWP 
	Longitudinal Cracking NWP 
	meters 
	All Levels (Total) 
	75.0 
	70.7 
	14.7 
	21 
	-4.3 

	TR
	All 

	Transverse Cracking 
	Transverse Cracking 
	number 
	Levels 
	26.4 
	24.7 
	3.2 
	13 
	-1.7 

	TR
	(Total) 

	TR
	All 

	Transverse Cracking 
	Transverse Cracking 
	meters 
	Levels 
	44.3 
	44.6 
	4.2 
	9 
	0.3 

	TR
	(Total) 


	shows similar values for PCC pavements. There seems to be much less agreement among the raters in terms of the total length of spalling of longitudinal and transverse joints (32% and 29% agreement, respectively), compared to the total length of longitudinal and transverse cracks (78% and 92% agreement, respectively) on PCC pavements. 
	Table 8 
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	Table 8. Accuracy and precision for LTPP manual ratings of PCC pavements (Rada, et al., 1999) 
	Distress Type 
	Distress Type 
	Distress Type 
	Unit 
	Distress Severity 
	Pooled Reference 
	Group Statistics 

	Mean 
	Mean 
	Std. Dev. 
	COV (%) 
	Bias 

	Corner Breaks 
	Corner Breaks 
	number 
	All Levels (Total) 
	3.9 
	3.7 
	0.5 
	14 
	-0.2 

	Longitudinal Cracking 
	Longitudinal Cracking 
	meters 
	All Levels (Total) 
	7.5 
	7.0 
	1.6 
	22 
	-0.5 

	Transverse Cracking 
	Transverse Cracking 
	number 
	All Levels (Total) 
	9.4 
	9.6 
	1.4 
	15 
	0.2 

	Transverse Cracking 
	Transverse Cracking 
	meters 
	All Levels (Total) 
	24.8 
	25.0 
	2.1 
	8 
	0.2 

	Spalling of Long. Joints 
	Spalling of Long. Joints 
	meters 
	All Levels (Total) 
	6.6 
	7.2 
	4.9 
	68 
	0.5 

	Spalling of Trans. Joints 
	Spalling of Trans. Joints 
	number 
	All Levels (Total) 
	3.7 
	3.4 
	0.9 
	25 
	-0.3 

	Spalling of Trans. Joints 
	Spalling of Trans. Joints 
	meters 
	All Levels (Total) 
	1.7 
	2.0 
	1.4 
	71 
	0.3 


	Between and the only distress values that can be compared include longitudinal cracking (m, combining WP and NWP for AC), transverse cracking (m), and transverse cracking (number).  By normalizing these results (bias divided by Pooled Reference or the mean x 100%) one finds that there is a greater relative bias between the average group ratings and the reference ratings of various AC pavements compared to PCC pavements for only one distress type (transverse cracking, number). Furthermore, the relative bias 
	Table 7 
	Table 8, 

	The semi-automated option might be superior to the manual method for establishing 
	“ground truth,” because the collected images are available for multiple raters to view in 
	an office environment with less distraction from field traffic. However, some of the low severity cracks that are at initial stages of development might not be visible from the collected images. Increasing the number of raters could result in a more reliable ground truth. 
	49 
	The artificially fabricated distress while precise is not always representative of pavement surface defects and the variability observed in the field. However, such fabricated boards have been frequently used as calibration targets to address dimensional systematic errors, dynamic range, and signal to noise ratio issues in the collected images. 
	Accuracy of the measured distress against the established reference values (“ground truth”) is evaluated to identify the systematic and random errors. The systematic error or bias could be addressed by calibration, but the random errors need to be addressed by increasing the reliability of the crack detection algorithm through various control parameters within the algorithm. Regarding the effect of error type in network-level pavement management decisions, Saliminejad and Gharaibeh (2013) suggested that sys
	False positives are cracks that have been reported by the automated crack detection software, while no crack has been recorded in the “ground truth” at the same location. On the other hand, missed cracks are existing cracks that have been reported in the 
	“ground truth”, but are not detected by the software (i.e. false negatives). As with the 
	manual rating conducted in the field, the reference values on the computer may also have a range of agreement from professional raters in terms of how to measure crack width, severity, and in some cases crack extent. 
	Studies have been conducted to evaluate the performance of automated crack detection algorithms in terms of detecting individual cracks (Wang et al. 2011). Wang 
	assumed a “precision” indicator to be calculated as the ratio of the correctly detected 
	cracks (true positives) to the total detected cracks (true positives and false positives). He also defined a recall parameter to be calculated as the ratio of the correctly detected cracks to the total actual cracks existing on the pavement surface (true positives and false negatives). As indicated in these two parameters have an inverse relationship for each algorithm. An algorithm with properties closer to the upper right corner (high “precision” and recall values) should be selected. It should be noted t
	Figure 16, 

	automated crack detection surveys, which is calculated as the standard deviation or the coefficient of variation of the error in estimating each distress type along each pavement section. 
	Figure
	Figure 16. “Precision” and recall curve for different crack detection algorithms (Wang et al. 2011) 
	Figure 16. “Precision” and recall curve for different crack detection algorithms (Wang et al. 2011) 


	Tsai and Wang (2014) used a linear-buffered Hausdorff scoring method to quantitatively evaluate the crack segmentation performance by comparing each of the detected cracks with the manually established ground truth (Tsai and Wang 2014). Incorporating mean squared error and a modified Hausdorff distance metric, this method compares the binary crack maps produced by the automated software and the manually digitized ground truth. The buffered distance can be interpreted as the average Euclidean distance betwee
	In a study conducted for Texas DOT (Serigos et al. 2015), the results of automated surveys with varying levels of human intervention were compared among three different 3D image processing software tools. Two of them used the INO LCMS 3D images and the third used the PaveVision 3D image collection system. Manual distress surveys of 20 (0.1-mile-long) representative test sections according to the LTPP distress identification protocol were used as reference values. There were 7 Hot Mix Asphalt (HMA) pavements
	51 
	demonstrates the number of false positives and missed cracks reported by each of the three automated survey methods before and after manual post-processing of the automated crack identification results (Serigos et al. 2015). The values in each cell indicate the number of segments out of the total 144 (12 sub-sections of 12 test sections), where false positives or missed cracks were identified. The numbers in parentheses show percentages of segments with reported issues. The third vendor (using PaveVision im
	Table 9 
	Table 9 

	Table 9. False positives and missed cracks using three different crack detection software before and after manual human intervention (Serigos et al. 2015) 
	Distress 
	Distress 
	Distress 
	Vendor 
	False Positives 
	Missed cracks 

	Before 
	Before 
	After 
	Before 
	After 

	Fatigue Cracking 
	Fatigue Cracking 
	INO LCMS 1 
	23 (26%) 
	20 (23%) 
	40 (52%) 
	44 (57%) 

	INO LCMS 2 
	INO LCMS 2 
	33 (38%) 
	34 (39%) 
	36 (47%) 
	25 (32%) 

	Pave Vision 
	Pave Vision 
	12 (14%) 
	12 (14%) 
	36 (47%) 
	36 (47%) 

	Longitudinal cracking 
	Longitudinal cracking 
	INO LCMS 1 
	81 (74%) 
	45 (41%) 
	22 (20%) 
	37 (34%) 

	INO LCMS 2 
	INO LCMS 2 
	83 (75%) 
	69 (63%) 
	8 (7%) 
	7 (6%) 

	Pave Vision 
	Pave Vision 
	64 (58%) 
	64 (58%) 
	41 (37%) 
	41 (37%) 

	Transverse cracking 
	Transverse cracking 
	INO LCMS 1 
	90 (63%) 
	11 (8%) 
	17 (22%) 
	18 (24%) 

	INO LCMS 2 
	INO LCMS 2 
	97 (67%) 
	79 (55%) 
	4 (5%) 
	3 (4%) 

	Pave Vision 
	Pave Vision 
	27 (19%) 
	27 (19%) 
	11 (14%) 
	11 (14%) 



	Effectiveness of Automated Surveys: Quantification Accuracy 
	Effectiveness of Automated Surveys: Quantification Accuracy 
	In evaluating the effectiveness of a methodology, efforts are made to identify the bias or average error between methodologies (the average ratings from manual and automated distress surveys such as total length of transverse cracks, etc.) and evaluate how to reduce or minimize the bias. In the practical application of the network-level condition evaluation data for pavement management systems, it is the aggregate representative condition of an entire pavement section and not the specific localized defects 
	52 
	To establish automated data quality management procedures for Indiana DOT (IN DOT), three quantitative measures were used to evaluate the effectiveness of automated distress data compared to benchmark manual ratings by experienced IN DOT staff (Ong, et al., 2010). The first measure was hypothesis testing on the statistical significance of the difference in PCR values. The second measure was the percentage cumulative differences between the PCR collected by the two systems over the entire range of PCR, there
	measure was Cohen’s Kappa statistic for individual distresses, which estimates the 
	strength of agreement between the automated and reference systems. 
	For the Texas DOT study (Serigos et al. 2015), the accuracy and precision of each of the three automated systems before and after human intervention are presented in The average measurement error or bias between the software measured distress quantity and the reference values are the first number in each cell representing software accuracy. The second value, shown in parenthesis, is the standard deviation of the errors, which is an estimate of software precision. The last number is the median of the errors 
	Table 10. 

	Table 10. Quantification errors using three different crack detection software before and after manual human intervention (Serigos et al. 2015) 
	Distress 
	Distress 
	Distress 
	Vendor 
	Quantification Errors 

	Before 
	Before 
	After 

	TR
	INO LCMS 1 
	-11.76 m2 (9.34 m2) 80% 
	-

	0.69 m2 (16.49 m2) 7% 

	Fatigue Cracking 
	Fatigue Cracking 
	INO LCMS 2 
	-6.56 m2 (11.31 m2) 56% 
	-

	2.32 m2 (10.92 m2) 33% 

	TR
	Pave Vision 
	-13.88 m2 (8.62 m2) 92% 
	-

	-13.88 m2 (8.62 m2) 92% 
	-


	Longitudinal cracking 
	Longitudinal cracking 
	INO LCMS 1 
	1.09 m (9.86 m) 13% 
	4.1 m (11.95 m) 17% 

	INO LCMS 2 
	INO LCMS 2 
	4.41 m (10.7 m) 57% 
	1.51 m (8.51 m) 11% 

	TR
	Pave Vision 
	7.24 m (23.73 m) 9% 
	7.24 m (23.73 m) 9% 

	TR
	INO LCMS 1 
	-15.54 m (23.75 m) 44% 
	-

	-1.24 m (13.08 m) 1% 

	Transversal cracking 
	Transversal cracking 
	INO LCMS 2 
	-8.36m (17.41 m) -30% 
	-3.55 m (13.39 m) -11% 

	Pave Vision 
	Pave Vision 
	-12.79 m (15.94 m) 54% 
	-

	-12.79 m (15.94 m) 54% 
	-



	Timm and Turochy (Timm and Turochy 2014) compared manual and automated data sets for Alabama DOT. They found large discrepancies and very little correlation between transverse cracking manually and automatically collected. Also, very poor 
	53 
	correlation was found between the two methods for wheel path cracking and non-wheel path cracking. The following table summarizes the Pearson correlation coefficient between manual and automated distress data calculated for each severity level and for three data sets. 
	Table 11. Alabama DOT paired t-test between manual and automated distress data (Timm and Turochy 2014) 
	Severity level 
	Severity level 
	Severity level 
	Pearson correlation coefficient 

	Transverse cracking 
	Transverse cracking 
	Wheel path cracking 
	Non-wheel path cracking 

	Low 
	Low 
	0.568 
	0.248 
	0.241 

	Medium 
	Medium 
	0.277 
	0.258 
	0.391 

	High 
	High 
	Undefined 
	0.102 
	Undefined 



	Reliability of Automated Surveys: Precision and Repeatability 
	Reliability of Automated Surveys: Precision and Repeatability 
	While systematic errors identified in the bias can be calibrated out, such evaluations must also address the random errors as well. The average results may be quite comparable, but individual results can deviate significantly. Efforts must also be made to control these deviations to produce results which can ultimately be classified as reliable. The values in parentheses in represent an estimate of the precision of the three software methods used for automated crack detection in the Texas DOT research study
	Table 10 

	The ASTM E177 (ASTM 1998) includes a criterion called “difference two standard deviation (D2S)”, which states that the difference between two laboratories running the same test on the same material should not exceed D2S more than 1 time out of 20 or 5% of the time (i.e., there is a 95% confidence limit). In that relationship, S is the pooled standard deviation of all paired test results to be compared. In practice, it is possible to apply a similar approach to either process control or as an acceptance crit
	In a research study conducted by the ARRB Group (Warren et al. 2013) the repeatability of the RoadCrack crack detection algorithm with LCMS images was evaluated by conducting multiple runs (trials) on a test section. As noted in the work published by ARRB, many of the statistics are often simplified to show a higher level of consistency. Statistics such as number of cracked frames and total length of cracking are often used to identify the quality of crack detection rather than the severity and classificati
	 (Figure 17)
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	Figure
	Figure 17. Repeatability trials of simulated real time cracking analysis using the RoadCrackalgorithm on LCMS images (2.5 mm sampling at 40 mph) (Warren et al. 2013) 
	Figure 17. Repeatability trials of simulated real time cracking analysis using the RoadCrackalgorithm on LCMS images (2.5 mm sampling at 40 mph) (Warren et al. 2013) 
	® 




	Efficiency of Automated Surveys 
	Efficiency of Automated Surveys 
	Ultimately, for such a system to be truly beneficial, it must be able to generate results that are considered reliable (minimized standard deviations compared to suitable alternatives), effective (with minimal bias to the suitable reference) and efficient (when comparing the resources required compared to comparable alternatives) 
	The surveys typically do not require a large number of staff to process the data, but rather require additional computing power. As noted by ARRB (Warren et al. 2013), the crack identification can be completed at rates of 14 mph, plus additional classification and reporting. This was reported for 2080x2000 pixel images, which result in 0.8 GB of data per mile. Higher resolution images can reduce the processing speed. 
	Distress quality control for fully automated distress collection is also an important step in the process. Sampling of automated crack detection can indicate any potential quality issues and identify systematic issues. Systematic issues may be identified in different manners such as adjusting image settings or detection parameters to better address specific field conditions. 
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	Benefits to Agency 
	Benefits to Agency 
	Successful development and application of crack detection software will result in the following potential advantages to the data collection and pavement management initiatives by every roadway authority: 
	• 
	• 
	• 
	Increased safety of the data collection staff 

	• 
	• 
	Increased efficiency and productivity of network-level evaluations using real-time automated crack detection software 

	• 
	• 
	Enhanced objectivity of crack rating (identifying type and severity) using the automated applications 

	• 
	• 
	Increased accuracy and precision in measuring crack extent, identifying crack location, and providing summary statistics 

	• 
	• 
	Better pavement management decisions and improved rehabilitations activities 




	1.4.3 Integration into Practice 
	1.4.3 Integration into Practice 
	Of equal (if not greatest) importance, is the necessity to be able to integrate any such system into practice. This requires evaluation of what if any impacts such a transition will have on decisions made utilizing the system. What if any adjustments or calibrations may be anticipated or required? What training will be required to facilitate the new system is properly understood, executed and incorporated into the existing practice? What limitations should be acknowledged (and what steps are recommended / p
	Each of these concerns must be fully explored to identify and address any obstacles that can be anticipated. This process will identify actions required to provide the greatest opportunity for successful integration and realization of the benefits expected from the implementation of an improved system. 
	Quality Management Procedures 
	Quality Management Procedures 
	Quality by definition is “the degree to which a set of inherent characteristics fulfill requirements” (ISO 2005). According to TRB, quality management is the overarching system of policies and procedures that govern the performance of quality control and acceptance activities (TRB 2009). In order, to achieve a consistent level of quality, it is 
	Quality by definition is “the degree to which a set of inherent characteristics fulfill requirements” (ISO 2005). According to TRB, quality management is the overarching system of policies and procedures that govern the performance of quality control and acceptance activities (TRB 2009). In order, to achieve a consistent level of quality, it is 
	necessary to adopt a systematic approach for the quality management practices that includes methods, techniques, tools and model problem solutions. Quality management involves the specification of data collection protocols, quality standards, responsibilities of personnel, quality control, quality acceptance, corrective action and quality management documentation (Attoh-Okine and Adarkwa 2013). 

	With respect to automated distress identification software, the level of quality can be quantified according to the aforementioned success metrics. One purpose of quality management is to quantify variability in the process and maintain it within the range of acceptable limits. It should be noted that the quantity being measured by the software is by itself an indicator of variability in pavement condition along the length of the highway, and therefore it will inherently exhibit variability. Due to this cha
	1. 
	1. 
	1. 
	to ensure that a desired level of quality is obtained for the developed product or service. 
	Quality Control: 


	2. 
	2. 
	to confirm that the quality of the developed product or service is indeed acceptable for application by the user 
	Quality Acceptance: 


	3. 
	3. 
	to increase the ability of the development process to fulfill quality requirements for the product or service being provided 
	Quality Assurance: 



	In the transportation infrastructure industry, quality control by the product or service provider (contractor), and quality acceptance by the roadway authority (user) are the major areas of focus in quality management of pavement condition data collection (Flintsch & McGhee, 2009). In addition to the quality control and acceptance practices, independent validation and verification (IV&V) by a third party are recommended as external audit in quality management plans. In most pavement condition data collectio
	The quality control of distress data is typically conducted in two steps. Initially pilot runs are performed, and the data collected is compared with data obtained from manual surveys to ensure the equipment is functioning. Then during data collection, random sections are chosen, and data is compared with manual survey to ensure that data is not exceeding the acceptable variability (Attoh-Okine and Adarkwa 2013). According to a recent survey, approximately 64% of state and provincial highway agencies have a
	A minimum sample size needs to be adopted to ensure that the sample is representative of the observed pavement conditions to evaluate accuracy and precision of the automated distress surveys. There are a series of statistical techniques that estimate the required sample size based on the desired accuracy and the degree of risk (uncertainty). Typically, the sample size is selected by balancing accuracy and cost. In a study for the National Park Service pavement management system (PMS), Selezneva et al. (2004
	A 5 percent sample is common for most of the quality control and acceptance testing. Out of the service providers surveyed in 2009 (Flintsch and McGhee 2009), 29 percent reported reviewing 2 to 5 percent of the data, another 29 percent indicated sampling 6 to 10 percent, and the remaining 42 percent of the contractors reported reviewing 10 percent or more as part of their regular quality control practice. 
	Raman et al. (2004) conducted a statistical analysis on the severity and extent of transverse cracks reported by various procedures. In the situations where data was normally distributed, analysis of variance was used. In the cases where data was not normally distributed, the Kruskar-Wallis nonparametric test was conducted. Following a comparison of sampled and full-section image data, the authors concluded that a 5% sampling rate was adequate to evaluate transverse cracks with the desired precision for net
	Using the provisional AASHTO protocol on data obtained from Arkansas highways, Wang et al. (2004) compared the results of manual versus automated cracking surveys. For each comparison section, only 5 percent of the images were investigated. The study found some differences between the manual and automated procedures but suggested that these discrepancies might have been the result of low repeatability of the manual surveys (Wang et al. 2004). 
	PennDOT distress condition survey quality assurance program entails field testing over 2.5% of the annual survey mileage. The goal is to assure the quality of the service and product provided by PennDOT’s pavement data collection vendor (Pennsylvania DOT 2015b). Up to 5% of the vendor IRI data is allowed to exceed ±25% of their own independent measurement. They allow up to 10% of the other distresses to exceed either ±20% or ±30% depending on the distress type (Timm and Turochy 2014). 
	Using standard variability control concepts with pavement data collection, Stoffels et al. (2001) proposed a process to identify acceptable ranges for comparing results from two independent sources. Based on the difference of two standard deviation (D2S) criteria applied to laboratory materials testing results (ASTM 1998), the authors established that 
	Using standard variability control concepts with pavement data collection, Stoffels et al. (2001) proposed a process to identify acceptable ranges for comparing results from two independent sources. Based on the difference of two standard deviation (D2S) criteria applied to laboratory materials testing results (ASTM 1998), the authors established that 
	in 95% of the contractor processed data for the Virginia DOT network, the difference in pavement condition indices from the reference values should not exceed D2S. Average results from the individual ratings by the production contractor and quality monitoring (by VDOT staff or an independent contractor) were used to determine the bias (D). The pooled standard deviation of all ratings (S) was used to determine the acceptable limits for each pavement condition index. 

	One of the most important objectives in a quality management plan is to minimize the variability in the pavement condition measurements. Regarding the automated crack detection software, this objective translates into increasing the reliability (repeatability) of distress identification results. In order to accomplish this objective, the following predominant sources of variability in automated distress identification need to be considered (McNeil et al. 1991; Flintsch and McGhee 2009): 
	• 
	• 
	• 
	: the optimum pavement condition for automated crack detection is a dry surface following rain that has removed all the loose debris. In conditions other than the optimum, significant variability can exist. 
	Pavement surface condition


	• 
	• 
	• 
	Image capturing technology: 

	o 
	o 
	o 
	Additional collected data: some technologies such as the 3D imaging provide additional data that can assist in enhancing crack detection and identification, and thereby reducing variability. 

	o 
	o 
	Image resolution: detection of smaller cracks requires higher resolution equipment. Lower resolution images result in higher variability in crack detection. 

	o 
	o 
	Lighting method: optimum illumination is required for the processing software to provide robust crack identification. 

	o 
	o 
	Color contrast quality: for the crack detection software to successfully identify cracks, the contrast of color between the crack and the surrounding pavement area is an important factor. 

	o 
	o 
	Field of view: if the images do not cover the entire lane, some cracks might be missed. 



	• 
	• 
	• 
	: the level of sophistication of a crack detection algorithm dictates how many of the existing cracks will be detected and how many false positives will emerge. 
	Processing algorithm


	o Algorithm control parameters: the control parameters adjust the normalization approach and sensitivity of the software for crack detection by changing the probability of crack existence. Adjusting the image normalization can handle larger textures such as tined concrete surfaces and surface treated roads but may reduce the ability to detect smaller cracks. By increasing the sensitivity, more of the existing cracks will be detected by the algorithm, but this will come at the cost of potential false positiv

	• 
	• 
	: even in fully automated crack detection, there is still some level of human intervention in determining the algorithm settings and quality control of the software results. The training and experience of the operator affects the final report. 
	Software operator training



	In software terminology, validation is referred to the process of checking whether the 
	specification captures an agency’s needs, while verification is the process of checking 
	that the software meets the specification. Calibration is necessary in the entire process of data collection to ensure accuracy, knowing that variations between different devices and operators can exist (Flintsch and McGhee 2009). Verification tests should be included in the quality management programs to verify data consistency. 
	The independent verification of data is usually conducted by a quality assurance auditor, who checks the databases. The verification includes the completeness of the data based on a random sample of a percent of the data collected. Virginia Department of Transportation applies an independent verification and validation of 10% of the data provided by the contractor. Determined indices are calculated in randomly selected sections of a lot, then are compared with the contractor’s results. For a lot to be accep

	Data Management Considerations 
	Data Management Considerations 
	There are many practical considerations that also need to be addressed when dealing with the volume of data discussed for pavement data collection and related imagery. Some of the data size information was briefly noted in Section 
	1.2.9. 

	Due to the large amount of data required for collection, there are many challenges faced by those collecting and processing pavement condition data with automated data collection. Some of these issues include: 
	• 
	• 
	• 
	Backing up of raw field data from collection 

	• 
	• 
	Data and image storage for processing and access to processed data 

	• 
	• 
	Data and image backups during processing of altered data 

	• 
	• 
	Data and image storage of processed data for distribution of results 

	• 
	• 
	Data and image backups of final results. 


	Due to the cost of collecting pavement condition data in the field and the cost associated with processing, proper data management and backup is also required. Potential loss of data can occur due to corrupted hard drives in the field and in the office as well as potential for the loss of data if shipping of hard drives is required from the field or to additional processing centers. In some cases, up to 5 copies of the data need to be maintained during processing to prevent significant loss of data or repea
	In many cases the raw data is collected at a much higher interval than is required for reporting. For example, longitudinal profile is often measured at a frequency of 1 in along the roadway yet reported IRI values are often summarized at intervals of 0.1 miles. 
	For the case of images, changes are not frequently made to the images themselves. The most common duplicate of the data encountered is the extraction of still images if data is recorded as video. In the case of 3D pavement systems, different image views are often extracted from the 3D file type to ensure they are easily viewed in other tools. 
	If different normalization or other image adjustments are completed, additional copies of the images may be maintained for repeatability. Other changes to files such as geotagging, adding metadata, or stamping location information on the file may also require additional copies or a backup of the final product. 
	Data compression, including images, has long been used to try to best use the available resources. In many cases compression can be completed on some data formats without 
	any loss in data quality. Examples of this include the use of data compression with zipped file formats. 
	For images, many of the formats available also have lossless compression available. Additional compression can be accomplished by using adjacent data to closely approximate data not stored. Image compression can save valuable hard drive space, but data lost in this compression cannot be later recovered and care must be used. 
	Image compression and reduced image size (i.e. thumbnails) are often used for the distribution of the final results. In many of these cases viewing the data visually can be done with a reduced impact with no noticeable impact on quality, but with considerable improvements in computer performance through reduced network bandwidth and reduced file storage or widely accessible servers. 
	The use of metadata incorporated into the pavement images has gotten increased use in recent years as a consistent, open sourced method to store additional information about image contents such as cracking location and levels. 
	In most cases, the metadata is added to the images as one of the last steps during processing. This reduces the number of changes to occur on the pavement images and the number of intermediate backups required during the data processing phase. 



	1.5 Summary and Recommendations 
	1.5 Summary and Recommendations 
	From this review, it is evident that the field of pavement evaluation has experienced significant advancements over the past couple of decades, and in fact still appears to be an area of significant interest for technological advancement. Using the information identified from this review (and the objectives and constraints of this specific study, as they are understood) this summary highlights the aspects of automated pavement evaluation that are believed to be critical to the successful completion of this 
	1.5.1 Image Capturing Hardware 
	1.5.1 Image Capturing Hardware 
	This study will be using the 2D system operated by Florida DOT. It is evident that advancements in 3D technology will likely provide future opportunities for improvement in the pavement evaluation process. These will be documented when identified to provide recommendation for future consideration. If there is a need to compare results from various technologies, a systematic procedure needs to be developed. Since the data processing software for 2D and 3D systems have different algorithms, each software-hard
	This study will be using the 2D system operated by Florida DOT. It is evident that advancements in 3D technology will likely provide future opportunities for improvement in the pavement evaluation process. These will be documented when identified to provide recommendation for future consideration. If there is a need to compare results from various technologies, a systematic procedure needs to be developed. Since the data processing software for 2D and 3D systems have different algorithms, each software-hard
	according to established reference values on each section. Increases in both data collection resolution and image quality will also improve the ability to match the capabilities of human raters and the expectations of the pavement management process. 


	1.5.2 Crack Detection 
	1.5.2 Crack Detection 
	Many different systems and/or techniques are under development and/or being investigated for improving the state of the art in image analysis and specifically crack detection. Recognizing this is a rapidly evolving field, every effort will be made to objectively consider and explore the multitude of methodologies available (within the resource constraints of this specific study). These investigations will initially focus on the needs (and challenges) specifically associated with PCC surfaced roads (as noted

	1.5.3 Implementation of Automated Crack Detection Surveys 
	1.5.3 Implementation of Automated Crack Detection Surveys 
	Only a few highway agencies have implemented a fully automated crack detection system for network-level data collection. From the existing experience, a sound and systematic quality management process seems to be the central consideration for a successful implementation. Such a quality management system requires quantitative quality investigations and corresponding acceptable (and context-sensitive) thresholds for quality control, quality acceptance, and independent verification. These components are determ
	Recognizing the importance of producing results that can be put into practice, all aspects of these investigations will be performed with consideration for future implementation. Specifically: 
	1. 
	1. 
	1. 
	Optimizing LRIS image capture and quality. 

	2. 
	2. 
	2. 
	Defining (quantitatively) deviations from current pavement evaluation procedures. 

	a. 
	a. 
	a. 
	Both on a distress specific basis, as well as aggregated statistics. 

	b. 
	b. 
	As well as recommendations for correction (or adjustments) where warranted or deemed appropriate. 



	3. 
	3. 
	Identification of training needs (for both pavement evaluators as well as those using the results) 

	4. 
	4. 
	Recommendations for quality management procedures. 

	5. 
	5. 
	Data management recommendations. 



	1.5.4 The Value Added by Automated Crack Detection 
	1.5.4 The Value Added by Automated Crack Detection 
	The development and implementation of an automated crack detection and quantification software and supporting work processes is key for this project. To truly (and fairly) investigate the merits of the options investigated throughout this study, objective assessments of the value added must also be taken into consideration. These value assessments will be documented throughout the study to aid in both future planning as well as management and development of the pavement evaluation process going forward. 



	CHAPTER 2 – RIGID PAVEMENT APPLICATION DESIGN 
	CHAPTER 2 – RIGID PAVEMENT APPLICATION DESIGN 
	Task 2 was subdivided into three (3) subtasks. Each of these subtasks serves a vital role in ultimately defining what is needed and why: 1) Validation of the Collected Image Quality, 2) Evaluation of Existing Distress Survey Methods, and 3) Gap Analysis and Design Recommendations. 
	This chapter is organized in five sections. Following this introduction, Section provides a report on an investigation conducted by Fugro staff to determine whether the collected pavement images are of acceptable quality for crack detection and how FDOT can potentially measure various image quality indicators in future. Section explains the evaluation and comparison study details and includes the findings on evaluation of the existing distress survey methods. Section describes the efforts to determine the a
	2 
	2.2 
	2.3 

	addresses the gaps between existing automated algorithm and the required development efforts to address the gaps. This was the foundation for Task 3. Section 
	2.4 

	summarizes all the efforts and the resulting recommendations from Task 2. 
	summarizes all the efforts and the resulting recommendations from Task 2. 
	2.5 

	2.1 Validation of the Collected Image Quality 
	This section discusses the investigation conducted by Fugro staff to determine whether the collected pavement images are of acceptable quality for crack detection and how FDOT can potentially measure various image quality indicators in future. As a result of this study, Fugro developed a hardware calibration protocol to be used by FDOT staff in order to ensure long term image quality and consistency. This protocol is included in Appendix A Fugro hardware expert visited FDOT on October 2015 to examine the mu
	A. 

	Before evaluation of the available distress survey methodologies, there is a need to evaluate the pavement images collected with the Laser Road Imaging System (LRIS) and validate the optimum quality of the images and provide guidelines for routine validation in the future. To conduct such an evaluation, there is a need for a control site with established surface features. FDOT has an established imaging target site containing longitudinal and transverse stripes for evaluation of the image alignment between 
	The following factors need to be considered in the image quality validation process, as they might affect the subsequent crack detection. It should be noted that while all these considerations can be evaluated, there are limitations with the available hardware system that might not allow for resolution of all of the identified issues. In addition, a number of these quality evaluations include subjective judgments by an experienced engineer or technician in practice. The INO calibration procedure for LRIS is
	The following factors need to be considered in the image quality validation process, as they might affect the subsequent crack detection. It should be noted that while all these considerations can be evaluated, there are limitations with the available hardware system that might not allow for resolution of all of the identified issues. In addition, a number of these quality evaluations include subjective judgments by an experienced engineer or technician in practice. The INO calibration procedure for LRIS is
	on human judgment of image quality. Many of the objective quality assessment methodologies in the image processing literature require a complete reference (distortion-free) image to calculate the errors against, and such evaluation is not feasible when dealing with miles and miles of highway pavement images. Surrogate techniques that are no-reference or reduced-reference methods are also available. 

	2.1.1 General Image Properties 
	2.1.1 General Image Properties 
	The typical state of the practice regarding these image properties is a subjective evaluation by an experienced human interpreter. Unsuitable values for these image properties could impact crack detection by increasing the potential for missed cracks, detection of false positives, or erroneous crack width measurements. 
	Minimum Resolution 
	Minimum Resolution 
	Minimum resolution is defined as the level of detail at which you can still see distinct lines next to each other. Theoretically to be able to see 1 mm wide cracks on a pavement image that is 4 meters wide, a transversal resolution of about 4,096 pixels is required. The FDOT LRIS images have about 4,044 pixels, which is deemed as adequate. It should be noted that this theoretical minimum does not always translate into practical detection of all cracks that are 1 mm wide or larger. This is because a variety 

	Appropriate Exposure 
	Appropriate Exposure 
	The required lighting or illumination needs to increase with higher resolution cameras. In addition, the wide-angle lenses used for pavement imagery result in darker edges which need to be either further illuminated or post-processed. Excessive exposure can result in washed out images that hinder detection of finer cracks. Adequate level of exposure is a very subjective matter and typically it is evaluated by an experienced engineer/technician. While executing the INO calibration procedure for LRIS (the app
	Figure
	Figure 18. Calibration dialog box. 
	Figure 18. Calibration dialog box. 



	Dynamic Range 
	Dynamic Range 
	Dynamic range determines the level of detailed information contained in the image regarding the full spectrum of color or gray scale. The higher the dynamic range, the more levels of differences exist in the digital values of image pixels. In the 8-bit dynamic range of the FDOT LRIS images (which is currently widely used in the industry), there are 256 levels on the spectrum which translates into 256 shades of gray in a black and white image. The Laser Crack Measurement System (LCMS) images typically have a

	White balance 
	White balance 
	It is recommended that a wide uniform standard 18% gray carpet be used for calibration of the white balance. The ICC software includes a routine for such calibration. 


	2.1.2 Image Issues 
	2.1.2 Image Issues 
	Following are the issues that could be caused by defective hardware and/or unsuitable hardware settings. These issues could impact crack detection by increasing the potential for false positives. 
	Streaks 
	Streaks 
	A disadvantage to the LRIS system is that because it creates images line by line any dirt or dust on the camera lens can create streaks in the image. These streaks result in black lines appearing in the images and can cause difficulty with automated crack detection software that uses the light and dark contrast to identify cracks. Based on the past experience of Fugro staff, this is a characteristic of the LRIS system (see below). 
	Figure 19 


	Alignment of the established longitudinal/transverse control lines 
	Alignment of the established longitudinal/transverse control lines 
	There are settings parameter files that control the stitching of the left and right images. These settings are adjusted according to a visual examination of the images of the target site. Based on the currently collected LRIS images of the FDOT target site, it seems that correct settings have been implemented. It is recommended that the images of the target site be checked at least once every year that the MPSV is in service to make sure that the diamond stripes in the center of the lane (see  are appropria
	Figure 20)

	Figure
	Figure 19. Example LRIS pavement image (right) showing intensity streaks that cannot be seen on the ROW image (left) 
	Figure 19. Example LRIS pavement image (right) showing intensity streaks that cannot be seen on the ROW image (left) 


	The precaution that FDOT can adopt is to clean the camera lenses (the exterior windows on the LRIS units) every morning before data collection and make sure that camera covers are on while the vehicle is not collecting images. In addition, FDOT staff should use reference images with a minimum number of defects and/or non-uniformity for the exposure calibration process. 
	68 
	When necessary, all windows should be cleaned with a soft fabric using isopropanol or methanol. Avoid scratches that could damage the optical quality of windows and affect system performances. The controller and the sensor’s body should be cleaned with a soft fabric using water only. Appropriate precautions should be taken to make sure that the isopropanol or methanol is not used over the different labels that are affixed on the sensors and on the controller. It is recommended to protect the external window


	2.1.3 Image Feature Capturing (optical distortion) 
	2.1.3 Image Feature Capturing (optical distortion) 
	These properties are related to misrepresentation of actual pavement features due to inherent optical distortions in the camera and the wide-angle lens. These issues could impact crack detection by increasing the potential for detecting erroneous crack lengths and widths. 
	Crack Length in Longitudinal, Transverse, and Diagonal Orientations 
	Crack Length in Longitudinal, Transverse, and Diagonal Orientations 
	FDOT has measured the ground truth horizontal, vertical, and diagonal distances among physical diamond shaped stripes at the imaging target site (see 
	Figure 20). 

	Figure
	Figure 20. Pavement section with optical distortion study points. 
	Figure 20. Pavement section with optical distortion study points. 


	The same distances have been measured on LRIS 2D images and LCMS 3D images. The results of this exercise (which is according to the previous FDOT research documented in Report No. BD-544-11, chapter 2) are detailed here. The errors in these measurements are a good representation of the optical distortions in the images. In addition, these results could be used for checking the long-term consistency of the image capturing hardware. It is recommended that this exercise be conducted once annually to ensure opt
	The normalized error between field measurements and image measured distances on the FDOT imaging target site were evaluated in the transverse, longitudinal and diagonal directions. depicts the target site setup and shows the reference measurement patches that were considered for this evaluation. 
	Figure 21 
	Table 12 

	Figure
	Figure 21. LRIS 2D image of FDOT target site. 
	Figure 21. LRIS 2D image of FDOT target site. 


	Table 12. Reference points for measurements 
	TRANSVERSE Row Patch Number Row Patch Number Row Patch Number Row Patch Number Row Patch Number Row Patch Number R2 1 -2 R3 1 -2 R4 1 -2 R5 1 -2 R6 1 -2 R7 1 -2 2 -3 2 -3 2 -3 2 -3 2 -3 2 -3 3 -4 3 -4 3 -4 3 -4 3 -4 3 -4 4 -5 4 -5 4 -5 4 -5 4 -5 4 -5 5 -6 5 -6 5 -6 5 -6 5 -6 5 -6 6 -7 6 -7 6 -7 6 -7 6 -7 6 -7 7 -8 7 -8 7 -8 7 -8 7 -8 8 -9 8 -9 8 -9 8 -9 8 -9 9 -10 9 -10 9 -10 10 -11 10 -11 10 -11 11 -12 11 -12 11 -12 12 -13 12 -13 12 -13 13 -14 14 -15 LONGITUDINAL DIAGONAL Patch Number Patch Number R1,1 -R2
	In the transverse direction, all the distances between consecutive diamond stripes have been measured in each row. For the longitudinal and diagonal directions, a sample of the distances have been measured in the field. FDOT staff have conducted three measurements per patch and the average of those measurements was considered as the field reference measurement to estimate the error in image measurements due to optical distortions. The image measurements were done on FDOT provided LRIS 2D images and the Fugr
	The width of LRIS 2D image and LCMS 3D image are typically 4044 and 4164 pixels, respectively. This depends on the amount of overlap between the left and right camera images during stitching. Each pixel has been assumed as 1 mm (which might not always be true but is the best estimate) and based on this, the error percentage of LRIS 2D and LCMS 3D images have been calculated with respect to field measurements. The normalized error percentage (normalized to field measurements) was calculated as follows: 
	𝑖𝑚𝑎𝑔𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑖𝑒𝑙𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 
	𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 (%) = 100 × ( )
	𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑖𝑒𝑙𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 
	The average, standard deviation, minimum, and maximum percentage of normalized errors for all the measurement patches in longitudinal, transverse, and diagonal directions have been summarized in Average error percentage in transverse direction is found to be slightly higher in 3D LCMS image compared to 2D LRIS image. However, average error percentages in longitudinal and diagonal direction are lower in 3D LCMS image compared to 2D LRIS image. 
	Table 13. 

	Table 13. Statistics for normalized error compared to field measurement 
	Direction 
	Direction 
	Direction 
	Image Technology 
	Normalized Error (%) 

	Average 
	Average 
	Standard Deviation 
	Minimum 
	Maximum 

	Transverse 
	Transverse 
	2D LRIS 
	3.12 
	2.92 
	-3.38 
	7.61 

	3D LCMS 
	3D LCMS 
	3.98 
	3.15 
	-3.00 
	8.95 

	Longitudinal 
	Longitudinal 
	2D LRIS 
	-2.30 
	0.46 
	-3.11 
	-1.90 

	3D LCMS 
	3D LCMS 
	-0.46 
	1.42 
	-1.81 
	1.98 

	Diagonal 
	Diagonal 
	2D LRIS 
	-0.92 
	0.81 
	-1.80 
	0.05 

	3D LCMS 
	3D LCMS 
	-0.03 
	0.74 
	-0.79 
	1.27 


	It should be noted that the overlap resulting from the stitching of the left and right camera images could affect the distance measurements from the images in the two patches in the middle of each row. Measurement patches that could be affected by image stitching have been highlighted in gray in shows the average percentage of errors (normalized to field measurements) in the transverse direction only for the measurements that were entirely on one image and therefore not affected by the image overlap. The ex
	Table 12. 
	Table 14 

	Table 14. Average and standard deviation of error excluding measurements affected by stitching 
	Direction 
	Direction 
	Direction 
	Average Error (%) 
	Standard Deviation of Error (%) 

	2D LRIS Image 
	2D LRIS Image 
	3D LCMS Image 
	2D LRIS Image 
	3D LCMS Image 

	Transverse 
	Transverse 
	2.95 
	4.92 
	3.16 
	2.68 


	A side-by-side comparison of the measurements (distances between diamond markers) from the field to the measurements from the images have been shown individually in for transverse, longitudinal, and diagonal directions. 
	Figure 22 
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	Field Measurement (mm) 
	Field Measurement (mm) 
	(c) Diagonal Direction 
	Figure 22. Image measurements compared to field measurements in a) transverse, b) longitudinal, and c) diagonal directions. 
	The ratio of the field measurements to the 2D LRIS or 3D LCMS image measurements 
	has been estimated as a correction factor. The transversal correction factors for 2D 
	LRIS image and 3D LCMS image have been shown in as a function of the 
	Figure 23 

	distance from the center of each measurement patch to the center of the image. The 
	distance has been measured from the center of image to center of consecutive diamond 
	marker points shown in The correction factor for 3D LCMS image 
	Figure 21. 

	measurements is lower than that of the 2D LRIS image most of the time, with some 
	exceptions towards the edge of rows. It is also evident that there is a higher variance in 
	the correction factors for the 3D LCMS image compared to the 2D LRIS image. 
	It should be noted that all the field and image measurements were done to the nearest 
	full millimetre. However, it is not expected that anyone can accurately measure to the 
	‘center’ of these targets, in the field or off an image by conducting only one 
	measurement. Therefore, multiple measurements (in this case 3) need to be averaged. 
	It is evident that the amount of these optical distortion errors and correction factors are 
	fairly small and variable depending on the location of the measurement within an image. 
	Therefore, it is not realistic to adjust the detected cracks according to these correction 
	Therefore, it is not realistic to adjust the detected cracks according to these correction 
	factors. The intention is to use these errors as a check for long term consistency of the errors in image capturing hardware. 
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	Figure 23. Correction factors for transversal image measurements in a) 2D LRIS and b) 3D LCMS. 
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	Crack Width in Longitudinal, Transverse, and Diagonal Orientations 
	Crack Width in Longitudinal, Transverse, and Diagonal Orientations 
	Unlike length measurements which are very objective, crack width measurements are subjective due to the gray areas in the images and subjectivity in visual field inspections. In addition, the small magnitudes of crack width make it a challenge (if not impossible) to measure the errors which are in sub millimeters, while the image resolution is at 1 mm. The smallest crack width threshold of interest for FDOT is 3.18 mm which defines the threshold between low and moderate severity cracking. 

	Signal-to-Noise Ratio 
	Signal-to-Noise Ratio 
	This is a traditional quantitative measure representing the ratio of the amount of undistorted features captured in an image (signal) to the distortion errors (noise) in detecting features, expressed in decibels. Therefore, this measure and similar measures such as mean squared error (MSE) require a reference “undistorted” image. An estimate of the signal to noise ratio (SNR) can be approximated as the average value of the image pixels (0 to 255 for 8-bit images) divided by the standard deviation of the ima
	A target could be synthetically manufactured to serve as the reference undistorted image. A picture of the target taken by the available camera could be used to evaluate the SNR of the captured image as compared to the reference. shows two sample target images used as a reference for evaluating the signal to noise ratio. 
	Figure 24 

	Figure
	Figure 24. Sample Target Images used as a Reference for Evaluating Signal to Noise Ratio 
	Figure 24. Sample Target Images used as a Reference for Evaluating Signal to Noise Ratio 
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	Detailed investigation of SNR values was conducted in a previous FDOT study and it is documented in Report No. BD-544-11. It is recommended that a similar target image be used for annual control checks of the SNR values. In Appendix an exercise is recommended to be conducted annually to ensure signal to noise ratio is not increasing with time. 
	A, 



	2.1.4 LRIS Hardware 
	2.1.4 LRIS Hardware 
	The integrator company for the FDOT LRIS vehicle is the International Cybernetics Corporation (ICC) and they are responsible for resolving hardware issues, some of which could be addressed by routine maintenance. It is necessary that the hardware 
	and software setup and “calibration” standards recommended by the LRIS equipment 
	manufacturer (Pavemetrics) and the FDOT equipment integrator (ICC) be followed with regards to routine maintenance and calibration controls. The overall system maintenance and recalibration is recommended once a year. This includes checking the camera installed heights and the vehicle tire pressure to ensure the pavement surface is within the camera depth of field, where objects are in focus. 
	From the initial investigation of location referencing information by Fugro staff, there seems to be a software issue with determination of the location of each image across the length of the highway. When stitching the images together across the highway length, there are some gaps and some overlaps between consecutive images. The calculation of FromDist and ToDist parameters for each image needs to be revisited by FDOT staff to address this issue. For the purposes of this project, these values were manipul
	a. 
	a. 
	a. 
	Distance measuring accuracy: the distance measuring instrument (DMI) needs to be inspected and calibrated on a routine basis as recommended by the manufacturer. A control section distance can be measured with the DOT reference device and the vehicle DMI measurements of the control section can be compared to the reference measurement. 

	b. 
	b. 
	Latitude-Longitude accuracy: the global positioning system (GPS) devices need to be inspected and calibrated on a routine basis as recommended by the manufacturer. The vehicle needs to be parked at specific locations on the control section for about 15 minutes to establish a stable measurement. Then the GPS coordinates of those locations should be surveyed using total station equipment to check the vehicle GPS measurements. Depending on the number and model of the IMU units in the vehicle, acceptable errors

	c. 
	c. 
	LRIS platform stability: From the visual inspection by Fugro staff, no issues were found with platform stability. If there are loose connections in the platform, they need to be addressed as recommended by the manufacturer. 


	Figure
	Figure 25. Schematic of LRIS image collection system (Pavemetrics). 
	Figure 25. Schematic of LRIS image collection system (Pavemetrics). 



	2.1.5 Environmental Effects 
	2.1.5 Environmental Effects 
	The effects of different lighting conditions (overcast, cloudy, or sunny) and vehicle speeds (25, 35, or 45 mph) have already been studied in a previous FDOT research project (documented in Report No. BD-544-11, chapter 2). It was found that the LRIS images are not significantly affected by different vehicle speeds and lighting conditions. 
	The LRIS user manual indicates that the equipment should not be operated at temperatures above 40 degrees Celsius (104 degrees Fahrenheit). It is recommended that protective covers be used when LRIS is not in use to protect against moisture and dust. 

	2.1.6 AASHTO Standard R86-18 
	2.1.6 AASHTO Standard R86-18 
	The following requirements in terms of minimum image quality acceptable for crack detection have been recommended in the American Association of State Highway and 
	The following requirements in terms of minimum image quality acceptable for crack detection have been recommended in the American Association of State Highway and 
	Transportation Officials (AASHTO) provisional protocol (PP) number 68, which was later adopted as AASHTO Standard R86-18 (AASHTO 2018b): 

	“4.3.1. The images must provide sufficient difference between data point values representing distressed and non-distressed areas that subsequent distress detection techniques can delineate a minimum of 33 percent of all cracks under 3 mm (0.12 in.), 60 percent of all cracks present from 3 mm (0.12 in.) and under 5 mm (0.2 in.) wide, and 85 percent of all cracks 5 mm (0.2 in.) wide or wider regardless of orientation or type. The determination of this capability will be made utilizing a minimum of ten 0.03-km
	4.3.2. The images should be sufficiently void of erroneous differences between data point values that a section of pavement without distress, discontinuities, or pavement markings contains less than 3 m (10 ft) total length of detected false cracking in 50 m(540 ft) of pavement. The determination of this capability will be made utilizing a minimum of ten 0.03-km (100-ft) samples of various types that meet the criteria.” 
	2 
	2

	These image quality descriptions are extremely dependent on the crack detection algorithms that are used to evaluate whether the mentioned amount of cracks with specific width could be detected, or whether false positives are avoided. Therefore, these quality descriptors cannot be considered independent of the crack detection algorithm that is used by each agency. It is recommended that each agency uses their corresponding crack detection software to evaluate whether their collected images in combination wi
	As detailed in Section 2.2.6, on average, the evaluated crack detection software was able to detect about 86% of the cracks in all orientations. This result was based on 24 sample images collected from 12 test sections in this study. The sample size satisfies the size requirements of PP-68. Therefore, it could be stated that if crack width is not considered, the image quality did satisfy the requirements of PP-68 in terms of crack detection (or lack of missed cracks). Due to the inherent noise in the images
	-

	With regards to false positives, sample images were evaluated from 12 test sections that met the requirements for sample size in PP-68. The results (which have been detailed in Section 2.2.6) indicate that 78% of the automatically detected distresses by length actually existed on the reference survey. This means that 22% of the detected distresses by length were false positives. The requirement of PP-68 is to have less than 10 feet of false positives in 540 ftsample size (45 feet if the lane width is 12 ft)
	With regards to false positives, sample images were evaluated from 12 test sections that met the requirements for sample size in PP-68. The results (which have been detailed in Section 2.2.6) indicate that 78% of the automatically detected distresses by length actually existed on the reference survey. This means that 22% of the detected distresses by length were false positives. The requirement of PP-68 is to have less than 10 feet of false positives in 540 ftsample size (45 feet if the lane width is 12 ft)
	2 

	would translate into 22% (10/45). Therefore, it can be stated that the image quality did satisfy the requirements of PP-68 in terms of false positives. 


	2.1.7 Further Hardware Gap Analysis 
	2.1.7 Further Hardware Gap Analysis 
	Following the next tasks of this research project and after establishing the appropriate automated crack detection algorithm and settings, the Fugro team could better identify potential impacts of LRIS hardware and image quality on crack detection results. If significant negative impacts are discovered manifested by missed cracks and false positives (as described in AASHTO PP-68), then potential remedies shall be suggested accordingly. Chapter 4 describes such additional investigations. 


	2.2 Evaluation of Existing Distress Survey Methods 
	2.2 Evaluation of Existing Distress Survey Methods 
	The evaluation of the existing distress survey methods was done in the following two steps: 
	1. 
	1. 
	1. 
	Comparison of the overall cumulative quantities of various distress types found in the existing manual windshield survey, manual rating of the collected images (semi-automated survey through Fugro Vision), and a readily available automated software (Fugro WiseCrax) 

	2. 
	2. 
	Verification of the automatically detected distresses against the reference crack maps generated through a manual evaluation of the collected images (semiautomated survey) 
	-



	The following sections will explain the applied distress survey protocol, the representative pavement test sections used for these evaluations, the manual windshield surveys, and the performance metrics considered for these evaluations. 
	2.2.1 Distress Survey Protocol 
	2.2.1 Distress Survey Protocol 
	In evaluating the existing methodologies, we must first examine what specific 
	information is currently collected and how. Florida DOT’s Rigid Pavement Condition 
	Survey Handbook (2017) includes the following distress types and severities: 
	1. 
	1. 
	1. 
	Transverse Cracking (count), Light-Moderate-Severe 

	2. 
	2. 
	Longitudinal Cracking (count), Light-Moderate-Severe 

	3. 
	3. 
	Spalling (linear feet), Moderate-Severe 

	4. 
	4. 
	Corner Cracking (count), Light-Moderate-Severe 

	5. 
	5. 
	Patching (sq. yards), Fair-Poor 

	6. 
	6. 
	Shattered Slabs (count), Moderate-Severe 

	7. 
	7. 
	Surface Deterioration (sq. feet), Moderate-Severe 

	8. 
	8. 
	Pumping (percentage range: Code 1 to 4), Light-Moderate-Severe 

	9. 
	9. 
	Joint Condition (partially sealed, not sealed) 


	10.Multiple Cracked Slabs (count) 
	These are considered the core distresses to be identified. In addition to the FDOT Rigid Pavement Condition Survey Handbook (2017) as the primary protocol, the more simplified approach of the AASHTO provisional protocol 67 for flexible pavements could be adopted for rigid pavements and considered for this evaluation. Using the AASHTO PP67 approach, the main distress types are longitudinal cracking, transverse cracking, and other pattern cracking which would include shattered slabs and corner cracking. 
	Guidelines are provided in the FDOT handbook for how the data is to be collected for establishing extent and severity of each distress type. These guidelines are reviewed with the designated FDOT raters each year to confirm they are current on their understanding of the guidelines and expectations. To improve consistency among the FDOT raters and to further clarify the protocol considerations of this experiment, a two-day distress raters’ class was organized for both existing Florida DOT Raters and appropri
	The workshop started with a discussion of the various distresses included in the handbook. Then all the participants visited a nearby jointed concrete pavement section in Waldo, FL for a field exercise. Ten distress raters were divided into three groups, each having one experienced FDOT rater, one non-experienced FDOT rater, and one 
	The workshop started with a discussion of the various distresses included in the handbook. Then all the participants visited a nearby jointed concrete pavement section in Waldo, FL for a field exercise. Ten distress raters were divided into three groups, each having one experienced FDOT rater, one non-experienced FDOT rater, and one 
	Fugro rater. One of the groups had four raters. There were four test sections as follows. Each group rated one section, except for group 1 who rated two smaller sections: 

	• 
	• 
	• 
	Section 01 rated by Group 1: 148th Ave to Earle St, R1 (inside lane) 

	• 
	• 
	Section 02 rated by Group 1: 148th Ave to Earle St, R2 (outside lane) 

	• 
	• 
	Section 03 rated by Group 2: Earle St to Seydel St, R1 

	• 
	• 
	Section 04 rated by Group 3: Seydel St to End of PCC section 


	The average, standard deviation and coefficient of variation (COV) in amount of each distress type at each and all severity levels found on each test section has been documented in Appendix In addition, the graphs in Appendix indicate the number of standard deviations that each rater (on each test section) was off from the average rating. Several images in Appendix show the examples for each distress type found in the field. 
	C. 
	C 
	C 

	Based on these results, there seems to be more agreement among the raters on some distresses than the others. For example, there seems to be about 80% agreement among the raters in detecting the total amount of transverse cracking, but only about 65% for spalling. Overall, there seems to be more agreement among the raters in detecting the total amount of each distress type rather than assigning the distress severity levels. The amount of agreement is defined as 100 minus the COV in percentage. 
	The results of this exercise do not provide adequate statistical information for the distress types and severity levels that were not frequent on the example test sections. For example, if there is only one shattered slab in a test section and all raters identify it, then there will be 100% agreement, but this level of agreement might not be representative of the actual level of agreement among the raters when they conduct state wide surveys. Another example would be the severe transverse cracks: if there a
	Based on the meeting discussions and the results of the field exercise (see Appendix , several notes were recorded for consideration in the quantification process required 
	C)

	for software development. FDOT staff might discuss these notes to potentially include them for further clarity of the handbook. The following are the notes from those discussions. 
	Overall Manual Distress Survey Notes: 
	Overall Manual Distress Survey Notes: 
	• 
	• 
	• 
	The rated pavement surface is limited to the lane area between the inside edges of the two lane stripes, even if there are widened slabs 

	• 
	• 
	When crack spalling is present on rigid pavements, crack width is measured at the bottom of the crack (as opposed to the pavement surface). So, spalling should not affect the crack width that is used for assigning severity levels. 

	• 
	• 
	D cracking or map cracking are not rated according to FDOT protocol 

	• 
	• 
	CRCP sections are not currently placed on Florida highways 

	• 
	• 
	Bridges are not rated, also exclude the approach and leave slabs (when they are identified). 

	• 
	• 
	Rehabilitation comments are made on the rating forms 

	• 
	• 
	Rater comments are mainly used by the raters for the next survey 

	• 
	• 
	Multiple cracked slabs (if the slab is shattered or NOT shattered but contains more than one crack of any type) are counted as well during the manual survey. This is used to determine Percent Cracked Slabs for HPMS/MAP-21 purposes. 



	Surface Deterioration Notes: 
	Surface Deterioration Notes: 
	• 
	• 
	• 
	Surface deterioration is not commonly encountered in the field. 

	• 
	• 
	It is typically rated as square feet of deterioration per rated mile of pavement. 

	• 
	• 
	The computer should measure this affected area and the final value should be divided by the length of rated pavement. 



	Transverse Cracking Notes: 
	Transverse Cracking Notes: 
	• 
	• 
	• 
	If there is a longitudinal joint within the rated lane, and two transverse cracks intersect that joint within a foot of each other, then the whole crack is counted as one transverse crack. 

	• 
	• 
	It is possible to count multiple transverse cracks within a single slab. 

	• 
	• 
	Severity is assigned according to the crack width that is present on the majority (more than 50 percent?) of the crack length. This needs to be clarified in the handbook. 

	• 
	• 
	All sealed cracks are rated as low severity. 



	Longitudinal Cracking Notes: 
	Longitudinal Cracking Notes: 
	• 
	• 
	• 
	Cracks are counted per slab; if a longitudinal crack extends from one slab to the next, it will be counted as two longitudinal cracks 

	• 
	• 
	It is possible to count multiple longitudinal cracks within a single slab. 

	• 
	• 
	All sealed cracks are rated as low severity. 



	Spalling Notes: 
	Spalling Notes: 
	• 
	• 
	• 
	If both sides of a joint (but not cracks) are spalled, then both are counted independently. 

	• 
	• 
	If the spalled area is sealed, it can affect the severity level if well sealed. 

	• 
	• 
	Several small spalls within a crack/joint can be accumulated on the same crack/joint. 

	• 
	• 
	A minimum spalling of 1 foot is claimed, if present, per crack/joint. 


	• If there is less than 4” of spalling on a crack/joint, then it is not typically recorded 

	Corner Cracking Notes: 
	Corner Cracking Notes: 
	• 
	• 
	• 
	If there is loss of pavement material as a result of corner cracking, then it is counted as spalling and not corner cracking. The size of such material loss needs to be specified. 

	• 
	• 
	Multiple corner cracks can occur within the same slab. 

	• 
	• 
	If the points of intersection between the crack and the joints are very close to the corners (the LTPP Distress Identification Manual identifies it as less than 0.3 meters), the crack should be rated as spalling instead of corner cracking. This needs to be clarified in the handbook. 

	• 
	• 
	Corner cracks must connect a transverse joint to a longitudinal joint. If a diagonal crack occurs at a long or transverse crack, it would be counted as an additional longitudinal or transverse crack (based on the orientation of the crack). 



	Patching Notes: 
	Patching Notes: 
	• 
	• 
	• 
	Patching is recorded as Sq.Ft. in the field and summarized, then converted to square yards for recording. 

	• 
	• 
	Note 2 reads: "If half or more of the slab is replaced, do not record as patching." This indicates full slab replacements are not counted as patching. 

	• 
	• 
	Doesn't matter if the patching material is asphalt or concrete. 

	• 
	• 
	The patching is rounded to the nearest square yard (<0.5 sq. Yd. = 0) 



	Shattered Slab Notes: 
	Shattered Slab Notes: 
	• When a slab is rated as shattered slab, then no other distresses are recorded on that slab. However, if the slab is not shattered but contains more than one crack of any type, then it is counted as a multiple cracked slab. For calculating the HPMS/MAP-21 parameter Percent Cracked Slabs, the number of cracked slabs (shattered or not) is needed to divide by the total number of slabs. 

	Joint Condition Notes: 
	Joint Condition Notes: 
	• The condition of the joints in a section is assigned based on the predominant condition. Does this mean more than 50% of the joints? This needs to be clarified in the handbook. 


	2.2.2 Representative Test Sections 
	2.2.2 Representative Test Sections 
	To conduct an evaluation of the existing methods, FDOT engineers identified a set of 12 representative test sections that are each at least a standard evaluation length (0.1mile-long) and contain several of the jointed concrete pavement distresses in them (making sure that all the distress types and severities are incorporated in at least a couple of the sections selected). In the selection of the representative test sections, the following major factors should be considered to the extent possible: 
	-

	1. 
	1. 
	1. 
	Existence of a variety of the cracking distresses 

	2. 
	2. 
	Existence of different severity levels for each crack type 

	3. 
	3. 
	Pavement surface texture (rough versus smooth) 

	4. 
	4. 
	Concrete tinning (or lack thereof) 

	5. 
	5. 
	Lighting conditions (with or without shades) and angle (going into or out of the sun) 


	A sample partial factorial is provided below as an example. While all cells need not be accounted for, by filling the bulk of them, the analysis should be able to account for potential or anticipated interactions and relationships. In this example, priority has been given to cracking distress types, because they are the focus of this project. Due to the project limitations, the pavement surface texture and concrete tinning factors were not considered in selection of the representative sections. 
	Table 15. Example Partial Factorial Plan 
	Table 15. Example Partial Factorial Plan 
	Table 15. Example Partial Factorial Plan 

	Lighting 
	Lighting 
	Shade 
	Into Sun 
	Away from Sun 

	Texture/Tinning 
	Texture/Tinning 
	Heavy 
	Light 
	Heavy 
	Light 
	Heavy 
	Light 

	Distress Typeand Severity
	Distress Typeand Severity
	Low 
	SS 
	TC/LC 
	SP 
	CB 
	TC/LC 
	SS 

	High 
	High 
	SP 
	CB 
	TC/LC 
	SS 
	CB 
	SP 


	LC/TC: Longitudinal and/or Transverse Cracking; CB: Corner Breaks; SS: Shattered Slabs; SP: Spalling 
	shows a list of the 12 sections ultimately selected and some general properties of them. 
	Table 16 

	Table 16. Final Selected 12 Test Sections 
	NO 
	NO 
	NO 
	CNTY 
	DIST 
	ROUTE 
	DIR 
	LN 
	BMP 
	LNGTH 
	DEFECTS_PRESENT 

	1 
	1 
	Orange 
	5 
	SR500/SR50 
	S 
	L2 
	13.070 
	0.155 
	TR, LNG, SPL, CNR, ODD SLABS & JOINTS 

	2 
	2 
	Orange 
	5 
	SR500/SR50 
	S 
	L2 
	12.744 
	0.148 
	TR, LNG, SPL, PT, ODD SLABS & JOINTS 

	3 
	3 
	Orange 
	5 
	SR500/SR50 
	S 
	L2 
	21.784 
	0.214 
	TR, LNG, SEALANT 

	4 
	4 
	Orange 
	5 
	SR15/600 
	N 
	R2 
	3.400 
	0.170 
	TR, LNG, SPL 

	5 
	5 
	Orange 
	5 
	SR15/600 
	N 
	R2 
	6.280 
	0.170 
	TR, LNG, CNR, SPL, SEALANT 

	6 
	6 
	Duval 
	2 
	SR139/SR15 
	SE 
	L2 
	3.826 
	0.120 
	TR, LNG, CNR, SPL, SHTRD SLB 

	7 
	7 
	Duval 
	2 
	SR139/SR15 
	SE 
	L2 
	3.706 
	0.121 
	TR, LNG, CNR, SPL, SHTRD SLB 

	8 
	8 
	Duval 
	2 
	SR139/SR15 
	SE 
	R2 
	3.596 
	0.098 
	TR, LNG, CNR, SPL 

	9 
	9 
	Duval 
	2 
	SR139/SR15 
	SE 
	R2 
	3.694 
	0.106 
	TR, LNG, CNR, SPL 

	10 
	10 
	Duval 
	2 
	I-95 
	SW 
	L3 
	4.344 
	0.134 
	TR, LNG, CNR, SPL 

	11 
	11 
	Alachua 
	2 
	SR24 
	SW 
	L2 
	0.110 
	0.141 
	TR, LNG, CNR, SPL, SHTRD SLB 

	12 
	12 
	Alachua 
	2 
	SR24 
	SW 
	L2 
	0.251 
	0.160 
	TR, LNG, CNR, SPL, SHTRD SLB 


	Images of these 12 test sections were collected both with the FDOT MPSV (2D LRIS) on December 1, 2015 and with a Fugro ARAN (3D LCMS) in October 2015. The main analyses were conducted using the LRIS images, but there could be a follow-up study showing the results of 3D analysis. Fugro staff created a SQL procedure to transfer LRIS images from the FDOT server folder structure to a SQL database format that is compatible with Fugro Vision software. This procedure has been documented in 
	Images of these 12 test sections were collected both with the FDOT MPSV (2D LRIS) on December 1, 2015 and with a Fugro ARAN (3D LCMS) in October 2015. The main analyses were conducted using the LRIS images, but there could be a follow-up study showing the results of 3D analysis. Fugro staff created a SQL procedure to transfer LRIS images from the FDOT server folder structure to a SQL database format that is compatible with Fugro Vision software. This procedure has been documented in 
	Appendix it is imperative that any future data submission to Fugro be in the folder structure and format that has been identified in Appendix This would allow for the provided SQL code to create an appropriate instance of a Vision database corresponding to the collected MPSV images. 
	M. 
	M. 



	2.2.3 Manual Windshield Survey 
	2.2.3 Manual Windshield Survey 
	Three FDOT raters conducted a manual windshield distress survey of the 12 test sections according to the FDOT protocol. Care was taken not to aggregate the observations into one combined score, to avoid masking or obscuring differences in specific distress observations which may later be helpful in the gap analysis. The average, standard deviation and coefficient of variation (COV) in amount of each distress type at each and all severity levels found on each test section has been documented in Appendix In a
	D. 
	D 

	The results from the different raters were analyzed to assess the variability among the raters. These analyses provide a clearer understanding of the distress definitions and areas of ambiguity (based on variability observed from the results of the experienced raters) that may merit evaluation prior to initiating the automation. The amount of agreement is defined as 100 minus the COV in percentage. 
	The results were similar to the results of the field workshop. There seems to be more agreement among the raters on some distresses than the others. For example, there seems to be about 82% agreement among the raters in detecting the total amount of transverse and longitudinal cracking, but only about 64% for spalling, 56% for corner cracking, and 71% for shattered slabs. This result was expected because there were some ambiguities in the protocol definitions of corner cracking and spalling as it was noted 
	2.2.1. 

	Considering the total amounts of all severity values for each distress type, the majority of ratings were under one standard deviation away from the average of all ratings for each test section. There were total of 36 ratings (12 sections each rated by three different FDOT raters). For transverse cracking, nine out of the 36 ratings in which any transverse cracking was recorded (25%) were more than one standard deviation away from the average. For longitudinal cracking, spalling, corner cracking, and shatte
	Table 17. Overall Agreement Among Raters in Manual Windshield Survey (See Appendix for Details) 
	D 

	Distress Type 
	Distress Type 
	Distress Type 
	Agreement Among Raters in Total Distress Amount (All Severities), 100 -COV (%) 
	Percentage of Ratings more than one STD away from AVG (outliers) 

	Transverse Cracking 
	Transverse Cracking 
	82% 
	25% 

	Longitudinal Cracking 
	Longitudinal Cracking 
	82% 
	28% 

	Spalling 
	Spalling 
	64% 
	30% 

	Corner Cracking 
	Corner Cracking 
	56% 
	22% 

	Shattered Slabs 
	Shattered Slabs 
	71% 
	26% 

	Patching 
	Patching 
	74% 
	33% 

	Surface Deterioration 
	Surface Deterioration 
	52% 
	45% 



	2.2.4 Semi-Automated Survey 
	2.2.4 Semi-Automated Survey 
	With guidance from Fugro engineers, the same three FDOT raters conducted a semiautomated rating of the same 12 test sections using the LRIS images that were imported into the Vision software. Due to some malfunction in the FDOT MPSV unit, the data corresponding to one run of the collected images on section number 7 was not recorded properly and therefore, section 7 was only rated by two raters. There were total of 35 (12 sections with three runs each minus one missing run) ratings. The data was extracted fr
	-
	E. 
	E 

	On average, the agreement among the three raters is approximately 82% in terms of the total number of transverse cracks, 67% for longitudinal cracks, 62% for spalling, only 30% for corner cracks, and only 28% for shattered slabs. There seems to be less agreement among the raters in terms of the total amount of corner cracks and shattered slabs compared to longitudinal and transverse cracks. Overall, there seems to be less agreement among the raters using the semi-automated rating method compared to the manu
	Considering the total amounts of all severity values for each distress type, the majority of ratings were under one standard deviation away from the average of all ratings for each test section. For transverse cracking, seven out of the 35 ratings in which any transverse cracking was recorded (20%) were more than one standard deviation away from the average. For longitudinal cracking, spalling, corner cracking, and shattered slabs, 9/34 (26%), 10/35 (28%), 6/19 (32%), and 8/20 (40%) of ratings respectively 
	89 
	were more than one standard deviation away from the average. These could be considered as outliers. 
	Table 18. Overall Agreement Among Raters in Semi-Automated Survey (See Appendix for Details) 
	E 

	Distress Type 
	Distress Type 
	Distress Type 
	Agreement Among Raters in Total Distress Amount (All Severities), 100 – COV (%) 
	Percentage of Ratings more than 1 STD away from AVG (outliers) 

	Transverse Cracking 
	Transverse Cracking 
	82% 
	20% 

	Longitudinal Cracking 
	Longitudinal Cracking 
	67% 
	26% 

	Spalling 
	Spalling 
	62% 
	28% 

	Corner Cracking 
	Corner Cracking 
	30% 
	32% 

	Shattered Slabs 
	Shattered Slabs 
	28% 
	40% 

	Patching 
	Patching 
	24% 
	47% 

	Surface Deterioration 
	Surface Deterioration 
	62% 
	60% 



	2.2.5 Automated Survey 
	2.2.5 Automated Survey 
	The Vision automated algorithm (WiseCrax) was adjusted to correspond to the specified criteria in the handbook for the viable distresses and then run on sets of images collected from the pavement sections, which were evaluated by the group of experienced raters. As detailed in Section the WiseCrax detection, classification, and rating parameters were investigated to select the optimum settings. The automated surveys on all the test sections were conducted using the same set of software settings (control par
	2.3, 

	(i.e. if three raters review each image, the algorithm was run three times). This provides for another set of analyses to compare reproducibility between each of the three sets of reviews, as well as the repeatability of the algorithm results within the multiple runs. 
	As detailed in Section the WiseCrax algorithm, in its present form, is capable of only classifying joints, transverse cracks, and longitudinal cracks. New classification and rating routines are needed for corner cracking and shattered slabs, which will be addressed in Section For identification of spalling and patching, there is a need for depth information and therefore 3D data would be required. 
	2.3, 
	2.3. 

	Also, as discussed in Section filters were used to take the noise out of the images to improve results in terms of detecting wide joints and sealed cracks. The filtering process increases crack widths and therefore compromises the ability of the rating process to assign correct severity levels. Therefore, the results here are only expressed in terms of total distress amount in all severity levels. Section will discuss future work to address this issue. 
	2.3, 
	2.3 

	90 
	The algorithm results are based on length of the distresses and not count per slab as it is in the FDOT protocol. Therefore, a database SQL routine was developed to use the location of the detected joints to transform the total distress length by section to total distress counts per slab by section. This process is not final yet as there are issues with grouping the cracks together. As with any other automated detection routine, only segments of a crack are detected because of the inconsistencies in the int
	2.3 


	2.2.6 Comparison of Different Rating Methods 
	2.2.6 Comparison of Different Rating Methods 
	Success Metrics 
	Success Metrics 
	The three principal success metrics of any process are effectiveness, efficiency, and reliability. With respect to automated condition evaluations, these three metrics could be considered for two aspects of the process, first for the detection and classification of individual surface defects (cracks), and second for the overall evaluation and quantification of the pavement condition in a distinct section. 
	In the context of automated distress identification, effectiveness can be expressed in terms of accuracy of the crack detection software when compared to a reference baseline. Accuracy is a qualitative term referring to whether there is agreement between a measurement made on an object and its true (target or reference) value. Bias is a quantitative term describing the difference (or error) between the average of measurements made on the same object and its true value. 
	While systematic errors identified in the bias can be calibrated out, such evaluations must also address the random errors as well. The average results may be quite comparable, but individual results can deviate significantly. Efforts must also be made to control these deviations to produce results which can ultimately be classified as reliable. Reliability of automated distress surveys is often expressed in terms of precision. Precision is also a qualitative term describing the degree of repeatability of a
	Based on the overall cumulative amount of each distress among different test sections and multiple runs, the success metrics used to compare different rating methods are: 
	1. 
	1. 
	1. 
	Average error (bias) was used to represent accuracy or effectiveness of each method. Accuracy can only be quantified with respect to a reference value. 

	2. 
	2. 
	Average standard deviation of error among 12 sections was used to represent precision of each method. 

	3. 
	3. 
	In order to represent reproducibility of manual and semi-automated methods, average standard deviation of error on the same test section and among the 3 raters was used. In order to represent repeatability of the automated algorithm, average standard deviation of error on the same test section and among 3 runs was used. 

	4. 
	4. 
	To use a measure of reliability independent of the reference survey, agreement among the three raters (or three runs) was also represented by 100 minus the coefficient of variation in the total amount of each distress type on each section among the three raters/runs. In addition, the number of outliers among the three raters/runs was represented by the number of section ratings that were more than one standard deviation away from the average of the three raters/runs. 

	5. 
	5. 
	To compare efficiency of the three methods, the time required for each survey method was estimated. 


	Reference Rating or “Ground Truth” 
	Reference Rating or “Ground Truth” 
	Multiple research efforts in the past have introduced various methods to establish 
	reference values or “ground truth” for pavement surface defects by using the “most appropriate” methodology available. The major types of reference values include: 
	1. 
	1. 
	1. 
	: In this method, professional (trained and experienced) distress raters identify the surface distresses on a set of pavement sections that are deemed representative of conditions across a network. 
	Manual distress identification


	2. 
	2. 
	: This method is similar to the manual method, but the professional raters use the images collected by monitoring vehicle to identify the distresses. 
	Semi-automated detection


	3. 
	3. 
	: In this method, cracks are designed and fissured into steel plates or cut into an existing asphalt surface, so the precise dimensions of the defects are known. This method is mostly used to resolve image distortion issues caused by the camera lens or the image sensor. 
	Artificially fabricated distress



	Each method has its own advantages and limitations. The manual method simulates the actual distress identification process that has been in use by many state highway agencies (SHA) for a long period; however, there is a low degree of agreement among 
	different professional raters which renders the “ground truth” as a highly variable 
	measure. 
	The semi-automated option might be superior to the manual method for establishing 
	“ground truth,” because the collected images are available for multiple raters to view in 
	an office environment with less distraction from field traffic. However, some of the low severity cracks that are at initial stages of development might not be visible from the collected images. Increasing the number of raters could result in a more reliable ground truth. 
	After much deliberation, it was decided to use a semi-automated approach in which one run of the images for the 12 test sections were rated by one Fugro engineer and then completely reviewed and corrected by two other Fugro engineers. There are two advantages to this method, first that the rating was 100 percent controlled by two additional raters, and second that the raters were not FDOT experienced raters and therefore this reference can be used as an unbiased reference to evaluate all the three rating me


	Comparison Results on Overall Section Distress Quantities 
	Comparison Results on Overall Section Distress Quantities 
	and show the success metrics for manual field survey, semi-automated rating, and the automated algorithm, respectively, compared to the reference survey for the total amounts of each distress type (all severities) in each section. In these metrics, error is calculated as the difference between each value and the ground truth normalized to the ground truth and expressed in percentage. 
	Table 19, 
	Table 20, 
	Table 21 

	As it was explained in Section  the automated algorithm was only used for transverse and longitudinal cracks and joints at this point. Also, as it was mentioned in Section  the algorithm is not producing counts of each distress per slab and the counts presented here are based on a database routine that is showing more cracks than existing. 
	2.2.5,
	2.2.5,

	Table 19. Comparison of Manual Windshield Survey Rating to “Ground Truth” 
	Table 19. Comparison of Manual Windshield Survey Rating to “Ground Truth” 
	Table 19. Comparison of Manual Windshield Survey Rating to “Ground Truth” 

	Metric 
	Metric 
	Transvers e Cracking (count) 
	Longitudina l Cracking (count) 
	Spalling (length) 
	Corner Crackin g (count) 
	Patchin g (area) 
	Shattere d Slabs (count) 

	Bias (%) 
	Bias (%) 
	25.3 
	-2.3 
	161.5 
	67.1 
	-18.5 
	30.0 

	STDEV of Error (%) among Sections 
	STDEV of Error (%) among Sections 
	61.5 
	44.8 
	358.7 
	75.3 
	46.7 
	36.4 

	STDEV of Error (%) among Raters 
	STDEV of Error (%) among Raters 
	27.3 
	14.7 
	103.8 
	30.9 
	43.9 
	22.4 


	Table 20. Comparison of Semi-Automated Rating to “Ground Truth” 
	Metric 
	Metric 
	Metric 
	Transverse Cracking (count) 
	Longitudinal Cracking (count) 
	Spalling (length) 
	Corner Cracking (count) 
	Patching (area) 
	Shattered Slabs (count) 

	Bias (%) 
	Bias (%) 
	6.8 
	-2.4 
	129.9 
	15.5 
	487.6 
	-6.7 

	STDEV of Error (%) among Sections 
	STDEV of Error (%) among Sections 
	47.9 
	52.7 
	261.2 
	76.5 
	887.4 
	29.0 

	STDEV of Error (%) among Raters 
	STDEV of Error (%) among Raters 
	35.8 
	39.3 
	45.1 
	72.4 
	941.2 
	62.3 

	Table 21. Comparison of Automated Rating to “Ground Truth” (Length and Count) 
	Table 21. Comparison of Automated Rating to “Ground Truth” (Length and Count) 


	Metric 
	Metric 
	Metric 
	Transverse Cracking Length 
	Transverse Cracking Count 
	Longitudinal Cracking Length 
	Longitudinal Cracking Count 

	Bias (%) 
	Bias (%) 
	17.2 
	76.5 
	40.6 
	332.0 

	STDEV of Error (%) among Sections 
	STDEV of Error (%) among Sections 
	89.3 
	98.0 
	95.2 
	278.9 

	STDEV of Error (%) among Multiple Runs 
	STDEV of Error (%) among Multiple Runs 
	47.5 
	40.0 
	107.8 
	156.9 


	The results indicate that the automated routine is relatively more successful in detecting and identifying the length of transverse cracks (accuracy of 83%) compared to longitudinal cracks (accuracy of 60%). In fact, the accuracy of the automated routine in terms of the transverse cracks (83%) is comparable to the accuracy in the manual field surveys (75%), but it is lower compared to semi-automated surveys (93%). The reason for lower accuracy of the automated rating of longitudinal cracks is mainly because
	The results indicate that the automated routine is relatively more successful in detecting and identifying the length of transverse cracks (accuracy of 83%) compared to longitudinal cracks (accuracy of 60%). In fact, the accuracy of the automated routine in terms of the transverse cracks (83%) is comparable to the accuracy in the manual field surveys (75%), but it is lower compared to semi-automated surveys (93%). The reason for lower accuracy of the automated rating of longitudinal cracks is mainly because
	the longitudinal joints or lane stripes that are falsely being classified as cracks and therefore increasing the number of cracks (positive bias). 

	Figure
	compares the accuracy of the three rating methods as calculated by 100 minus the absolute value of bias (%). 
	compares the accuracy of the three rating methods as calculated by 100 minus the absolute value of bias (%). 
	Figure 26 



	Figure 26. Comparison of Different Methods in terms of Accuracy (100 -Absolute Bias(%)) 
	The semi-automated rating has the highest level of accuracy among the three methods for all distress types. The automated rating has a higher accuracy compared to the manual survey in terms of the total amount of transverse cracking. In contrast, the automated rating has lower accuracy compared to the manual survey in terms of the amount of longitudinal cracks. This is mainly because of the longitudinal joints and stripes that were incorrectly rated as longitudinal cracks. 
	shows a comparison among the methods in terms of precision as calculated by the standard deviation of error among 12 test sections. The automated rating is showing lower precision compared to the other rating methods. This is indicated by the higher amount of variation in the rating error among the 12 test sections. This is because the automated algorithm performed much better in some sections compared to the others. In test sections where any of the following defects exists, the automated algorithm had muc
	Figure 27 

	• Skewed transverse joints 
	95 
	• 
	• 
	• 
	Skewed longitudinal joints (or where a longitudinal joint crosses the pavement image diagonally) 

	• 
	• 
	Sawed-in longitudinal joints that are not perfectly straight lines 

	• 
	• 
	Pavement marking (white or black stripes within the lane) 

	• 
	• 
	Traffic counters, and other surface scratch marks 


	Figure
	Figure 27. Comparison of Different Methods in terms of Precision (Standard Deviation of Normalized Error (%) Among 12 Sections) 
	Figure 27. Comparison of Different Methods in terms of Precision (Standard Deviation of Normalized Error (%) Among 12 Sections) 


	compares the reproducibility of the manual and semi-automated methods to the repeatability of the automated software using the standard deviation of error among the three raters/runs. The automated algorithm is showing much lower repeatability among multiple runs when compared to the reproducibility among multiple raters in the other rating methods. It should be noted that this is with different sets of images on each different run. This is because of the differences in levels of shades in multiple images o
	Figure 28 

	Figure
	Figure 28. Comparison of Different Methods in terms of Reliability (Standard Deviation of Normalized Error (%) Among 3 Raters/Runs) 
	Figure 28. Comparison of Different Methods in terms of Reliability (Standard Deviation of Normalized Error (%) Among 3 Raters/Runs) 


	The semi-automated results show higher accuracy (lower bias) and higher precision (lower standard deviation among sections) compared to the manual field surveys in terms of most distress amounts. However, in agreement with what was presented in Section  the raters have lower agreement (higher standard deviation) in the semiautomated rating compared to field surveys. These results suggest that with further training and practice, the semi-automated results are going to have higher reproducibility in addition 
	2.2.4,
	-

	As an alternative method to evaluate reliability of the different rating methods independent of the reference survey, and show the reproducibility results from the manual and semi-automated surveys (listed in and respectively), in addition to the repeatability results from the automated rating. 
	Figure 29 
	Figure 30 
	Table 17 
	Table 18, 

	Figure
	Figure 29. Agreement Among Multiple Raters/Runs, A measure of Reproducibility/Repeatability 
	Figure 29. Agreement Among Multiple Raters/Runs, A measure of Reproducibility/Repeatability 


	Figure
	Figure 30. Percentage of “Outlier” Ratings, A measure of Reproducibility/Repeatability 
	Figure 30. Percentage of “Outlier” Ratings, A measure of Reproducibility/Repeatability 


	In contrast to the results in (which are based on the variation of error compared to a reference survey), the results in and (which are based on the actual variation of distress amounts) indicate that the automated algorithm has a comparable repeatability to the manual and semi-automated methods. 
	Figure 28 
	Figure 29 
	Figure 30 

	The results indicate that for transverse cracking, there is more agreement among the raters and the least number of outliers in the semi-automated rating method. For longitudinal cracking however, there is more agreement among the raters in the manual survey, but the least number of outliers is in the semi-automated method. 
	98 
	Efficiency of the manual, semi-automated, and automated methods can be evaluated by the amount of time required to conduct each survey type. FDOT raters provided an estimate for the amount of time they spent in the field to conduct a windshield survey of the 12 test sections. Based on this crude estimate, the manual rating speed in doing windshield surveys while driving on the shoulder is about 1 to 3 miles per hour, depending on the amount of distresses present. It should be noted that for approximately 98
	The Vision software was used to extract the amount of time that each rater had spent on each test section to conduct a semi-automated survey. The automated detection, classification, and rating takes about 20 seconds per image frame. Therefore, the automated survey time is calculated through multiplying the number of image frames in each test section by 20 seconds. shows a comparison between the semiautomated and automated survey methods in terms of the survey speed in miles per hour for each test section a
	Figure 31 
	-

	Figure
	Figure 31. Comparison of the Efficiency (Speed) of Survey Methods 
	Figure 31. Comparison of the Efficiency (Speed) of Survey Methods 


	Fugro raters (orange lines) have used the software more frequently for semi-automated rating and therefore had a higher speed (on average 0.29 mph) compared to FDOT raters (blue lines, on average 0.18 mph). The automated software has an average speed of 0.68 mph which is more than twice the efficiency of the semi-automated 
	Fugro raters (orange lines) have used the software more frequently for semi-automated rating and therefore had a higher speed (on average 0.29 mph) compared to FDOT raters (blue lines, on average 0.18 mph). The automated software has an average speed of 0.68 mph which is more than twice the efficiency of the semi-automated 
	method. The manual windshield survey is about twice faster than the automated survey. However, the automated survey does not require human intervention while running and only some QC is required after survey completion. Therefore, more computing power is needed rather than human intervention. In addition, the automated and semi-automated survey methods have the significant advantage of eliminating safety concerns for the raters who are driving or walking on highway shoulder. 


	Verification of Automatically Detected Distresses 
	Verification of Automatically Detected Distresses 
	While the overall comparison of the quantities of each distress type between manual windshield survey and the automated algorithm results provide an indication of the strengths and weaknesses of the automated methodology, there is a need for a distress by distress verification of the software performance to identify the reasons behind the previously indicated weaknesses. 
	The reference (“ground truth”) rating used a point and trace methodology and manually 
	rated the collected images to generate reference crack maps. Based on the reference semi-automated crack maps established, the following metrics are evaluated on a distress by distress basis: 
	• 
	• 
	• 
	True Positives: correctly detected cracks (or distress) 

	• 
	• 
	False Positives: detected cracks that don’t exist in the reference survey 

	• 
	• 
	False Negatives: Missed cracks 

	• 
	• 
	Distress Validity (or Accuracy): an indicator to be calculated as the ratio of the correctly detected cracks (true positives) to the total detected cracks (true positives and false positives). This statistic indicates the percentage of the detected distress that was actually present in the reference survey, thereby expressing the validity of the distress detected by algorithms. 

	• 
	• 
	Distress Sensitivity (or Recall): a parameter to be calculated as the ratio of the correctly detected cracks to the total actual cracks existing on the pavement surface (true positives and false negatives). This statistic represents the percentage of the distress in the reference survey that was detected by the automated method, thereby expressing the sensitivity of the algorithms to existing distress. 

	• 
	• 
	Distress Classification Performance: a measure of the number of correctly classified cracks (according to the reference survey), divided by the number of correctly detected cracks (true positives). This statistic indicates the percentage of the detected distress that is correctly classified by the automated algorithm. 


	These metrics were evaluated on 24 sample image frames (two image frames randomly selected from each of the 12 test sections on run number 1) and the results can be found in  False positives are cracks that have been reported by the automated crack detection software, while no crack has been recorded in the “ground truth” at the same location. On the other hand, missed cracks are existing cracks that have been 
	Table 22.

	reported in the “ground truth”, but are not detected by the software (i.e. false negatives). 
	As with the manual rating conducted in the field, the reference values on the computer may also have a range of agreement from professional raters in terms of how to measure crack width, severity, and in some cases crack extent. 
	Table 22. Verification of Automatically Detected Distress on Sample Image Frames (Raw Data) 
	Test Section 
	Test Section 
	Test Section 
	Image Frame 
	Length (ft) 
	Count 

	Ground Truth 
	Ground Truth 
	True Positive 
	False Positive 
	False Negative 
	Ground Truth 
	Rating Result 

	Correctly Rated 
	Correctly Rated 
	Not Correctly Rated 

	Section 1 
	Section 1 
	3P000019 
	23.048 
	9.304 
	7.936 
	8.992 
	5.808 
	2 
	9 

	Section 1 
	Section 1 
	3P000020 
	23.828 
	21.786 
	0 
	4.432 
	2.042 
	3 
	7 

	Section 2 
	Section 2 
	3P000115 
	22.615 
	18.994 
	0 
	14.87 
	3.621 
	2 
	7 

	Section 2 
	Section 2 
	3P000116 
	11.425 
	10.747 
	0 
	0 
	0.678 
	1 
	2 

	Section 3 
	Section 3 
	3P000029 
	48.97 
	41.272 
	3.688 
	4.426 
	4.01 
	3 
	7 

	Section 3 
	Section 3 
	3P000022 
	22.464 
	20.424 
	0 
	3.166 
	2.04 
	2 
	5 

	Section 4 
	Section 4 
	3P000014 
	22.43 
	18.746 
	0 
	14.114 
	3.686 
	2 
	6 

	Section 4 
	Section 4 
	3P000024 
	20.312 
	10.38 
	0 
	44.74 
	9.932 
	1 
	9 

	Section 5 
	Section 5 
	3P000767 
	26.592 
	4.289 
	20.202 
	1.316 
	2.101 
	2 
	6 

	Section 5 
	Section 5 
	3P000768 
	41.112 
	13.019 
	19.635 
	6.924 
	8.458 
	4 
	12 

	Section 6 
	Section 6 
	3P000022 
	6.581 
	0 
	6.581 
	1.158 
	0 
	1 
	2 

	Section 6 
	Section 6 
	3P000023 
	44.261 
	36.852 
	2.906 
	3.68 
	7.408 
	7 
	8 

	Section 7 
	Section 7 
	3P000062 
	16.819 
	11.751 
	0 
	1.829 
	5.068 
	2 
	4 

	Section 7 
	Section 7 
	3P000061 
	17.59 
	11.206 
	3.409 
	0 
	2.107 
	2 
	4 

	Section 8 
	Section 8 
	3P000006 
	17.398 
	13.974 
	1.388 
	0 
	2.836 
	2 
	4 

	Section 8 
	Section 8 
	3P000010 
	17.472 
	10.627 
	0 
	0 
	6.845 
	2 
	2 

	Section 9 
	Section 9 
	3P000031 
	8.63 
	5.02 
	0 
	5.265 
	2.61 
	1 
	5 

	Section 9 
	Section 9 
	3P000038 
	13.757 
	8.67 
	0 
	2.084 
	5.187 
	2 
	4 

	Section 10 
	Section 10 
	3P000052 
	10.518 
	10.488 
	0 
	3.018 
	0.3 
	1 
	3 

	Section 10 
	Section 10 
	3P000053 
	33.57 
	31.498 
	0.552 
	0 
	1.52 
	3 
	9 

	Section 11 
	Section 11 
	3P000044 
	30.744 
	30.744 
	0 
	30.094 
	0 
	2 
	9 

	Section 11 
	Section 11 
	3P000045 
	43.781 
	43.381 
	0 
	24.051 
	0.4 
	5 
	14 

	Section 12 
	Section 12 
	3P000087 
	46.934 
	34.682 
	0 
	6.165 
	12.252 
	4 
	9 

	Section 12 
	Section 12 
	3P000088 
	30.578 
	30.578 
	0 
	20.006 
	0 
	2 
	7 


	The results clearly indicate the issue with crack counting as it was explained in Section 
	Since the detected segments of cracks were not appropriately grouped together, the total count of the cracks was much higher than existing. It is also evident that once a 
	2.2.5. 

	101 
	crack is appropriately detected (within the true positives), the algorithm is doing a good job in terms of assigning the correct distress type (note the relatively small length of incorrectly rated cracks). In addition, the overall length of false positives and false negatives (missed cracks) are relatively comparable. However, there are some instances where there is a significant difference between the two. This relatively reasonable balance between the two extremes of aggressive detection (false positives
	2.3. 

	Based on the results in the distress verification metrics were calculated in The results indicate that on average, 78% of the automatically detected distresses actually existed on the reference survey, 84% of the distresses on the reference survey were detected via the automated algorithm, and 86% of the detected distresses were correctly classified into longitudinal or transverse cracking or joints. 
	Table 22, 
	Table 23. 

	Table 23. Verification of Automatically Detected Distress on Sample Image Frames (Metrics) 
	Test Section 
	Test Section 
	Test Section 
	Image Frame 
	Distress Validity (or Accuracy) 
	Distress Sensitivity (or Recall) 
	Distress Classification Performance 

	Section 1 
	Section 1 
	3P000019 
	66% 
	75% 
	54% 

	Section 1 
	Section 1 
	3P000020 
	83% 
	91% 
	100% 

	Section 2 
	Section 2 
	3P000115 
	56% 
	84% 
	100% 

	Section 2 
	Section 2 
	3P000116 
	100% 
	94% 
	100% 

	Section 3 
	Section 3 
	3P000029 
	91% 
	92% 
	92% 

	Section 3 
	Section 3 
	3P000022 
	87% 
	91% 
	100% 

	Section 4 
	Section 4 
	3P000014 
	57% 
	84% 
	100% 

	Section 4 
	Section 4 
	3P000024 
	19% 
	51% 
	100% 

	Section 5 
	Section 5 
	3P000767 
	95% 
	92% 
	18% 

	Section 5 
	Section 5 
	3P000768 
	83% 
	79% 
	40% 

	Section 6 
	Section 6 
	3P000022 
	85% 
	100% 
	0% 

	Section 6 
	Section 6 
	3P000023 
	92% 
	84% 
	93% 

	Section 7 
	Section 7 
	3P000062 
	87% 
	70% 
	100% 

	Section 7 
	Section 7 
	3P000061 
	100% 
	87% 
	77% 

	Section 8 
	Section 8 
	3P000006 
	100% 
	84% 
	91% 

	Section 8 
	Section 8 
	3P000010 
	100% 
	61% 
	100% 

	Section 9 
	Section 9 
	3P000031 
	49% 
	66% 
	100% 

	Section 9 
	Section 9 
	3P000038 
	81% 
	63% 
	100% 

	Section 10 
	Section 10 
	3P000052 
	78% 
	97% 
	100% 

	Section 10 
	Section 10 
	3P000053 
	100% 
	95% 
	98% 

	Section 11 
	Section 11 
	3P000044 
	51% 
	100% 
	100% 


	102 
	Test Section 
	Test Section 
	Test Section 
	Image Frame 
	Distress Validity (or Accuracy) 
	Distress Sensitivity (or Recall) 
	Distress Classification Performance 

	Section 11 
	Section 11 
	3P000045 
	64% 
	99% 
	100% 

	Section 12 
	Section 12 
	3P000087 
	85% 
	74% 
	100% 

	Section 12 
	Section 12 
	3P000088 
	60% 
	100% 
	100% 

	Average 
	Average 
	78% 
	84% 
	86% 





	2.3 Appropriate Settings for Automated Survey 
	2.3 Appropriate Settings for Automated Survey 
	Fugro Vision software includes a distress identification application called WiseCrax. This application involves three main routines for distress identification: 
	1. 
	1. 
	1. 
	: during which any linear defects on pavement surface is detected and marked with lines. The performance of this step is highly dependent on the quality of the image, the exposure, lighting, the number of cracks and other defects present on the surface, the location of defects within the lane, etc. 
	Crack detection


	2. 
	2. 
	: during this step, all the detected defects are classified into one of the three categories of longitudinal defects, transverse defects, and other (or pattern) defects according to a changeable criterion for defect angle and density. 
	Classification


	3. 
	3. 
	: during this final step, the software assigns a distress type and severity to each of the classified defects according to a distress schema defined by the user. The user needs to select one or more criteria from a series of criteria such as angle, longitudinal and transverse extent, density, width, and others for each distress type and severity. Once the schema is setup and saved, this schema can be applied for network-level data collection. 
	Rating



	2.3.1 Image Pre-Processing 
	2.3.1 Image Pre-Processing 
	After investigating multiple detection settings in the software, it was evident that the sealed joints with wider openings and sealed cracks were not appropriately detected. Therefore, it was decided that there was a need for image pre-processing with some filters to improve the crack detection results. A basic image processing operation was applied to eliminate the noise and texture in the images using an open source software called ImageJ. If it is determined that this pre-processing is essential with res
	Four types of filters were considered for removing the noise in the images: 
	1. 
	1. 
	1. 
	Gaussian Filter 

	2. 
	2. 
	Median Filter 

	3. 
	3. 
	Haar Wavelet Filter 

	4. 
	4. 
	A Trous Wavelet Filter 


	Application of these filters was investigated with changing the involved parameters according to the following table. Sample test results are included in Appendix where crack detection results on the filtered images can be observed. The appropriate type and parameter settings for the filter depends on each specific image, and a filter that performs best for one image, could perform less desirable on another image. However, it is not feasible to select a different filter for each and every image. Therefore, 
	B, 
	-

	After selecting a set of detection parameter settings suitable for the sample images (next section explains the adjustments of the detection settings), the filters were applied again to fine tune the required filter setting. Here are the results of this step of the investigation. 
	Table 24. Image Pre-Processing Investigation Sample Test Results 
	Table 24. Image Pre-Processing Investigation Sample Test Results 
	Table 24. Image Pre-Processing Investigation Sample Test Results 

	Filter Type 
	Filter Type 
	Tested Parameters 
	Example Detection Results in Appendix B 
	Example Detection Results in Appendix B 


	TR
	Radius 5 
	Frame: Section 11 3P000043 Figure 1 

	Gaussian 
	Gaussian 
	Radius 10 
	Frame: Section 11 3P000043 Figure 2 

	TR
	Radius 15 
	Frame: Section 11 3P000043 Figure 3 

	TR
	Radius 5 
	Frame: Section 11 3P000043 Figure 4 

	Median 
	Median 
	Radius 10 
	Frame: Section 11 3P000043 Figure 5 

	TR
	Radius 15 
	Frame: Section 11 3P000043 Figure 6 

	Haar Wavelet 
	Haar Wavelet 
	Coefficients: 10,10,10 
	Frame: Section 11 3P000043 Figure 7 

	TR
	Coefficients: 10,10,10 
	Frame: Section 11 3P000043 Figure 8 

	A Trous Wavelet 
	A Trous Wavelet 
	Coefficients: 20, 20, 20 
	Frame: Section 11 3P000043 Figure 9 

	Coefficients: 30,30,30 
	Coefficients: 30,30,30 
	Frame: Section 11 3P000043 Figure 10 

	Coefficients: 40, 30, 30 
	Coefficients: 40, 30, 30 
	Frame: Section 11 3P000043 Figure 11 


	Table 25. Image Pre-Processing Investigation Test Results After Fine-Tuning Detection Settings 
	Filter Type 
	Filter Type 
	Filter Type 
	Tested Parameters 
	Detection Results in Appendix B 
	Detection Results in Appendix B 


	Gaussian 
	Gaussian 
	Radius 5 
	Frame: Section 11 3P000048 Figure 12 Frame: Section 12 3P000087 Figure 13 

	Radius 10 
	Radius 10 
	Frame: Section 11 3P000048 Figure 14 Frame: Section 12 3P000087 Figure 15 


	It is clear that the application of the pre-processing filters improves the detection results. 
	As shown in the sample test results, after application of ‘A Trous filter’ or Gaussian filter 
	with smaller radius (5), the detection algorithm is more sensitive to the tiny cracks which are very narrow. Gaussian filter with larger radius (10) makes the detection of wider cracks, especially the sealed joint detection easier. Finally, the Gaussian filter with a radius of 10 pixels was selected to pre-process all the images. However, we may include the A Trous filter in future work. 
	The disadvantage of using these filters is that they result in the crack widths becoming larger and the detection routine will not be able to measure the actual crack width on the 
	105 
	pavement and therefore higher severity levels will be assigned in the rating process. In this preliminary evaluation, the WiseCrax option to detect sealed cracks was not enabled. Instead of filtering the images, the other option would be to separate detection of sealed cracks for detection of sealed joints. However, that option would also result in larger crack widths that affect severity ratings. 

	2.3.2 Detection Settings 
	2.3.2 Detection Settings 
	There are multiple detection parameters that can be adjusted for improved detection results. The following are the detection parameters and a short description of each: 
	• 
	• 
	• 
	• 
	Crack Options 

	o 
	o 
	o 
	Crack Simplification: Higher numbers mean fewer details are stored for the crack trace 

	o 
	o 
	o 
	Extraction: 

	▪
	▪
	▪
	▪

	Transverse Cracking: Degree of transverse cracking in the pavement 

	▪
	▪
	▪

	Longitudinal Cracking: Degree of longitudinal cracking in the pavement 

	▪
	▪
	▪

	Crack Likelihood: Higher values suppress false positive at the expense of processing speed 

	▪
	▪
	▪

	Horizontal Bridging: Two adjacent cracks will be merged into one if the gap is less than X pixels 

	▪
	▪
	▪

	Vertical Bridging: Maximum vertical distance between two nodes before being split into two distinct cracks. 



	o 
	o 
	o 
	Pruning 

	▪
	▪
	▪
	▪

	Remove Short Distress: Discard cracks if below the minimum length 

	▪
	▪
	▪

	Minimum Length (mm): Minimum length for reporting cracks in millimeters 

	▪
	▪
	▪

	Remove Low Node-Count Distresses: Discard cracks if below the minimum number of nodes 

	▪
	▪
	▪

	Minimum Node Count: The minimum node count required to keep a crack 

	▪
	▪
	▪

	Remove Low-Cost Distress: Discard cracks below the cost threshold 

	▪
	▪
	▪

	Remove 'Bright' Distress: Discard cracks above the intensity threshold 



	o 
	o 
	Width 


	Maximum intensity to count a pixel as part of the crack 
	▪


	• 
	• 
	• 
	Lane Options 

	o 
	o 
	o 
	Enable: Turn on lane detection 

	o 
	o 
	Detect Within Lanes: Only detect cracks within lanes. Will not be used for incremental/zone detection 



	• 
	• 
	• 
	Sealed Crack Options: Defined sealed cracks detection parameters 

	o 
	o 
	o 
	Crack Simplification: Higher numbers mean fewer details are stored for the crack trace 

	o 
	o 
	o 
	Extraction: 

	▪
	▪
	▪
	▪

	Transverse Cracking: Degree of transverse cracking in the pavement 

	▪
	▪
	▪

	Longitudinal Cracking: Degree of longitudinal cracking in the pavement 

	▪
	▪
	▪

	Crack Likelihood: Higher values suppress false positive at the expense of processing speed 

	▪
	▪
	▪

	Horizontal Bridging: Two adjacent cracks will be merged into one if the gap is less than X pixels 

	▪
	▪
	▪

	Vertical Bridging: Maximum vertical distance between two nodes before being split into two distinct cracks. 



	o 
	o 
	o 
	Pruning 

	▪
	▪
	▪
	▪

	Remove Short Distress: Discard cracks if below the minimum length 

	▪
	▪
	▪

	Minimum Length (mm): Minimum length for reporting cracks in millimeters 

	▪
	▪
	▪

	Remove Low Node-Count Distresses: Discard cracks if below the minimum number of nodes 

	▪
	▪
	▪

	Minimum Node Count: The minimum node count required to keep a crack 

	▪
	▪
	▪

	Remove Low-Cost Distress: Discard cracks below the cost threshold 

	▪
	▪
	▪

	Remove 'Bright' Distress: Discard cracks above the intensity threshold 



	o 
	o 
	Width 




	Maximum intensity to count a pixel as part of the crack 
	Maximum intensity to count a pixel as part of the crack 
	▪

	At the first step, an investigation was conducted to determine the key detection parameters to which the detection results are most sensitive. This was evaluated by changing the parameters one by one and comparing the detection results against the default settings. There are 10 pre-set detection profiles in WiseCrax based on a range of pavement types and conditions that have been determined according to the years of experience of Fugro raters on various statewide projects. These settings can be found in App
	B. 


	Table 26. Investigation of Key Detection Parameters 
	Detection Parameter 
	Detection Parameter 
	Detection Parameter 
	Initial Default 
	Possible Range 
	Tested Values 

	Expected Transverse Cracking (%) 
	Expected Transverse Cracking (%) 
	15 
	0 to 100 
	10, 15, 20, 25, 35 

	Expected Longitudinal Cracking (%) 
	Expected Longitudinal Cracking (%) 
	15 
	0 to 100 
	10, 15, 20, 25, 35 

	Horizontal Bridging 
	Horizontal Bridging 
	3 
	0 to 20 
	3,5,7,9 

	Vertical Bridging 
	Vertical Bridging 
	5 
	0 to 20 
	3,5,7,9 

	Intensity Threshold 
	Intensity Threshold 
	60 
	1 to 255 
	60,80,100,110,115,120 


	Sample detection results with different parameter settings on one example image frame are displayed in Appendix to understand the impact of changing each parameter. Here are the observations from changing key detection parameters: 
	B 

	• 
	• 
	• 
	Expected Transverse and Longitudinal Cracking (%): Number of pixels that are considered to be part of crack will increase if the expected cracking percentage is increased. 

	• 
	• 
	Horizontal and Vertical Bridging: The continuity of the crack pixels would be increased if we increase the number of pixels used for bridging. Therefore, the chance of having cracks considered to be noise (short cracks) would be decreased. 

	• 
	• 
	Intensity Threshold: By increasing this threshold from 60 to 120, width of the detected cracks became larger. Also, more crack pixels can be detected. However, increasing this value may cause more false positives. 


	Table 27. Example Figures in Appendix that Describe the Impact of Changing Key Detection Parameters 
	B 

	Figure 154 
	Figure 154 
	Figure 154 
	Figure 155 

	Longitudinal Cracking (%) =15 Transverse Cracking (%) =15 
	Longitudinal Cracking (%) =15 Transverse Cracking (%) =15 
	Longitudinal Cracking (%) =30 Transverse Cracking (%) =30 

	Figure 156 
	Figure 156 
	Figure 157 

	Horizontal Bridging (%) =1 Transverse Bridging (%) =3 
	Horizontal Bridging (%) =1 Transverse Bridging (%) =3 
	Horizontal Bridging (%) =3 Transverse Bridging (%) =5 

	Figure 158 
	Figure 158 
	Figure 159 

	Intensity Threshold: 120 
	Intensity Threshold: 120 
	Intensity Threshold: 60 


	The recommended parameter setting based on the sample images of the 12 test sections was found to be as in 
	Figure 32. 

	Figure
	Figure 32. Detection Parameter Settings for Evaluation of Existing Software 
	Figure 32. Detection Parameter Settings for Evaluation of Existing Software 
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	2.3.3 Cracking classification 
	2.3.3 Cracking classification 
	In the classification step, there are seven parameters that can be adjusted for suitable performance. The following values were used based on past experience. 
	Table 28. Classification Parameter Settings 
	Parameter 
	Parameter 
	Parameter 
	Description 
	Value Used 

	Classification Enable 
	Classification Enable 
	Enables classification 
	TRUE 

	Separate Seal Classification 
	Separate Seal Classification 
	Classifies sealed cracks separately 
	FALSE 

	Degree Angle 
	Degree Angle 
	Angle threshold differentiating between longitudinal and transverse defects 
	45 

	Tile Height 
	Tile Height 
	Tile used for calculating the density of 
	50 

	Tile Width 
	Tile Width 
	defects in pattern distresses (such as alligator cracking) 
	50 

	Group Tile Height 
	Group Tile Height 
	Tile used for grouping defects 
	100 

	Group Tile Width 
	Group Tile Width 
	together (see figure below) 
	100 


	Figure
	Figure 33 Group Tile Height/ Width 
	Figure 33 Group Tile Height/ Width 


	Sample classification results are shown in the figures in Appendix as referenced here. 
	B 

	On Section 12: image 87, after classification, several longitudinal cracks gathered into one group, as highlighted in Figure 161 in Appendix 
	B. 

	Before classification 
	Before classification 
	Before classification 
	After classification (several individual longitudinal cracks gathered into one group) 

	Figure 160 
	Figure 160 
	Figure 161 


	On Section 11: image 43, after classification, several longitudinal cracks gathered into one group, as highlighted in Figure 163 in Appendix 
	B. 

	Before classification 
	Before classification 
	Before classification 
	After classification (several longitudinal cracks gathered into one group) 

	Figure 162 
	Figure 162 
	Figure 163 



	2.3.4 Distress Rating 
	2.3.4 Distress Rating 
	The WiseCrax algorithm contains criteria such as angle, longitudinal and transverse extent, density, width, and others for assigning each distress type and severity. After considering all options, only transverse and longitudinal joints, and transverse and longitudinal cracks could be rated reliably. New classification and rating routines are needed for corner cracking and shattered slabs. For identification of spalling and patching, there is a need for depth data and therefore 3D data would be required for
	During the rating procedure, ‘distress angle’, the angle between a distress and the transverse direction, is adopted as one of the main parameters to distinguish joints from cracking: -5 to 5 degree for transverse joints, and 85 to 90 and -90 to -85 degree for longitudinal joints. Another parameter used in differentiating joints from cracks is distress extent. For longitudinal joints, its transverse extent should be less than 0.1 m. For transverse joints, its longitudinal extent should be less than 0.1m. Mo
	Table 29. Settings used for Rating in WiseCrax 
	Distress 
	Distress 
	Distress 
	Distress Angle (Degrees) 
	Distress Extent (Longitudinal) (m) 
	Distress Extent (Transverse) (m) 

	Transverse Joint 
	Transverse Joint 
	-5 to 5 
	0 to 0.1 
	NA 

	Longitudinal Joint 
	Longitudinal Joint 
	85 to 90 or -90 to -85 
	NA 
	0 to 0.1 

	Transverse Cracking 
	Transverse Cracking 
	-45 to -5 or 5 to 45 
	NA 
	NA 

	Longitudinal Cracking 
	Longitudinal Cracking 
	45 to 85 or -85 to -45 
	NA 
	NA 


	Figure
	Figure 34. Distress Angle Definitions 
	Figure 34. Distress Angle Definitions 


	90
	◦ 

	0◦ 
	-90
	◦ 

	The following figures in Appendix display sample rating results: Section 12: Image 87 in Figure 164 Section 11: Image 43 in Figure 165 Section 11: Image 44 in Figure 166 
	B 



	2.4 Gap Analysis and Design Considerations 
	2.4 Gap Analysis and Design Considerations 
	Accuracy and precision of the measured distress against the established reference values (“ground truth”) were evaluated to identify the systematic and random errors. The systematic error or bias could be addressed by calibration relative to the existing rating methodology, but the random errors need to be addressed by increasing the reliability of the crack detection and distress identification algorithm through various control parameters within the algorithm. Regarding the effect of error type in network-
	From these analyses, potential causes can be categorized to help with identification of prospective solutions. Initial categories of “potential causes” or “gaps” may include: 
	1. 
	1. 
	1. 
	Human Random Errors (i.e. “oops, missed it”) 

	2. 
	2. 
	Human Systematic Errors (i.e. “that isn’t the way I interpreted the handbook”) 

	3. 
	3. 
	Software Systematic Errors (i.e. algorithm needs correction) 

	4. 
	4. 
	Hardware Issues (i.e. hardware settings or calibration are in question) 

	5. 
	5. 
	Limitation of Existing System 


	In this section of the report, the gaps in the performance of the automated rating algorithm are identified according to the success metrics observed in the previous section. In addition, a potential design consideration is offered as the solution to address each identified gap. 
	2.4.1 Human Random Errors 
	2.4.1 Human Random Errors 
	Standard deviation of error among the different test sections should explain the degree of random error for each distress identification method. There is not much to be done to address human random errors. There seems to be higher standard deviation of error in the evaluated automated algorithm compared to the manual and semi-automated results which are relatively similar to each other. This higher variation of error for the automated results indicates that the algorithm performed much better in some test s

	on software systematic errors. 
	on software systematic errors. 
	2.4.3 

	2.4.2 Human Systematic Errors 
	The biases in the manual and semi-automated surveys represent human systematic errors. These errors seem to be relatively lower for the semi-automated rating compared to the manual field rating. In addition, there seems to be lower errors in terms of transverse and longitudinal cracking compared to corner cracks and shattered slabs. There seems to be a very high bias in terms of spalling and patching, but that could be attributed to the lower number of occurrences. To address this gap, it is recommended to 
	2.2.1. 


	2.4.3 Software Systematic Errors 
	2.4.3 Software Systematic Errors 
	The following are the software systematic issues that have been identified and corresponding solutions that have been recommended by Fugro research team. 
	Transverse and Longitudinal Joint Detection 
	Transverse and Longitudinal Joint Detection 
	The WiseCrax software version 3.0 did not have a joint detection routine. In this preliminary exercise, the rating criteria (angle and extent) were used to classify transverse and longitudinal lines as joints. As it is evident in the higher number of longitudinal cracks compared to ground truth, which have caused higher bias and standard deviation of error for longitudinal cracks compared to transverse cracks, there seems to be some longitudinal joints at diagonal directions in the images which were mistake
	The WiseCrax software version 3.0 did not have a joint detection routine. In this preliminary exercise, the rating criteria (angle and extent) were used to classify transverse and longitudinal lines as joints. As it is evident in the higher number of longitudinal cracks compared to ground truth, which have caused higher bias and standard deviation of error for longitudinal cracks compared to transverse cracks, there seems to be some longitudinal joints at diagonal directions in the images which were mistake
	image-processing techniques, such as edge detection, contour detection and Hough line transform can be used for this task. The team recommends a joint detection plugin to be developed for the Vision software. It is perceived that much of the bias and standard error in automated detection of longitudinal and transverse cracks could be addressed by separating joints and lane markings from other surface defects. 


	Lane Marking Detection 
	Lane Marking Detection 
	From a study of images, it was observed that several stripe edges were classified as longitudinal cracks. Since we mainly focus on pavement defects within lanes only, lane marking detection is vital to define the region of interest (ROI) for further operation executed with the pavement image. The algorithm for lane marking detection can still be improved. The computer vision-based technique for lane marking detection include thresholding and contour detection. Then the properties of contour can be studied, 

	Crack Severity Rating 
	Crack Severity Rating 
	In this preliminary evaluation, severity rating was not considered. This is because of the noise in the images that needed to be removed using filters to detect sealed cracks. Filtering the images tends to increase crack widths and therefore impact the assignment of severity levels. In addition, when the WiseCrax option to enable detection of sealed cracks is used, the recorded crack widths are larger than what is measured and therefore not useful for severity rating. It is recommended that filtering is not
	It should be noted that the evaluation results show very low agreement among the raters in terms of identifying severity levels during manual and semi-automated surveys. This is evident in the results detailed in Appendices C, D, and E. It has been found to be very difficult to get consistency in severity levels regardless of the procedure used. 

	Crack Grouping and Count per Slab 
	Crack Grouping and Count per Slab 
	As it was explained in Section  a database routine was developed to count the number of cracks per slab. However, the results of the evaluation indicate much higher bias and lower precision in count values compared to length values. This is because multiple segments of one crack are counted as separate distresses thereby increasing the number of cracks. This issue can be addressed by developing an enhanced grouping process that would allow for grouping of cracks according to their location across the slab. 
	2.2.5,


	Corner Cracks 
	Corner Cracks 
	After the joints are detected, each slab is defined. Corner cracks can be detected using coordinates of their start points and end points and their angle. There are four types of corner crack: bottom right, bottom left, top right, and top left. 

	Shattered Slabs 
	Shattered Slabs 
	Similar to the algorithm for corner cracking detection, the number of ‘sub-slabs’ can be acquired if coordinates of edges (longitudinal or transverse cracks) are given. The slab which are divided into more than four pieces are considered as Shattered slab. An alternative methodology could be based on crack counts per slab to simplify this process. 

	Spalling 
	Spalling 
	The evaluated software cannot detect spalling using the existing images. It is expected that depth (3D) data is required for detection of spalling at joint or crack edges. 

	Patching and Surface Deterioration 
	Patching and Surface Deterioration 
	Patching and surface deterioration continue to be two of the most challenging distresses to detect with an automated system. For these specific distresses of concern, alternative methods of identification will likely need to be identified or explored. However, it should be noted that the emphasis of this project is on cracking distresses. 


	2.4.4 Hardware Issues 
	2.4.4 Hardware Issues 
	These typically include such items as camera settings, daily calibration checks and other fundamental controls that provide for more consistency in the use of the hardware being utilized. Initial and preliminary recommendations were made in Section  and Appendix provides a draft guideline for annual calibration and check of the imaging hardware. 
	2,
	A 


	2.4.5 Limitation of the Existing System 
	2.4.5 Limitation of the Existing System 
	As it was mentioned, distresses such as spalling, or patching cannot be detected without 3D data. Images of the 12 test sections were collected both with the FDOT MPSV (2D LRIS) on December 1, 2015 and with a Fugro ARAN (3D LCMS) in October 2015. The main analyses in this study were conducted using the LRIS images as was within the scope of this study. Following completion of Task 3, FDOT will review the final evaluation results and if FDOT finds it beneficial, there could be a follow-up study showing the r

	2.4.6 Recommended Design Solutions 
	2.4.6 Recommended Design Solutions 
	summarizes the identified gaps and corresponding recommended solutions. 
	Table 30 

	Table 30. Identified Gaps and Recommended Solutions 
	Number 
	Number 
	Number 
	Category 
	Gap 
	Recommended Solution 

	1 
	1 
	Human Random Errors 
	High variation of rating results among test sections 
	N/A 

	2 
	2 
	Human Systematic Errors 
	High bias (average error) and high variation of rating results among multiple raters 
	Review and/or revise distress protocols 

	3 
	3 
	High bias in longitudinal cracking amount (high number of false positives) 
	Joint detection plugin and plugin for separating stripes 

	4 
	4 
	High variation of error among multiple test sections 
	Joint detection plugin and plugin for separating stripes 

	5 
	5 
	Software Systematic Errors 
	High variation of error among multiple runs (while reasonable variation in the actual values among multiple runs) 
	Joint detection plugin and plugin for separating stripes 

	6 
	6 
	High bias in crack counts 
	Improve crack grouping 

	7 
	7 
	Issue with rating of corner cracks 
	Corner crack plugin 

	8 
	8 
	Issue with rating of shattered slabs 
	Shattered slab plugin 

	9 
	9 
	Issue with crack width determination and severity rating 
	Do not use filters moving forward so that crack width can be measured 

	10 
	10 
	Hardware Limitations 
	distresses such as spalling, or patching cannot be detected without 3D data 
	Evaluate 3D data 


	Based on this gap analysis, the following development efforts are recommended for Task 3 of this project. The algorithm logic design is briefly explained for each development effort: 
	1) 
	Transverse and longitudinal joint detection plugin 

	a. First, an edge detection algorithm is used to detect the joint edges. Joint edges are detected by identifying points where the brightness changes 
	a. First, an edge detection algorithm is used to detect the joint edges. Joint edges are detected by identifying points where the brightness changes 
	(decreases) sharply, based on the assumption that the other 'background' pixel brightness varies smoothly across the pavement image. 

	b. 
	b. 
	b. 
	Then, the non-straight line segments are filtered out by analyzing the shape of the contour line passing through the detected joint edges. The contour is a curve joining all the adjacent points along the edges. The elongation and orientation of the contour’s shape is estimated. Elongation is calculated as [1 – W/L], where W is the width of the rotated minimal bounding box (the rectangular enclosing the contour shape), and L is the length of the rotated minimal bounding box. The elongation of the contour sho

	c. 
	c. 
	Finally, the “straight” line is extracted using Hough Transform to fit a straight line through the joint edge points. 


	2) 
	Lane marking detection plugin 

	a. 
	a. 
	a. 
	gray-level thresholding: We assume that the pixels of lane marking are brighter than the rest of the pixels in the image. 

	b. 
	b. 
	contour analysis and filtering: Shape of the bounding box for the lane markings should be close to rectangle and its area should be larger than a predefined threshold value. Rectangularity is evaluated by the degree to which a contour shape fills its minimal bounding box (area of the object divided by area of the bounding box). Area is evaluated as the area enclosed by the contour of an object. 


	3) 
	Plugin to improve crack grouping and count per slab 

	a. 
	a. 
	a. 
	a. 
	group cracks based on the types of cracks (longitudinal or transverse) 

	i. detect the endpoints of the cracks and divide them into two groups based on the type of crack 
	ii. only connect the endpoint pair (P1(x,y), P2(x,y)) if one of the following exists: 
	1
	1
	2
	2

	1. 
	1. 
	1. 
	if both of the points in the pair belong to the category of longitudinal crack endpoint AND |x-x|/|y-y|>1 AND Euclidean distance between the pair is smaller than a threshold value (for example, 300 pixels) OR 
	1
	2
	1
	2


	2. 
	2. 
	If both of the points in the pair belong to the category of transverse crack endpoint AND |x-x|/|y-y|<=1 AND Euclidean distance between the pair is smaller than a threshold value (for example, 300 pixels) 
	1
	2
	1
	2




	b. 
	b. 
	extract the corner points (vertices) of the slab and count the cracks in each slab based on the relationship of endpoints of crack and slab vertices: 


	i. Assume crack endpoint P’s coordinate is (xp,yp), and the slab’s upper left point is (x,y) and lower right point is (x,y). 
	1
	1
	2
	2

	ii. if (xp is between xand x) AND (yp is between yand y), then we consider the point (xp,yp) is inside the slab. 
	1 
	2
	1 
	2

	iii. If any crack endpoint is inside the slab, the crack is regarded as a 
	‘crack in this slab’. 
	4) 
	Plugin to classify and rate corner cracks 

	a. 
	a. 
	a. 
	extract the corner cracks based on the relationship between endpoints of crack and slab edges (or joints); A corner crack should intersect with both transverse and longitudinal joints, and this point of intersection should be more than one foot apart from the slab corner on both the longitudinal and transverse joints. Based on its location, we classify corner cracks into four types: upper left, upper right, bottom left and bottom right. 

	b. 
	b. 
	rate the corner crack based on its width: 


	i. light: width <= 1/8 inch 
	ii. moderate: 1/8 inch < width <=1/4 inch 
	iii. severe: width > 1/4 inch 
	5) 
	Plugin to classify and rate shattered slabs 

	a. 
	a. 
	a. 
	count the number of regions bounded by the 'cracks inside the slab' and joints. If the number is greater than four, the slab is counted as shattered slab. Note that the grouping plugin should have satisfactory performance before this plugin can successfully classify shattered slabs. 

	b. 
	b. 
	rate the shattered slab based on width of crack. 


	i. moderate: width <=1/4 inch 
	ii. severe: width > 1/4 inch 


	2.5 Summary and Recommendations 
	2.5 Summary and Recommendations 
	Results from the evaluations in Task 2 of this project provide the necessary tools to conduct appropriate analyses. Specifically: 
	1. 
	1. 
	1. 
	Establish reference values 

	2. 
	2. 
	Determine acceptable range based on the variations observed during the evaluation of existing methods 

	3. 
	3. 
	Compare manual, semi-automated, and fully automated methods 

	4. 
	4. 
	Diagnose areas for improvement 


	2.5.1 Summary Observations 
	2.5.1 Summary Observations 
	The key observations from these evaluations were as follows: 
	1. 
	1. 
	1. 
	While there was more agreement among the raters in manual field surveys compared to semi-automated rating, there seemed to be less bias (systematic errors) and higher precision (lower variation of each rater error among test sections) in the semi-automated results as opposed to field surveys. 

	2. 
	2. 
	There seemed to be more agreement among the raters in terms of transverse and longitudinal cracking compared to other distress types. A review of the distress identification protocol is recommended for increasing consistency among raters. Section provided pertinent notes for the FDOT Rigid Pavement Condition Survey Handbook (2017) to be considered by FDOT staff. 
	2.2.1 


	3. 
	3. 
	The automated routine was relatively more successful in detecting and identifying the length of transverse cracks (83%) compared to longitudinal cracks (60%). In fact, the accuracy of the automated routine in terms of the transverse cracks (83%) was higher than the accuracy in the manual field surveys (75%). The reason was mainly because of the longitudinal joints or lane stripes that were falsely being classified as cracks and therefore increasing the number of cracks (positive bias). There is a need for p

	4. 
	4. 
	In contrast to the reliability evaluation based on the variation of error compared to a reference survey, the evaluation based on the actual variation of distress amounts among multiple runs indicated that the automated algorithm had a comparable repeatability to the manual and semi-automated methods. It is perceived that by addressing the issues of joints and cracks, the variation among runs will decrease. 

	5. 
	5. 
	There was a need to filter out image noise to be able to detect sealed joints and wider cracks. As a result, crack widths were detected to be wider than actual and this compromised the ability of the software to assign proper severity levels. It is recommended that filtering is not used moving forward. 

	6. 
	6. 
	The evaluated software needs improvements in terms of the count of the distresses as opposed to the length. Proper grouping of detected crack segments is required. 

	7. 
	7. 
	Spalling could not be detected without depth (3D) data. 



	2.5.2 Recommendations for Task 3 Software Development 
	2.5.2 Recommendations for Task 3 Software Development 
	For initial planning purposes, the following six subtasks are recommended for Task 3: 
	1) Transverse and longitudinal joint detection plugin, 
	2) Lane marking detection plugin, 
	3) Plugin to improve crack grouping and count per slab, 
	4) Plugin to classify and rate corner cracks, 
	5) Plugin to classify and rate shattered slabs, 
	6) Final evaluation results. 

	2.5.3 Future Analysis Recommendations 
	2.5.3 Future Analysis Recommendations 
	The research team recommends the following analyses to be conducted in future to ensure an appropriate path forward with the software development and implementation: 
	A. Conducting a Second Distress Workshop 
	B. Confirming Detection Settings Using Additional Images 
	C. Evaluating Automated Software Using 3D Data 
	D. Evaluating a Second Alternative Software 
	The following segments provide the objectives, required activities, and the needed budget amounts for these additional activities. If FDOT approves these activities following Task 3, Fugro will prepare an updated proposal and request a corresponding time extension and budget modification to account for these additional tasks. 
	A. Conducting a Second Distress Workshop 
	After review of the FDOT Rigid Pavement Condition Survey Handbook (2017) during the preliminary distress workshop, it was determined that some of the distress definitions needed further clarification for consistent and reproducible distress rating results. In addition, review of the distress ratings conducted by FDOT experienced raters further highlighted the need for consensus building among the raters. There is a need for a second distress workshop with the following objectives: 
	1. 
	1. 
	1. 
	Review the reference semi-automated distress rating (conducted by Fugro engineers) to arrive at a consensus among the FDOT experienced raters. This consensus survey will be used as the reference survey to evaluate accuracy and precision of the automated and manual distress ratings moving forward. 

	2. 
	2. 
	Review the notes from the first distress workshop on the FDOT Rigid Pavement Condition Survey Handbook (2017) and identify the required modifications to the handbook. This will also include clarifications of definitions for some distress types and severity levels to ensure corresponding software development. 


	The required activities for conducting the second distress workshop include the following: 
	• 
	• 
	• 
	: Pre-workshop coordination and preparation of presentation materials 
	Activity 1


	• 
	• 
	: Attending and conducting the workshop 
	Activity 2


	• 
	• 
	: Post-workshop review and action items 
	Activity 3



	The estimated level of effort required to conduct a second distress workshop is about 120 hours of the consultant’s time. 
	B. Confirming Detection Settings 
	There is a need for further evaluation of the automated software settings on additional pavement images (of other textures, surface types and characteristics) with the following objectives: 
	1. 
	1. 
	1. 
	Confirm whether a pre-processing filter is essential to filter out noise and identify the type and properties of the required filter based on additional images. 

	2. 
	2. 
	Investigate and confirm the crack detection parameter settings that provide the best compromise between false positives and missed cracks based on the initial test sections and the additional images. 

	3. 
	3. 
	Investigate the impacts of the selected filters and detection parameter settings on the width of the detected cracks and recommend path forward for proper assignment of severity levels 


	The required activities for confirming detection filters and settings include the following: 
	• 
	• 
	• 
	• 
	: coordinate with SMO to obtain about 120 images (30 images from four additional test sites of different surface types, textures and surface 
	Activity 1


	characteristics), format received data into proper folder structure, and create Vision database 

	• 
	• 
	: investigate the necessity of filters based on four filter types and each with three different parameters (12 possible iterations) on a representative sample of the images (10%, about 12 images). Each iteration will take approximately five minutes to conduct and record. During this activity, the crack detection parameters will be fixed at the settings identified on the initial test sections. 
	Activity 2


	• 
	• 
	: investigate the suitable crack detection parameter settings based on about 10 key parameters (the initial software evaluation found the detection results to be more sensitive to these key parameters) and each with three different values (30 possible iterations) on a representative sample of the existing and the additional images (existing 12 sections 40 images each, additional four sections 30 images each). About 10% of the images will be used for this exercise (60 images). Each iteration will take approx
	Activity 3


	• 
	• 
	: obtain the FDOT manual survey results on the additional sections and compare total amounts of distress to confirm proper detection settings 
	Activity 4


	• 
	• 
	: conduct a baseline semi-automated survey on the additional images to obtain crack maps and confirm proper detection settings 
	Activity 5



	The estimated level of effort needed to conduct further analysis on detection settings is about 320 hours of consultant’s time. 
	C. Evaluating Automated Software Using 3D Data 
	Fugro has previously collected 3D LCMS images of the 12 test sections used in the initial software evaluation. However, the software evaluations were conducted based on the 2D LRIS images according to the proposal as the SMO MPSV unit collects 2D images only. Evaluation of the automated software on 3D images will benefit the project outcome as it will serve the following objectives: 
	1. 
	1. 
	1. 
	Investigate whether the current limitations of the automated software results were due to hardware limitations 

	2. 
	2. 
	Provide insight into the limitations of 2D images and how a hardware upgrade would benefit SMO in distress identification 


	The required activities for evaluating the software on 3D images include the following: 
	• 
	• 
	• 
	Activity 1: coordinate with FDOT to conduct semi-automated evaluations of the 3D images by FDOT experienced raters 

	• 
	• 
	Activity 2: determine proper filters and detection parameter settings 

	• 
	• 
	Activity 3: conduct classification and rating 

	• 
	• 
	Activity 4: summarize the results and conduct comparisons 

	• 
	• 
	Activity 5: prepare documentation 


	The estimated level of effort required to conduct an analysis of the 3D pavement images is about 350 hours of consultant’s time. 
	D. Evaluating a Second Alternative Software 
	The analysis cited above was based on use of a software package that the research team had confidence and familiarity with. However, there are a host of other software available. A comparison with other software (which would meet the requirements of this project) will confirm whether the variability issues are due to the detection algorithm or due to hardware limitations. 
	The required activities for evaluating an alternative software on 2D images include the following: 
	• 
	• 
	• 
	Activity 1: prepare the FDOT LRIS images to be used in the alternative software 

	• 
	• 
	Activity 2: determine proper filters and detection parameter settings in the alternative software 

	• 
	• 
	Activity 3: conduct classification and rating in the alternative software 

	• 
	• 
	Activity 4: summarize the results and conduct comparisons 

	• 
	• 
	Activity 5: prepare documentation 


	The estimated level of effort needed to conduct analyses using an alternative software is about 440 hours of consultant’s time. 
	CHAPTER 3 – RIGID PAVEMENT APPLICATION DEVELOPMENT AND VALIDATION 
	Task 3 of Phase I included the development of the FDOT Rigid Pavement Distress Application (FRPDA) for crack identification and quantification, and the corresponding validation testing of the application to evaluate its merit. 
	The preliminary experiment in Task 2 included: establishment of 12 validation test sites representing the typical crack types and severity encountered on Florida rigid pavements; validation of collected image quality and its adequacy for distress identification; ground truth measurements based on a manual rating of the collected LRIS images (reference survey); and comparison of accuracy and precision of the automated method to manual and semi-automated distress surveys using a comprehensive evaluation frame
	Figure 35 

	This chapter describes the design solutions devised to address the gaps identified in Task 2. The design of these solutions was initiated in Task 2 and documented in the corresponding chapter. As the actual development effort started in Task 3, some of the solutions have been modified to better address the gaps. Section describes the final algorithm in detail. Section presents the results of automated distress identification using the developed solutions in terms of the same evaluation framework and success
	3 
	3.2 
	3.3 

	2) Image Benchmarking and Validation 1) Select 12 Representative Test Sections and Review FDOT Distress Protocol 4-1) Comparison of Cumulative Distress: Accuracy Precision Repeatability Reproducibility 3-1) Manual Windshield Survey by FDOT Raters Disparity/Agreement Reproducibility Consensus 3-3) Available Automated Application (WiseCrax) 3-2) Manual Survey of Collected Images by FDOT Raters: Disparity/Agreement Reproducibility by Fugro Raters: Reference Crack Map 4-2) Verification of Identified Distress: T
	Figure 35. Framework for Evaluation and Design of Automated Pavement Distress Application 
	Figure 35. Framework for Evaluation and Design of Automated Pavement Distress Application 
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	3.1 Rigid Pavement Application Design Solutions 
	3.1 Rigid Pavement Application Design Solutions 
	summarizes the identified gaps in the preliminary evaluation of an available automated software application (WiseCrax) and corresponding recommended solutions based on the results of the gap analysis conducted in Task 2. Based on the gap analysis, the following development efforts were recommended and implemented in Task 3 of this project. The primary focus of this effort was on determining cracking distresses. 
	Table 31 

	Table 31. Identified Gaps in Automated Software System and Recommended Solutions 
	Number 
	Number 
	Number 
	Gap 
	Recommended Solution 

	1 
	1 
	High bias in longitudinal cracking (high number of false positives, both count and length) 
	Develop joint detection algorithm and improvements for separating stripes 

	2 
	2 
	High variation of error among multiple test sections 

	3 
	3 
	High bias in all crack counts (while reasonable bias in transverse crack length) 
	Improve crack grouping 

	4 
	4 
	Not rating corner cracks 
	Revise corner crack definition in FDOT protocol and develop corner crack algorithm 

	5 
	5 
	Not rating shattered slabs 
	Develop shattered slab algorithm 

	6 
	6 
	Issue with crack width determination (and therefore severity rating) after image filtering 
	Modify pixel intensity threshold for measuring crack width 

	7 
	7 
	Not rating spalling of crack and joint edges 
	Need depth data 

	8 
	8 
	Not rating patching 


	Sections and describe the adjustments to the existing software (WiseCrax) based on the needs of this project. The adjusted routine first filters the images (see Section and then detects surface defects (see Section . Both routines have been assembled into a single batch processor, which can be run from the Fugro Vision platform. Sections to explain the subroutines developed specifically for this 
	3.1.1 
	3.1.2 
	3.1.1) 
	3.1.2)
	3.1.3 
	3.1.7 

	project and embedded in the customized batch processor, which was named “FDOT Rigid Pavement Distress Application” (FRPDA). 
	The recommended procedure for automated identification and quantification of rigid pavement cracks is as follows. This process has been detailed in the FDOT Rigid Pavement Distress Application User’s Guide in Appendix 
	G. 

	1. 
	1. 
	1. 
	Run the automated lane assignment based on lane edge offset from image edge and specified lane width. Review and correct lane edges as needed to address any significant vehicle wander during data collection. 

	2. 
	2. 
	Run the automated batch processor for crack detection (based on WiseCrax), which filters the images and detects the surface defects for all sections in a project database. 

	3. 
	3. 
	3. 
	Run the automated batch processor called “FDOT Rigid Pavement Distress Application” to: 

	a. Detect the joints for all sections in a project database; 

	4. 
	4. 
	Perform quality control (QC) of the joints, modify, add, or delete as appropriate for each section; 

	5. 
	5. 
	5. 
	Run the automated batch processor called “FDOT Rigid Pavement Distress Application” to: 

	b. 
	b. 
	b. 
	Conduct classification, which groups adjacent lines, assigns lines to slabs, and classifies lines into longitudinal and transverse based on their angle for all sections in a project database; 

	c. 
	c. 
	Rate the classified lines into corresponding crack types and severities for all sections in a project database; 



	6. 
	6. 
	Perform QC of the automated cracks, modify, add, or delete as appropriate for each section. Other non-cracking distress types can also be manually identified during this QC. 


	3.1.1 Pre-Filtering Images 
	3.1.1 Pre-Filtering Images 
	During Task 2 of Phase I, it became evident that filtering and down-sampling the collected images had a significant positive impact on the crack detection results. This was because the detection algorithm was not capable of differentiating between darker pixels within joints and sealed cracks that had a considerable width. It was also found that for the LRIS images collected on the 12 representative rigid pavement sections, the most suitable filter was a Gaussian filter with a radius of 10 pixels. This filt
	During Task 2 of Phase I, it became evident that filtering and down-sampling the collected images had a significant positive impact on the crack detection results. This was because the detection algorithm was not capable of differentiating between darker pixels within joints and sealed cracks that had a considerable width. It was also found that for the LRIS images collected on the 12 representative rigid pavement sections, the most suitable filter was a Gaussian filter with a radius of 10 pixels. This filt
	using an open-source software called ImageJ. Of course, using an additional software for this purpose was considered a short-term solution at that stage of the research project to provide the final results. For production-level activities, this open-source code was embedded into the beginning of the WiseCrax detection routine, and the whole process can be accessed through a batch processor within the Fugro Vision platform. 


	3.1.2 Detection Profile Settings 
	3.1.2 Detection Profile Settings 
	As was described in detail in Section there are multiple detection parameters that can be adjusted for improved detection results. Based on the detailed investigation conducted in Task 2, the recommended parameter setting was established based on the sample images of the 12 test sections. 
	2.3, 

	Filtering (down-sampling) the images tends to artificially increase crack widths and therefore adversely impact the assignment of severity levels. The reason is that the 
	output of Gaussian Filtering is a ‘weighted average’ of each pixel's neighborhood, with 
	the average weighed more towards the value of the central pixels. For this reason, the peak width of the intensity is increased. As a result, the crack width, which is measured by the number of darker pixels with an intensity less than the threshold value, would also increase in almost all cases. 
	It was recommended that a lower pixel intensity threshold (darker pixels) be used for determining the crack widths based on filtered images. This threshold is the maximum intensity (the lightest pixels) for a pixel to be counted as part of the crack width. An examination of different intensity thresholds (40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100) was conducted based on the sample images of the 12 test sections. The results of crack width determination with each of these thresholds were validated 
	The final detection settings are shown in and were applied to all images of the 12 test sections after pre-filtering. For detailed description of each detection control parameter, please refer to Section The combination of the Gaussian filtering and surface defect detection was assembled into a single batch processor within the Fugro Vision platform. 
	Figure 36, 
	2.3. 

	Figure
	Figure 36. Final Detection Parameter Settings Applied After Pre-Filtering 
	Figure 36. Final Detection Parameter Settings Applied After Pre-Filtering 



	3.1.3 Transverse and Longitudinal Joint Detection Routine 
	3.1.3 Transverse and Longitudinal Joint Detection Routine 
	Since the initial crack detection software (WiseCrax) did not have an independent joint detection function at the time of this research project, a joint detection routine was specifically developed for this project. Note that this routine was designed to identify longitudinal and transverse joints that are approximately at right angles to the image frame, and the presence of skewed/diagonal joints was considered an exceptional rigid pavement design which is not frequently encountered. Since a concept of nar
	1. First, the image is downsized (the size of downsized imageof original image) to enable detection of wider (sealed) joint lines. Then the downsized image is divided into a matrix of cells. The size of each individual cell is 8 by 8 pixels. Then, the darkest pixel in each cell is detected and the information (i.e. intensity and x-y coordinates) of the darkest pixel is assigned to that cell. The existence of a joint cell is then detected by comparing its intensity with the intensity of adjacent cells using 
	 is 0.25*0.25 
	Figure 37 

	Figure
	Figure 37. Detecting Adjacent Candidate Joint Cells (Dark Cells, each 8 by 8 pixels) 
	Figure 37. Detecting Adjacent Candidate Joint Cells (Dark Cells, each 8 by 8 pixels) 


	2. 
	2. 
	2. 
	A narrow moving window (12 pixels wide) at 0 or 90 degrees (for transverse or longitudinal joints) is used to scan the whole candidate joint cell map, which only contains joint cells. shows an example of such narrow windows for both transverse and longitudinal joints. The number of cells that fall into this window is counted. If the number of cells is larger than a threshold number (we found that 1/10 of width or height of downsized image was the threshold that minimized the sum of false positives and false
	Figure 38 


	3. 
	3. 
	Some crack cells (cells that belongs to a pavement crack) could be the source of false positives. A second narrow window (12 pixels wide) is used to filter out this kind of error. The gap between the candidate joint cells that fall within the narrow window is calculated and if this gap is higher than a specified threshold (64 pixels), then this is a meandering crack (going in and out of the narrow window) and not a straight joint. demonstrates an example of such false positive joints. 
	Figure 39 


	4. 
	4. 
	Finally, the selected joint coordinate (x coordinate for longitudinal joints and y coordinate for transverse joints) is recorded, and a line is drawn on the image. The coordinate information is also recorded in the SQL database for future assigning of cracks to specific slabs. 


	considered as joint coordinates. Otherwise, the detection result is a false positive and would be excluded from further analysis. 
	Figure
	Figure 38. Narrow Window to Identify Joints from Detected Joint Cells 
	Figure 38. Narrow Window to Identify Joints from Detected Joint Cells 


	Y O 
	Figure 39. Removing False Positive Joints According to the Gap Between Joint Cells 
	Figure 39. Removing False Positive Joints According to the Gap Between Joint Cells 


	X 
	lists the preliminary results from the joint detection routine described above. For each of the 12 representative test sections (selected in Task 2), is showing the number of correctly detected joints, with some exceptions, including falsely identified joints and missed joints. In addition, provides summary statistics for detection rate and detection validity. Joint detection rate is calculated as the percentage of all existing joints that were successfully detected by the algorithm. Joint detection validit
	Table 32 
	Table 32 
	Table 32 

	𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐽𝑜𝑖𝑛𝑡𝑠 
	𝐽𝑜𝑖𝑛𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 = 
	𝐴𝑙𝑙 𝐴𝑐𝑡𝑢𝑎𝑙 𝐽𝑜𝑖𝑛𝑡𝑠 
	𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐽𝑜𝑖𝑛𝑡𝑠 
	𝐽𝑜𝑖𝑛𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦 = 
	𝐴𝑙𝑙 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐽𝑜𝑖𝑛𝑡𝑠 
	135 
	Both indicators show high percentages overall. However, there are a few exceptional situations that have resulted in missing some transverse joints and falsely detecting some longitudinal joints. Sections with considerable issues have been highlighted in yellow. 
	Table 32. Preliminary Joint Detection Results 
	Figure
	shows two examples of exceptional situations resulting in falsely identified longitudinal joints. The image on the left shows a curb on the outer right edge that was falsely identified as an additional longitudinal joint. This and similar issues have been resolved by restricting the identification of multiple longitudinal joints closer to the image edges. The image on the right shows the black lane stripe that was falsely identified as a longitudinal joint. This and similar issues have been resolved by chec
	shows two examples of exceptional situations resulting in falsely identified longitudinal joints. The image on the left shows a curb on the outer right edge that was falsely identified as an additional longitudinal joint. This and similar issues have been resolved by restricting the identification of multiple longitudinal joints closer to the image edges. The image on the right shows the black lane stripe that was falsely identified as a longitudinal joint. This and similar issues have been resolved by chec
	Figure 40 

	white stripes (if more than 30 pixels out of the 100 have lower than 30 or higher than 210 intensity) from the list of longitudinal joints. 

	Y 
	Figure 40. Examples of Exceptional Situations with Falsely Detected Longitudinal Joints (Curb Edge on the Left Image, and Lane Edge on the Right Image) 
	It should be noted that this procedure was not successful in some sections (such as Section 9 on the right in  due to the extensive presence of exceptional situations. Specifically, Section 9 had faded lane stripes in the middle of the images and were adding to the false positive joints. Therefore, Section 9 was excluded from the final evaluation. However, the faded lane stripes in Section 8 did not contribute to false positives, because those lane stripes were not in the middle of the images and this subro
	Figure 41)
	Figure 41 
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	137 
	Very Straight Cracks Faded Stripes 
	Figure 41. (left) Very Straight Longitudinal Cracks Resulting in False Longitudinal Joints in Section 5; (right) Faded Lane Stripes in the Middle of Image Resulting in False Longitudinal Joints in Section 9 
	Figure 41. (left) Very Straight Longitudinal Cracks Resulting in False Longitudinal Joints in Section 5; (right) Faded Lane Stripes in the Middle of Image Resulting in False Longitudinal Joints in Section 9 


	While some of these issues have been resolved, it is very difficult if not impossible to identify every exception and address them all. It is possible to use machine learning algorithms to develop more robust routines that would learn to distinguish joints from other lines (this also applies to the identification of other distress). However, a machine learning algorithm will need to be trained effectively on a representative database that has an adequately large number of sample images with all the noted ex
	The automatically identified joints are displayed on the images using green lines. The user can then modify, delete, or add other joints if needed. It is recommended that a systematic QC protocol be established to review the results of the software, identify the common issues to be resolved in future efforts, and rectify the joint detection results before the identification of distresses. Following the implementation task of this project, there could be a routine developed that provides the raters with a ra
	138 
	Following the identification of the longitudinal and transverse joints and removing the falsely identified joints, concrete slabs are identified as areas surrounded by joints and lane or image edges. Each slab is assigned a unique SlabID to be able to assign each of the identified distresses to corresponding slabs. shows examples of identified slabs, along with corresponding coordinates. In addition to the data fields shown in the software also provides dimensions of the slab such as length, width, and area
	Table 33 
	Table 33, 

	It should be noted that this segment of the routine can be run following the manual QC and modification of the identified joints so that the distresses are correctly assigned to corresponding slabs. 
	Table 33. Example Slabs Identified Using Joints 
	IDSlab 
	IDSlab 
	IDSlab 
	MinX (meter) 
	MinY (meter) 
	MaxX (meter) 
	MaxY (meter) 

	1 
	1 
	0 
	225.0125 
	1.283829 
	227.5494 

	2 
	2 
	1.283829 
	225.0125 
	3.430392 
	227.5494 

	3 
	3 
	0 
	228.8075 
	3.373903 
	231.8106 

	4 
	4 
	0.169465 
	234.9278 
	1.360859 
	237.8539 

	5 
	5 
	1.360859 
	234.9278 
	4.153444 
	237.8539 

	6 
	6 
	0 
	240.9556 
	1.473836 
	247.0091 

	7 
	7 
	1.473836 
	240.9556 
	4.153444 
	247.0091 

	8 
	8 
	0 
	247.0091 
	1.53546 
	253.0934 

	9 
	9 
	1.53546 
	247.0091 
	4.153444 
	253.0934 

	10 
	10 
	0 
	253.0934 
	3.89257 
	259.188 



	3.1.4 Routine to Remove False Positive Cracks 
	3.1.4 Routine to Remove False Positive Cracks 
	Following the joint detection, there were still some straight lines such as skewed joints and lane markings and stripes that were incorrectly classified as cracks. Therefore, an additional routine was developed to remove straight lines that were not classified as joints in the joint detection procedure and were considered false positives for being cracks. This routine was successful in some cases more than the others. shows one example of the successful application of this routine, where the straight lines 
	Figure 42 

	False Positive Detection False Positives Removed 
	Figure 42. Example Removing Straight Lines (False Positive Cracks) in Section 4 
	Figure 42. Example Removing Straight Lines (False Positive Cracks) in Section 4 



	3.1.5 Routine to Improve Crack Grouping and Count per Slab 
	3.1.5 Routine to Improve Crack Grouping and Count per Slab 
	The following steps describe the routine that was used to improve grouping of cracks that are close to one another and counting the cracks per slab: 
	1. 
	1. 
	1. 
	The detected lines are grouped based on the types of lines (longitudinal or transverse) 

	2. 
	2. 
	The longitudinal lines are sorted based on minimum value of y coordinate (minY), and the transverse lines are sorted based on minimum value of x coordinate (minX) 

	3. 
	3. 
	The crack pair C1 [startPoint1(sx,sy), endPoint1 (ex,ey)] and C2 [startPoint2(sx,sy), endPoint2 (ex,ey)] are connected, if and only if one of the following exists: 
	1
	1
	1
	1
	2
	2
	2
	2


	4. 
	4. 
	The corner points (vertices) of the slab are extracted, and the cracks in each slab are counted based on the relationship of crack ends and slab vertices: 


	iii. 
	iii. 
	iii. 
	Both lines belong to the category of longitudinal lines, where 

	TR
	|sx2−ex1| sy1<sy2 AND ey1<sy2 AND ≤ 1 (the trajectory between the |sy2−ey1| 

	TR
	lines is also longitudinal) AND Euclidean distance between 

	TR
	endPoint1 and startPoint2 is smaller than a threshold value (we 

	TR
	used 500 pixels) OR 

	iv. 
	iv. 
	Both lines belong to the category of transverse lines, where sx1<sx2 

	TR
	|sx2−ex1|AND ex1<sx2 AND ≥ 1 (the trajectory between the lines is |sy2−ey1| 

	TR
	also transverse) AND Euclidean distance between endPoint1 and 

	TR
	startPoint2 is smaller than a threshold value (we used 500 pixels) 


	Minx for C1 Minx for C2 startPoint1 startPoint2 endPoint1 endPoint2 C1 C2 
	Figure 43. Example of Two Transverse Cracks Grouped into One Crack 
	Figure 43. Example of Two Transverse Cracks Grouped into One Crack 


	i. Given the line startPoint (Xsp,Ysp) and endpoint (Xep,Yep) coordinates, and the slab’s upper left point being (X1,Y1) and lower right point being (X2,Y2), 
	ii. If (Xsp is between X1 and X2) AND (Ysp is between Y1 and Y2), then the startPoint (Xsp,Ysp) is considered inside the slab. If (Xep is between X1 and X2) AND (Yep is between Y1 and Y2), then the endpoint (Xep,Yep) is considered inside the slab. 
	iii. If the bounding box of a crack intersects with a slab area, that crack is counted as a crack in that slab. So, a crack would be considered to be a crack in several slabs if it crosses several slabs, unless the length of its crossing is very small. 

	3.1.6 Routine to Classify and Rate Corner Cracks 
	3.1.6 Routine to Classify and Rate Corner Cracks 
	The corner cracks are extracted based on the relationship between end points of crack and slab edges (or joints): 
	1. 
	1. 
	1. 
	A corner crack should intersect with both transverse and longitudinal joints, AND the distance from this point of intersection to the slab corner should be more than or equal to 1 foot and less than half the slab width or length (on both the transverse and longitudinal joints). 

	2. 
	2. 
	If a crack intersects a joint at a distance less than 1 foot from the corner, it is classified. Note that this crack should intersect the other joint as well. 
	 as spalling (Figure 44)


	3. 
	3. 
	Based on their location, corner cracks are classified into four types: upper left, upper right, bottom left, and bottom right. 

	4. 
	4. 
	The severity of corner cracks is rated based on their width: 


	i. Light: width <= 1/8 inch 
	ii. Moderate: 1/8 inch < width <=1/4 inch 
	iii. Severe: width > 1/4 inch 
	Corner Crack Spalling >= 1 ft >= 1 ft 
	Figure 44. Example Corner Cracks and Spalling 
	Figure 44. Example Corner Cracks and Spalling 


	< 1ft 
	It should be noted that the spalling instances that are classified in this routine are only related to cases where the cracks were not fitting the definition of a corner crack but were intersecting both the transverse and longitudinal joints of one slab. In the absence of depth data, the spalling of cracks and joints are very difficult to detect. Therefore, this spalling number does not represent the entire amount of existing spalling and it is recommended that the manual QC process accounts for this. 

	3.1.7 Routine to Classify and Rate Shattered Slabs 
	3.1.7 Routine to Classify and Rate Shattered Slabs 
	The following is the routine used for identifying shattered slabs: 
	1. 
	1. 
	1. 
	The number of regions bounded by the 'cracks inside the slab' and joints are counted. If the number is greater than four, the slab is counted as a shattered slab. Note that the grouping routine should be first satisfied before a cracked slab can be successfully classified as a shattered slab. 

	2. 
	2. 
	The severity of the shattered slab is rated based on the average width of cracks in that slab: 


	i. Moderate: width <=1/4 inch 
	ii. Severe: width > 1/4 inch 
	However, no shattered slabs were identified on the 12 representative test sections. It should be noted that the total number of occurrences of this distress type was 10 shattered slabs in all test sections. There are potentially other alternative algorithms that can better classify shattered slabs, and further investigation is required in this regard. Therefore, this is a remaining gap that needs to be closed in future (please see . 
	Table 
	36)



	3.2 Results of the Developed Rigid Pavement Distress Identification Application 
	3.2 Results of the Developed Rigid Pavement Distress Identification Application 
	Similar to the experimental design in Task 2, the evaluation of the developed distress survey method was done in the following two steps: 
	3. 
	3. 
	3. 
	Comparison of the overall cumulative quantities of various distress types found in the FDOT windshield survey, FDOT manual rating of the collected images (semiautomated survey), and the developed automated software (FRPDA). 
	-


	4. 
	4. 
	Verification of the automatically detected distresses against the reference crack maps generated through a manual rating of the collected images (Fugro semiautomated survey). 
	-



	The following sections will explain the success metrics considered for these evaluations, and the corresponding results. 
	3.2.1 Success Metrics 
	3.2.1 Success Metrics 
	During the testing and comparison experiment designed in Task 2, the following success metrics were established for each category of the above evaluations. As detailed in Chapter 2, a semi-automated approach was used as the reference survey, in which all the images collected in one run for the 12 test sections (total of 509 images) were rated by one Fugro pavement engineer and then completely reviewed and corrected (according to FDOT protocol) by two other Fugro pavement engineers. There are two advantages 
	Based on the overall cumulative amount of each distress: 
	Based on the overall cumulative amount of each distress: 
	1. 
	1. 
	1. 
	Average error (bias) was used to represent accuracy or effectiveness of each method. Accuracy can only be quantified with respect to a reference value. The difference between each FDOT rater and the reference survey in determining the amount of each distress type was normalized (divided) to the amount identified in the reference survey. The average normalized error of the three raters (in percentage) across the 12 sections was used as the bias of the FDOT manual windshield and semi-automated rating methods.

	2. 
	2. 
	To represent reproducibility of manual and semi-automated methods, average standard deviation of error among the three FDOT raters (on the same test section) was used. Standard deviation of error among the three FDOT raters was calculated for each test section and then averaged across all sections. 

	3. 
	3. 
	The repeatability (or precision) of the automated algorithm is represented by the average standard deviation of error among three runs on the same test section. Standard deviation of error among the three runs was calculated for each test section and then averaged across all sections. 

	4. 
	4. 
	To use a measure of reliability independent of the reference survey, agreement among the three FDOT raters (for manual and semi-automated methods and among the three runs for the automated method) was represented by 100 minus the coefficient of variation in the total amount of each distress type on each section among the three raters/runs. 

	5. 
	5. 
	Average standard deviation of error among the 12 sections was used to evaluate the variability of each method across different situations. 

	6. 
	6. 
	To compare efficiency of the three methods (manual, semi-automated, and automated), the time required for each survey method was estimated. 



	On a distress by distress basis (based on length): 
	On a distress by distress basis (based on length): 
	• 
	• 
	• 
	True Positives: correctly detected cracks 

	• 
	• 
	• 
	False Positives: detected cracks that don’t exist in the reference survey 

	• False Negatives: Missed cracks 

	• 
	• 
	Distress Validity (or Accuracy): an indicator to be calculated as the ratio of the correctly detected cracks (true positives) to the total detected cracks (true positives and false positives) multiplied by 100. This statistic indicates the percentage of the detected distress that was actually present in the reference survey, thereby expressing the validity of the distress detected by algorithms. 

	• 
	• 
	Distress Sensitivity (or Recall): a parameter to be calculated as the ratio of the correctly detected cracks (true positives) to the total actual cracks existing on the pavement surface (true positives and false negatives) multiplied by 100. This statistic represents the percentage of the distress in the reference survey that was detected by the automated method, thereby expressing the sensitivity of the algorithms to existing distress. 

	• 
	• 
	Distress Classification Performance: a measure of the number of correctly classified cracks (according to the reference survey), divided by the number of correctly detected cracks (true positives) multiplied by 100. This statistic indicates the percentage of the detected distress that is correctly classified by the automated algorithm. This metric does not incorporate severity of the distress. 




	3.2.2 Comparison Results on Overall Section Distress Quantities 
	3.2.2 Comparison Results on Overall Section Distress Quantities 
	The chart in demonstrates the accuracy of the automated distress identification algorithm developed in Task 3 (FRPDA) in comparison to the previously available automated method in Task 2 (WiseCrax), and to the FDOT manual (windshield) and semi-automated methods. Accuracy is defined as 100 minus the bias (average error among three raters/runs across 12 sections) in identifying each distress type using each method. In addition to the evaluation of the total distress counts in shows the accuracy of the automat
	Figure 45 
	Figure 45, 
	Figure 46 
	-

	Accuracy (%) = 100 -Bias 
	FDOT Manual 
	FDOT Semi-Automated 
	TASK2 Automated (WiseCrax) 
	98.3 97.7 97.6 
	95.0 
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	Figure
	Figure 45. Accuracy of Automated Methods in Identifying the Number of Cracks (higher bars are more accurate results) 
	TASK2 Automated (WiseCrax) 
	TASK2 Automated (WiseCrax) 
	TASK3 Automated (FRPDA) 

	Accuracy (%) = 100 -Bias 
	95.6 
	100 
	90.3 
	90 80 70 60 50 40 30 20 10 0 
	82.2 72.0 
	Transverse Cracking 
	Transverse Cracking 
	Transverse Cracking 
	Transverse Cracking 

	Longitudinal Cracking 
	Longitudinal Cracking 




	Figure 46. Accuracy of Automated Methods in Identifying the Length of Cracks (higher bars are more accurate results) 
	and show that the development efforts in Task 3 of this project have significantly increased the accuracy of the automated method in identifying both the count (80%on average) and the length (16% on average), respectively, of all distress types compared to the preliminary evaluation in Task 2. It should be noted that the preliminary automated method from Task 2 was not capable of classifying corner 
	Figure 45 
	Figure 46 
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	cracks. All these improvements show that the gap analysis and the corresponding solution design have been successful. In addition, the accuracy of the improved automated method (FRPDA) is higher than the accuracy of the manual method (FDOT windshield survey) in terms of transverse cracks (by 23% in count) and corner cracks (by 44% in count), and comparable in terms of. 
	 identifying longitudinal cracks (Figure 
	45)

	The repeatability (precision) of the automated algorithm developed in Task 3 is significantly higher (lower standard deviation among three runs for each section) compared to the automated method used in the preliminaryand . The repeatability of the automated method developed in Task 3 is higher than the reproducibility of the manual method in terms of transverse cracking and lower than the manual method in terms of longitudinal and corner cracking. As it was explained before, some of the exceptions regardin
	 evaluation in Task 2 (Figure 
	47 
	Figure 48)

	FDOT Manual 
	FDOT Manual 
	FDOT Semi-Automated 

	TASK2 Automated (WiseCrax) 
	TASK2 Automated (WiseCrax) 
	TASK3 Automated (FRPDA) 

	Standard Deviation of Error (%) Among Multiple Raters/Runs 
	100 90 80 70 60 50 40 30 20 10 0 
	27.3 14.7 37.3 28.1 39.3 77.1 40.0 19.7 36.6 73.8 Transverse Cracking Longitudinal Cracking Corner Cracking 
	Figure 47. Repeatability of Automated Methods Compared to Reproducibility of Manual and Semi-Automated Methods in Identifying the Number of Cracks (Standard Deviation of Error Among Multiple Runs/Raters: lower bars are more precise results) 
	Figure 47. Repeatability of Automated Methods Compared to Reproducibility of Manual and Semi-Automated Methods in Identifying the Number of Cracks (Standard Deviation of Error Among Multiple Runs/Raters: lower bars are more precise results) 
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	Precision : Standard Deviation of 
	Error (%) Among Multiple Runs 
	TASK2 Automated (WiseCrax) 
	TASK2 Automated (WiseCrax) 
	TASK3 Automated (FRPDA) 

	100 90 80 70 60 
	Transverse Cracking Longitudinal Cracking 
	46.4 49.7 19.1 44.7 
	50 40 30 20 10 0 
	Figure 48. Repeatability (Precision) of Automated Methods in Identifying the Length of Cracks (Standard Deviation of Error Among Multiple Runs/Raters: lower bars are more precise results) 
	and show the reliability of the automated method in identifying the count and length of cracks, respectively. The reliability has been calculated as 100 minus the coefficient of variation in overall distress values among the multiple runs/raters. The Task 3 automated method has a lower reliability in identifying longitudinal cracks compared to identifying transverse cracks. Also, Task 3 automated method has a lower reliability than the original Task 2 automated method. 
	Figure 49 
	Figure 50 

	FDOT Manual 
	FDOT Semi-Automated TASK2 Automated (WiseCrax) 
	TASK3 Automated (FRPDA) 
	Reliability (%) = 100 COV of Distress Values Among Multiple 
	-

	Raters/Runs 
	100 80 60 40 20 0 
	82.7 81.9 75.0 71.3 
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	Figure 49. Reliability of Automated Methods in Identifying the Number of Cracks (100 – Coefficient of Variation in Total Distress Amounts Among Multiple Runs/Raters: higher bars show more reliable results) 
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	Figure 50. Reliability of Automated Methods in Identifying the Length of Cracks (100 – Coefficient of Variation in Total Distress Amounts Among Multiple Runs/Raters: higher bars show more reliable results) 
	The bar chart in shows a comparison among the different methods, in terms of the standard deviation of average error among different test sections. For each method, the average error is first calculated across all raters/runs for each section, and then the standard deviation of this average error among 12 sections is calculated. The development effort in Task 3 has resulted in a significant reduction in the standard deviation of average error among different sections, which proves that the developed algorit
	Figure 51 
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	Figure 51. Variability of Automated Methods in Identifying the Number of Cracks (Standard Deviation of Error Among Different Test Sections: lower bars mean less variable results) 
	150 
	Although the variability of the automated method developed in Task 3 is comparable to the manual method in terms of transverse cracking, it is significantly higher (higher standard deviation) in terms of longitudinal cracking. shows a similar trend for the variability in identifying the overall length of each crack type. The difference in bias in identifying longitudinal cracks from one section to the other is due to the existence of exceptional circumstances in some sections as it was shown in 
	Figure 52 
	Figure 41. 

	TASK2 Automated (WiseCrax) 
	TASK3 Automated (FRPDA) 
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	Transverse Cracking Longitudinal Cracking 
	Figure 52. Variability of Automated Methods in Identifying the Length of Cracks (Standard Deviation of Error Among Different Test Sections: lower bars mean less variable results) 
	shows a comparison of efficiency (speed) of the automated method (running the detection batch processor followed by the FRPDA) for distress identification in comparison to other distress identification methods. Based on an estimation by FDOT raters, the manual distress surveys are typically conducted at an average speed of 2 mph (1 to 3 mph depending on the amount and severity of distresses present) and the survey speed for the automated method developed in Task 3 is slightly greater than that. Therefore, t
	Figure 53 
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	Figure 53. Comparison of Efficiency (Speed) of Automated to Semi-Automated Methods. 
	shows all the above success metrics for the FDOT manual (windshield), FDOT semi-automated, Task 2 automated (WiseCrax), and Task 3 automated (FRPDA) surveys. 
	Table 34 

	Table 34. Overall Success Metrics based on Cumulative Count Values 
	Statistic 
	Statistic 
	Statistic 
	Crack Type 
	FDOT Manual 
	FDOT Semi-Automated 
	TASK2 Automated (WiseCrax) 
	TASK3 Automated (FRPDA) 

	Accuracy (%) = 100 -Bias 
	Accuracy (%) = 100 -Bias 
	Transverse 
	75 
	93 
	24 
	98 

	Longitudinal 
	Longitudinal 
	98 
	98 
	0 
	95 

	Corner 
	Corner 
	33 
	85 
	Not Rated 
	77 

	Average 
	Average 
	68 
	92 
	12 
	90 

	Repeatability/Reproducibility (%) = Standard Deviation of Error Among Multiple Runs/Raters 
	Repeatability/Reproducibility (%) = Standard Deviation of Error Among Multiple Runs/Raters 
	Transverse 
	27 
	28 
	40 
	20 

	Longitudinal 
	Longitudinal 
	15 
	39 
	157 
	37 

	Corner 
	Corner 
	37 
	77 
	Not Rated 
	74 

	Average 
	Average 
	26 
	48 
	98 
	43 

	Reliability = 100 -COV of Distress Values Among Multiple Raters/Runs 
	Reliability = 100 -COV of Distress Values Among Multiple Raters/Runs 
	Transverse 
	83 
	82 
	75 
	71 

	Longitudinal 
	Longitudinal 
	82 
	67 
	65 
	55 

	Corner 
	Corner 
	42 
	7 
	Not Rated 
	25 

	Average 
	Average 
	69 
	52 
	70 
	50 

	Standard Deviation of Error (%) Among Sections 
	Standard Deviation of Error (%) Among Sections 
	Transverse 
	61 
	41 
	98 
	65 

	Longitudinal 
	Longitudinal 
	45 
	53 
	279 
	71 

	Corner 
	Corner 
	63 
	42 
	Not Rated 
	79 

	Average 
	Average 
	56 
	45 
	188 
	71 

	Efficiency = Speed (mph) 
	Efficiency = Speed (mph) 
	Average 
	2.0 
	0.2 
	0.7 
	2.1 


	152 

	3.2.3 Verification of Automatically Detected Cracks 
	3.2.3 Verification of Automatically Detected Cracks 
	Based on the results of the gap analysis conducted in Task 2, the majority of the development efforts in Task 3 focused on joint detection, and grouping, classification and rating of detected lines on pavement images (FRPDA). The surface lines (either cracks or joints or lane stripes or vehicle counter loops) on pavement images were detected using the same detection routine (based on WiseCrax) in both Task 2 and Task 3 efforts. Therefore, the results of crack detection in Task 3 have not substantially chang
	shows the results of this verification, which was conducted again in Task 3 based on 24 sample images (5% of the total 509 images). Two images were selected from each of the 12 test sections, and the detected cracks were compared against the reference survey one by one. These 24 processed images have been provided in Appendix for reference. In this table, the following success metrics have been evaluated. In these equations, true positives are the cracks that were detected and actually present on pavement s
	Table 35 
	H 

	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
	𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦 = = 
	𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = = 
	𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑎𝑐𝑘𝑠 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 
	𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 
	𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
	Table 35. Average Values for Crack Verification Metrics based on 24 Sample Images (based on length) 
	Table
	TR
	Validity 
	Sensitivity (or Recall) 
	Classification Performance 

	Average 
	Average 
	72% 
	73% 
	86% 

	Std Deviation 
	Std Deviation 
	45% 
	38% 
	36% 

	shows the length of cracks in the reference crack map, against the amount of true positive, false positive, and false negative. Except for Image 5 from Section 3 and Image 11 from Section 6, the detection process has identified true positives comparable to reference values. The amount of false positive is considerable (more than 5 feet) in Image 1 (Section 1), Image 8 (Section 4), and Images 9-10 (Section 5). The length of 
	shows the length of cracks in the reference crack map, against the amount of true positive, false positive, and false negative. Except for Image 5 from Section 3 and Image 11 from Section 6, the detection process has identified true positives comparable to reference values. The amount of false positive is considerable (more than 5 feet) in Image 1 (Section 1), Image 8 (Section 4), and Images 9-10 (Section 5). The length of 
	Figure 54 
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	missed cracks is significant only in Image 5 from Section 3 and Image 11 from Section 
	6. The reason for these isolated issues can be further investigated by examining the processed images that have been documented in Appendix For example, Image 5 of Section 3 and Image 11 from Section 6 have missed longitudinal cracks that were not detected by the detection routine. Image 8 from Section 4 shows straight lines from a vehicle counter loop that has been falsely identified as transverse joints. Images 9 and 10 of Section 5 have skewed joints that is a limitation for FRPDA and are falsely identif
	H. 
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	Figure 54. Verification of Length of Automatically Detected Cracks Against Reference on Sample Images 
	compares the amount of true positive and correctly detected true positives against the reference values. It seems like there were considerable difference between the length of true positives and correctly detected true positives in Image 16 (Section 8) and Image 24 (Section 12). Image 16 is showing a fairly straight transverse crack that was falsely rated as a transverse joint. Image 24 is showing a corner crack that has been identified as a transverse crack because part of the crack has not been detected. 
	Figure 55 
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	Figure 55. Verification of Length of Automatically Rated Cracks Against True Positives on Sample Images 


	3.3 Summary and Recommendations for Implementation 
	3.3 Summary and Recommendations for Implementation 
	During Task 3 of this research project, software routines were developed based on the gap analysis and solution design that was conducted in Task 2. This report presents the results of the final evaluation of the developed routines in identifying and quantifying the rigid pavement cracks. Based on this final evaluation, the following are the main observations: 
	• 
	• 
	• 
	Following the development efforts in Task 3, the accuracy and repeatability of the automated algorithm (FRPDA) has increased significantly. This observation means that the gap analysis and the solution design were instrumental in addressing the issues with the preliminary automated method and therefore, further improvements are possible through a similar analysis. 

	• 
	• 
	• 
	The accuracy of the automated algorithm (FRPDA) in identifying transverse and corner cracks (with respect to semi-automated reference values) is higher than the manual windshield survey method conducted by FDOT staff. The accuracy of the automated method is comparable to the manual method in terms of longitudinal cracks. This means that the automated method could be replacing the manual survey in identifying these three crack types. Other distress types 

	(e.g. shattered slabs, spalling, and patching) could be identified using a semiautomated review of the collected images. This semi-automated review would be part of the QC process. It will be extensive and time consuming at the beginning of the implementation but will evolve towards more sampling and become more efficient after several years of implementation. 
	-


	• 
	• 
	The repeatability of the automated method (FRPDA) is higher than the reproducibility of the manual survey in identifying transverse cracks and lower in terms of other crack types. This means that the bias of the automated routine in identifying longitudinal and corner cracks can vary from run to run. It is worth to note that the repeatability of the automated results is comparable to the reproducibility of semi-automated results for longitudinal and corner cracking. The fact that both automated (FRPDA) and 

	• 
	• 
	The bias of the automated routine in identifying longitudinal cracks and corner cracks can vary from section to section depending on the exceptional circumstances that could result in false positives or missed. Thus, a systematic quality control process is required. 
	 cracks (Figure 41)
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	There are several gaps that have been identified after the development and evaluation of the FRPDA in Task 3, which are listed in 
	Table 36. 

	Table 36. Remaining Gaps at Conclusion of Task 3 
	Number 
	Number 
	Number 
	Remaining Gap 
	Recommended Solution 

	1 
	1 
	Very straight longitudinal cracks might be rated as longitudinal joints 
	Implement a data collection protocol to avoid lane stripes in the middle of images, Manual QC and intervention, these situations are not frequent 

	2 
	2 
	Partially faded, or non-straight and jagged longitudinal lane stripes in the middle of the lane might be rated as longitudinal cracks 

	3 
	3 
	Skewed joints cannot be detected (even though they are not the predominant design anymore) 
	Manual QC and intervention, these situations are not frequent 

	4 
	4 
	Still some run to run variation (on different images of same section) 
	Implement a data collection protocol to avoid significant wander and variation between images 

	5 
	5 
	shattered slabs are not rated successfully 
	Revisit the algorithm, test other alternatives 

	6 
	6 
	Not rating spalling of crack and joint edges 
	Manual intervention in the short term, collect 3D data and use machine learning in the long-term 

	7 
	7 
	Not rating patching 


	Based on these observations, the following recommendations are provided for FDOT to consider with respect to the annual condition surveys of rigid pavements: 
	• 
	• 
	• 
	Use the developed automated algorithm (FRPDA) to automatically detect and identify the transverse, longitudinal, and corner cracks. Use a semi-automated routine to identify other distress types (e.g. shattered slabs, spalling, and patching) that have not been identified using the algorithm. This semi-automated routine should also be used for quality control of the results (specially to address the lower precision and repeatability in identifying longitudinal cracks). 

	• 
	• 
	Develop a systematic procedure for implementing the results of this study for collecting, processing, and integrating pavement images; conducting image filtering; crack detection; and finally, crack classification and rating. This systematic procedure needs to also include a quality control and quality assurance protocol for each step. 

	• 
	• 
	Following implementation of this automated distress survey procedure, further improvements to the automated algorithm can be designed based on further evaluations on actual surveys. These improvements can be implemented to enhance automated distress results and reduce the need for human intervention. 

	• 
	• 
	If possible, using a 3D imaging technology can also significantly improve the results of crack detection and crack classification and rating. In the absence of 3D data, some distress types such as patching, and spalling cannot easily be detected. Spalling of cracks and joints are more pronounced in 3D images, because the technology darkens the areas that are lower than the nominal pavement surface. In addition, the 3D texture data can assist in recognizing the changes in pavement surface type, which can pot


	With proper implementation of the developed automated routine and a systematic quality control procedure, the annual condition evaluation for rigid pavements can become more effective, efficient, reliable, and safe. 
	CHAPTER 4 – LRIS FEASIBILITY ON FLEXIBLE PAVEMENTS 
	Under Task 4, Fugro analyzed the viability of using 2D LRIS images to detect, quantify and classify cracks in flexible pavements. Fugro processed 2D LRIS images and data to be used in software evaluation. Fugro identified the potentials and the limitations of 2D pavement image technology for flexible pavements. The results from the analysis and recommendations are documented in this chapter. 
	Task 4 was subdivided into four (4) subtasks: 
	1) Data Collection was conducted by FDOT staff using their 2D LRIS equipment 
	2) Data Processing, including preparation and importing of LRIS data into the data viewing system, crack detection, and distress identification 
	3) Evaluation of the automatically detected cracks and identified distresses compared to the reference survey 
	4) Potentials and Limitations of the LRIS Technology for crack detection and distress identification 
	This chapter is organized in five sections. Section provides a report on a data collection conducted by FDOT staff. Section explains the data processing and data analysis details. Section explains the evaluation of the automated distress survey results on 2D LRIS images and the corresponding potentials and limitations. Section includes conclusions and recommendations. 
	4 
	4.2 
	4.3 
	4.4 

	4.1 Data Collection 
	4.1 Data Collection 
	The 2D images were collected on 12 representative flexible pavement test sections by FDOT staff. Data collection for this task was completed in May 2017. This section describes what types of data were collected, the equipment used for collection, and where data was collected. 
	4.1.1 Collected Data Elements 
	4.1.1 Collected Data Elements 
	All collected data is referenced geographically and linearly to FDOT’s inventory based 
	on the provided Location Referencing System (LRS). The collected data include the following: 
	▪
	▪
	▪
	▪

	2D pavement images using the Laser Road Imaging System (LRIS) 

	▪
	▪
	▪

	Pavement longitudinal profile using an Inertial Profiler System (IPS) 

	▪
	▪
	▪

	Pavement transverse profile using the Laser Rut Measurement System (LRMS) 

	▪
	▪
	▪

	Differential Global Positioning System (GPS) data 

	▪
	▪
	▪

	Distance Measuring Instrument (DMI) data integrated with GPS data 



	4.1.2 Data Collection Equipment 
	4.1.2 Data Collection Equipment 
	The 2D images and data were collected using the LRIS equipment manufactured by INO/Pavemetrics and integrated on an International Cybernetics Corporation (ICC) high-speed profiler host vehicle . It should be noted that as part of a separate purchase order, Fugro collected 3D images and data from the same locations using the 
	(Figure 56)

	LCMS equipment manufactured by INO/Pavemetrics and integrated on Fugro’s 
	Automatic Road Analyzer (ARAN) host vehicle. For more information on that effort, please refer to the Purchase Order Report included in Appendix 
	I. 

	Figure
	Figure 56. FDOT LRIS Equipment 
	Figure 56. FDOT LRIS Equipment 



	4.1.3 Testing Locations 
	4.1.3 Testing Locations 
	Similar to Phase I of this project, 12 representative flexible pavement test sections  were selected by FDOT staff for Phase II evaluations. These representative test sections were selected in a manner that would include the key distress types and severity levels that are frequently encountered on Florida highways. 
	(Table 37)

	Table 37. Representative Flexible Pavement Test Sections 
	Index 
	Index 
	Index 
	County ID 
	Road 
	City 
	Lane 
	Direction 
	BMP 
	EMP 
	Length 

	1 
	1 
	02050000 
	SR 44 
	Crystal River 
	R2 
	East 
	0.000 
	0.604 
	0.604 

	2 
	2 
	02050000 
	SR 44 
	Crystal River 
	L2 
	West 
	0.000 
	0.604 
	0.604 

	3 
	3 
	11010000 
	SR 44 
	Leesburg 
	R2 
	East 
	0.000 
	1.592 
	1.592 

	4 
	4 
	11100000 
	SR 19 
	Umatilla 
	R2 
	North 
	3.816 
	4.906 
	1.090 

	5 
	5 
	11002000 
	SR 44 
	Leesburg 
	R2 
	East 
	1.183 
	2.276 
	1.093 

	6 
	6 
	11002000 
	SR 44 
	Leesburg 
	R2 
	East 
	3.184 
	4.514 
	1.330 

	7 
	7 
	11080000 
	SR 19 
	Howey in the Hills 
	R1 
	North 
	0.000 
	0.925 
	0.925 

	8 
	8 
	18020000 
	SR 50 
	Polk City 
	R1 
	East 
	5.356 
	6.421 
	1.065 

	9 
	9 
	26050000 
	SR 24 
	Gainesville 
	L2 
	South 
	3.367 
	6.095 
	2.728 

	10 
	10 
	26050000 
	SR 24 
	Gainesville 
	L2 
	South 
	6.095 
	7.670 
	1.575 

	11 
	11 
	10190000 
	SR 400 / I-4 
	Tampa 
	R3 
	East 
	11.098 
	12.332 
	1.234 

	12 
	12 
	10190000 
	SR 400 / I-4 
	Tampa 
	R3 
	East 
	20.407 
	21.476 
	1.069 




	4.2 Data Processing 
	4.2 Data Processing 
	This section provides a brief overview of the methodology behind some of the key processing steps conducted and any project specifications unique to this project. 
	4.2.1 Import Data 
	4.2.1 Import Data 
	The LRIS data collected by FDOT staff had to be imported into a Vision database to be able to display and analyze the data in the Vision software. First, the quality of the data files needed to be evaluated since this data was not collected using the Fugro ARAN vehicles and were not always compatible with the Vision software. 
	Data Review 
	Data Review 
	The purpose of this procedure is to review the contents of the data collected by the ICC Equipment provided by Florida DOT. This will review the existing information as well as look for needed information for importing the collected data to Fugro's Vision software. 
	The data provided by FDOT included nine folders, and each folder were named in the following format: ‘County ID_Route Name_Pavement Type_Start Mile Post-End Mile Post’. For example, a folder named 02050_SR44_AC_0-0.604 includes data collected for test section 1 (out of 12), for which county ID is ‘02050000’, route name is ‘SR44’, pavement type is asphalt concrete, start mile post is 0.0 and end mile post is 0.604. 
	The data collected for any adjacent sections (start point of one section is the end point of another) and any reverse sections (start points, and end points are the same but collection directions are opposite) are stored in the same folder. 
	Each folder includes two sub folders: Images and Profiler. The ‘Images’ folders hold all pavement images collected for the corresponding test sections, while the ‘Profiler’ folders provide information such as distance stamp of each image, and GPS coordinates recorded during the data collection. 
	After examination all files in the ‘Profiler’ folder, four files are identified as required for importing data to Vision database. shows these files. 
	Table 38 

	11.: This file contains information, such as Distance stamp, GPS coordinates, county ID and file path of pavement images collected by the LRIS equipment. This file is stored in csv (comma-separated values) format in the file folder. 
	Image File

	12.: This file provides more detailed GPS coordinates information of each pavement image collected. The GPS coordinates are updated every 0.2 seconds of UTC time. This file is stored in G01 format in the file folder. 
	GPS File

	13.Reference File: This file contains measurement information that are referenced from other files in the same folder. 
	14.: This file includes section information, such as County ID, Route name, mile post of start points and end points of each section. This file is stored in csv format in the file folder. 
	Section File

	Table 38. Four Types of FDOT ICC Vehicle Files Used in Importing Process 
	File Type 
	File Type 
	File Type 
	File Naming Rule 
	File Name Example 

	Image File 
	Image File 
	xxxx_img_3.csv 
	02050L2_Img_3.csv 

	GPS File 
	GPS File 
	xxxx.G01 
	02050L2.G01 

	Reference File 
	Reference File 
	xxxx.N01 
	02050L2.N01 

	Section File 
	Section File 
	Xxxx_six_01.csv 
	02050L2_six_01.csv 



	Standard Folder Structure 
	Standard Folder Structure 
	After thorough discussions, a new folder structure and file naming rules were agreed between FDOT and Fugro as the standard folder structure. The purpose for this standard folder structure is to minimize future need for changes in the SQL code that imports FDOT data into Fugro’s Vision software. shows the standard folder structure and shows an example. 
	Figure 57 
	Figure 58 

	Year 
	├── By County 
	│ └── County Name ├── Pavement Type │ └── Collection Name 
	└── Images 
	└── MDR └── xxxx_img_3.csv └── xxxx.G01 └── xxxx.N01 └── xxxx_six_01.csv 
	└── ROW Images └── Vision Output 
	Figure 57. Agreed Folder Structure 
	2017-2018 
	├── By County 
	│ └── 50 Gadsdent ├── Flexible │ └── 50000340 
	└── Images 
	└── MDR └── 02050L2_img_3.csv └── 02050L2.G01 └── 02050L2.N01 └── 02050L2_six_01.csv 
	└── ROW Images └── Vision Output 
	Figure 58. Folder Structure Example 

	Data Preprocessing Tool 
	Data Preprocessing Tool 
	During this stage, the raw data collected by ICC equipment are cleaned (remove redundancies), standardized, and transformed by the developed Java based data 
	preprocessing tool. The Java tool first renames the Image Information files, GPS files, reference files and section files to ensure: 1) files for the same sections have the same file name, and 2) files for the different sections have different file names, then separates the Image Information files and GPS files into one file per sub-section according to the section boundaries that have been provided by FDOT staff. This pre-processing has been described in Appendix 
	M. 


	Import Processed data to Vision Database 
	Import Processed data to Vision Database 
	During this stage, the pre-processed data is imported into a Vision database. First, a blank Vison database is created using the DBGen tool provided in the Vision software package. Database objects such as tables, views, stored procedures, functions are loaded in the new created blank database, according to the database template in the DBGen tool. 
	 (Figure 59)

	Figure
	Figure 59. Fugro DBGen Software Interface for Creating Blank Vision Databases 
	Figure 59. Fugro DBGen Software Interface for Creating Blank Vision Databases 


	Then, the pre-processed data are uploaded into the Vision database with the developed SQL scripts, included in Appendix of this report. Key information such as distance stamp, GPS coordinates, image file names are extracted from pre-processed data and loaded into the corresponding tables. With the data successfully integrated into the Vision database, the Vision software can connect to the database and display various information about road sections, locations and pavement. is the database diagram illustrat
	M 
	 images (Figure 60)
	Figure 61 

	Figure
	Figure 60. Fugro Vision Interface Showing the Imported Sections 
	Figure 60. Fugro Vision Interface Showing the Imported Sections 


	Figure
	Figure 61. Vision Database Basic Tables and Relations 
	Figure 61. Vision Database Basic Tables and Relations 



	Identified Errors in Data Files 
	Identified Errors in Data Files 
	Sample data sets were provided by FDOT for assuring and checking the quality of developed Java app and SQL code. If all the above steps were closely followed, no exceptions happened during data importing stage, while some errors occurred when operating the automated joint detection processor in Vision software. The root cause of errors was investigated, and it was found that all these errors were caused by certain 
	Sample data sets were provided by FDOT for assuring and checking the quality of developed Java app and SQL code. If all the above steps were closely followed, no exceptions happened during data importing stage, while some errors occurred when operating the automated joint detection processor in Vision software. The root cause of errors was investigated, and it was found that all these errors were caused by certain 
	issues in the provided data files. Two typical errors have been identified in the provided data, which are documented here to avoid them in future: 

	1. 
	1. 
	1. 
	In some examples, the same start and end mile posts were recorded for multiple rows in the saved data files, as seen in the . 
	Wrong start mile post and end mile post: 
	example below (Figure 62)


	2. 
	2. 
	: The length of test section should be longer than LRIS image height, which is 6.11 meter, approximately 0.004 mile. In some data files, the recorded length was less than this minimum. 
	Invalid length of test section



	Figure
	Figure 62. Typical Error in Mile Post Data 
	Figure 62. Typical Error in Mile Post Data 




	4.2.2 Segmentation 
	4.2.2 Segmentation 
	Segmentation is the method of ensuring the data collected by the ICC equipment matches the geographic and linear references set up by FDOT. The segmentation process is completed to match the true start and stop locations of the road section to ensure that the collected data represents the exact location expected by FDOT. The matching of information was completed using Fugro’s Vision and utilizing site information provided by FDOT. 
	Stationing for all routes was adjusted using a method called “rubber-banding”, to match stationing provided by FDOT. All data collected prior to the start of the route are removed and the chainage of the beginning of the route is set to the FDOT value for that landmark. Chainages for all other landmarks on the route are adjusted to match length and location information provided by FDOT. In the “rubber-banding” process, data between each set landmark may be stretched or compressed accordingly to ensure stati

	4.2.3 Distress Data Analysis Process 
	4.2.3 Distress Data Analysis Process 
	The actual software development effort for this project was carried out during Task 6 of Phase II, and therefore at this stage of the analysis, the existing Fugro Vision software was used due to its availability with the integrated images and data. Therefore, the following software descriptions are the Vision software descriptions and not the descriptions for the FDOT customized application at this point of the project. Fugro Vision software includes an automated distress data analysis application, which in
	4. 
	4. 
	4. 
	: during this step, lane boundaries are automatically detected and marked as blue lines on the pavement images. 
	Lane Detection


	5. 
	5. 
	: also called “Crack Detection,” during which any linear defects on pavement surface is detected and marked with lines. 
	Defect Detection


	6. 
	6. 
	: during this step, all the detected linear defects are classified into one of the three categories of longitudinal defects, transverse defects, and other (which will eventually be rated as alligator or block cracking) defects according to some criteria for defect angle and density, which can be changed by the user. 
	Defect Classification


	7. 
	7. 
	: during this final step, the software assigns a distress type and severity to each of the classified defects according to a distress schema defined by the user based on their experience. The user needs to select one or more criteria from a series of criteria such as angle, longitudinal and transverse extent, density, width, and others for each distress type and severity. Once the schema is established, this schema can be applied for network-level data collection. 
	Distress Rating



	Distress Schema Specification 
	Distress Schema Specification 
	The performance of crack detection, classification and rating is highly dependent on a well-defined distress schema. The setting up of distress schema includes creation of Distress Type, Distress Severities, Crack Ranges, Detection Profile, Classification Profile, Road Zones and Rating Profile. In this project, the distress schema was setup according to the specified criteria for each distress type in the FDOT Flexible Pavement Condition Survey Handbook (2017). Once the schema is setup and saved, this schem
	 (Figure 63)

	The Vision software provides two options for distinguishing distresses by zone location: 
	1. 
	1. 
	1. 
	In the distress schema, only one distress type would be setup for both wheel path (WP) and outside wheel path (OP), but then they could be separated using a SQL code on the database based on the location information. This option is more flexible as it does not require reprocessing if it is decided to change the width of wheel path zones in the future. Specifically, if the images are going to be rated manually or if the automated distress needs manual QC and correction, this option is recommended. It is extr
	 (Figure 63)


	2. 
	2. 
	In the distress schema, separate distress types could be setup for WP and OP areas . This option is recommended when no manual correction of the automated process is needed. In this stage of the project, option number 2 was used for the automated distress survey. 
	(Figure 64)



	Figure
	Figure 63. Vision Distress Schema Editor Interface with One Distress Type for Both Wheel Path and Outside Wheel Path Zones (Option 1) 
	Figure 63. Vision Distress Schema Editor Interface with One Distress Type for Both Wheel Path and Outside Wheel Path Zones (Option 1) 
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	Figure
	Figure 64. Vision Distress Schema Editor Interface with Separate Distress Types Defined for Wheel Path and Outside Wheel Path Zones (Option 2) 
	Figure 64. Vision Distress Schema Editor Interface with Separate Distress Types Defined for Wheel Path and Outside Wheel Path Zones (Option 2) 



	Distress Type and Severity 
	Distress Type and Severity 
	Distress types are defined under the ‘Distresses’ tab and the severities under the ‘Severities’ tab. Then, each distress type is assigned the possible severity options. FDOT’s Flexible Pavement Condition Survey Handbook (2017) includes the following distress types and severities: 
	15.Single Cracks (linear length, feet), Class 1B or Class II or Class III 16.Branch Cracks (linear length, feet), Class 1B or Class II or Class III 17.Block Cracks (area, sq. feet), Class II or Class III 18.Alligator or Fatigue Cracks (area, sq. feet), Class II or Class III 19.Patching (area, sq. feet), no severity levels 20.Raveling (area, sq. feet), Light or Moderate or Severe 
	During the distress rating process, these distress types are identified and quantified individually and then they are added up to generate the total amount of cracking in each one of the Class 1B, Class II, and Class III cracks. All linear distress types are recorded in two groups of longitudinal and transverse to differentiate their orientation and facilitate 
	169 
	quality control, but they are added up for each distress type (for example, branch cracks or single cracks) following the survey. 
	Following the distress survey, two categories of distress will be recorded for each of these distress types: within the wheel paths (CW), and outside the wheel paths (CO). For automated survey results, this differentiation was made in the schema setup (option 2). For the reference survey, this differentiation was conducted using a SQL code (option 1). This is required for the final calculation of the amount of distress in each class within and outside the wheel paths, because the deduct values are higher fo
	The total area for patching and raveling is added to the total amount of Class III cracks. The details of each distress type and severity are recorded to keep a permanent record that facilitates quality control and quality assurance initiatives. All the summation happens on the recorded data in the SQL database. 

	Crack Range 
	Crack Range 
	Under the ‘Cracks’ tab in the Distress Schema Editor, a coloring scheme is defined for 
	identification of the detected cracks/defects on the pavement image according to crack . The following crack ranges were determined for this project as they correspond to the severity levels identified in the FDOT manual: 
	width (Figure 65)

	1. 
	1. 
	1. 
	Small cracks with crack width less than 3.18 mm are identified with blue color lines (later assigned to Class 1B category in distress rating) 

	2. 
	2. 
	Medium cracks with crack width equal to or greater than 3.18 and less than 6.35 mm are identified with yellow color lines (later assigned to Class II category in distress rating) 

	3. 
	3. 
	Large cracks with crack width equal to or greater than 6.35 mm are identified with a red color lines (later assigned to Class III category in distress rating) 


	The “Max Width” in means “less than” and the “Min Width” indicates “equal to or greater than”. As previously noted, this is NOT the FDOT customized application. At 
	Figure 65 

	this stage, we are using the existing Vision software to compare 2D versus 3D data. The FDOT customized application will be developed during Task 6 (development). Also 
	patching and raveling are “distresses” and NOT “cracks”. This menu is ONLY showing cracks. After the distresses are identified in the “rating” process, patching and raveling can be added. 
	Following the crack detection process, the detected cracks are displayed on top of the pavement images with the colors corresponding to their width. As shown in the Cracks menu also allows selection of specific coloring scheme for the classification categories of Longitudinal, Transverse, Alligator, Block, and Unclassified categories. Following the classification process, each class of cracks are identified on top of pavement images using the corresponding colors. These colors help with quality control of t
	Figure 65, 

	Figure
	Figure 65. Cracks Menu in the Distress Schema Editor 
	Figure 65. Cracks Menu in the Distress Schema Editor 


	The default crack color displayed in the user interface shows the width range of the crack. For example, the widths of cracks in green color are less than or equal to 
	3.18 mm. The colors can also be changed to represent the type of crack using the drop menu as shown in 
	Figure 66. 

	Figure
	Figure 66. Changing the Colors of the Displayed Cracks 
	The same color cannot be used for cracks of the same type or same width ranges, but there are no conflicts if the same color is used for ‘Range’ and ‘Type’. 

	Detection and Classification Profiles 
	Detection and Classification Profiles 
	Under the ‘Profiles’ tab in the Distress Schema Editor, the control parameters for the crack detection and classification processes are determined. The software typically 
	Under the ‘Profiles’ tab in the Distress Schema Editor, the control parameters for the crack detection and classification processes are determined. The software typically 
	shows the default values for these control parameters that have been set based on empirical experience. In the Task 2 report for this project, various control parameters for the detection of cracks from 2D images and for the classification of detected cracks into transverse and longitudinal categories were introduced and the impacts on software performance of changing each control parameter were explained in detail. 
	Figure 67 


	shows the ‘Profiles’ tab, which allows for customization of the control parameters for the 
	crack detection and classification processes. 
	Figure
	Figure 67. Detection and Classification Profiles in the Distress Schema Editor 
	Figure 67. Detection and Classification Profiles in the Distress Schema Editor 


	Vision provides two alternative automated crack detection algorithms to choose from when running this process on 2D images: 
	1. 
	1. 
	1. 
	: This automated crack detection algorithm was developed by Fugro and used in Phase I of this project. This algorithm detects cracks based on image pixel intensities. For details of this methodology please refer to Task 2 report. 
	WiseCrax Crack Detection


	2. 
	2. 
	: This machine learning automated crack detection algorithm was recently developed by Fugro engineers, based on a large database of semi-automated evaluation of 2D images. 
	Fugro Machine Learning Crack Detection



	The Fugro machine learning based 2D crack detection algorithm has been tested on numerous pavement surface images and its corresponding control parameters have been optimized in the latest version of Vision software. As a result, it is recommended that the detection parameters are not changed. Due to superior performance on multiple recent statewide projects, the machine learning algorithm was used for this analysis. 
	In the classification step, there are several parameters that can be changed to improve the classification. For this phase of the project, eight classification profiles using eight different control parameter sets were used, and the final classification profile was selected based on the best results among these profiles. 
	 results (Table 39)

	Table 39. Classification Parameter Settings 
	Parameter 
	Parameter 
	Parameter 
	Description 
	Value Used 

	Classification Enabled 
	Classification Enabled 
	Enables classification 
	TRUE 

	Separate Seal Classification 
	Separate Seal Classification 
	Classifies sealed cracks separately 
	FALSE 

	Degree Angle 
	Degree Angle 
	Angle threshold differentiating between longitudinal and transverse defects, this is the angle for the best fit line across the crack nodes 
	45 

	Density 
	Density 
	The density threshold beyond which there are enough cracks within a tile to count the tile area as alligator cracking area and not individual cracks. 
	1.5 

	Tile Height (pixels) 
	Tile Height (pixels) 
	Tile used for calculating the density of 
	400 

	Tile Width (pixels) 
	Tile Width (pixels) 
	the alligator or block categories 
	200 

	Group Tile Height (pixels) 
	Group Tile Height (pixels) 
	Tile used for grouping defects together (see Figure 68). Cracks that fall within these grouping tiles and are of the same 
	Tile used for grouping defects together (see Figure 68). Cracks that fall within these grouping tiles and are of the same 

	50 

	Group Tile Width (pixels) 
	Group Tile Width (pixels) 
	classification will be grouped together to make one crack set or group of cracks. 
	10 


	Figure
	Figure 68. Group Tile Height and Width 
	Figure 68. Group Tile Height and Width 


	The tuning of the classification control parameters was conducted by changing the parameters one by one and comparing the one classification result against the other. shows a comparison of the classification results when changing the density threshold that defines when cracks become alligator cracks. To compute crack density, the bounding box of a crack is divided into grids of tiles of user input size. If the density threshold is increased, there will be less distresses classified as alligator cracking. sh
	Figure 69 
	Figure 69 

	Density threshold=1.5 Density threshold=2 
	Figure 69. Comparison of Classification Control Parameter Settings: Density 
	Figure 69. Comparison of Classification Control Parameter Settings: Density 


	Tile Height= 400, Tile Width= 200 Tile Height= 400, Tile Width= 400 
	Figure 70. Comparison of Classification Control Parameter Settings: Tile Height and Width 
	Figure 70. Comparison of Classification Control Parameter Settings: Tile Height and Width 


	175 
	During the classification, the detected cracks are grouped into crack sets based on their proximity to each other. The distances between each crack bounding box are checked; if the horizontal distance between two adjacent bounding boxes is smaller than the group tile width and the longitudinal distance between the boxes is smaller than group tile height, then the two cracks are merged into one crack set. Each crack set will be rated as one distress. shows a comparison of the classification results when chan
	Figure 71 
	Figure 68)

	Group Tile Height: 50 Group Tile Width: 10 Group Tile Height: 50 Group Tile Width: 50 
	Figure 71. Comparison of Classification Control Parameter Settings: Group Tile Height and Width 
	Figure 71. Comparison of Classification Control Parameter Settings: Group Tile Height and Width 



	Road Zone 
	Road Zone 
	Road zone describes the portion of the road that is in the wheel paths and what is outside the wheel paths. The road zones were customized according to the Florida DOT specification of each wheel path being three feet wide (the FHWA HPMS Field Manual of December 2016 specifies one meter) and the center zone being three feet (0.91 meters) wideand : 
	 (Figure 72 
	Figure 73)

	1. Left Exterior: 0 meters offset from the Left Edge to -1.365 meters offset from the Center 
	176 
	2. 
	2. 
	2. 
	Left Wheel Path: -1.365 to -0.455 meters offset from the Center 

	3. 
	3. 
	Center: -0.455 to 0.455 meters offset from the Center 

	4. 
	4. 
	Right Wheel Path: 0.455 to 1.365 meters offset from the Center 

	5. 
	5. 
	Right Exterior: 1.365 meters offset from the Center to 0 meters offset from the Right Edge 


	Figure
	Figure 72. Wheel Path Designation in FDOT Flexible Distress Handbook (2017) 
	Figure 72. Wheel Path Designation in FDOT Flexible Distress Handbook (2017) 


	Figure
	Figure 73. Road Zone Settings 
	Figure 73. Road Zone Settings 



	Rating Profile 
	Rating Profile 
	The Rating Profile is used for assigning a distress type and severity to each of the detected and classified surface defects. This profile contains several components including profile name, profile description and rating rules. The rating rules configuration include distress rule set up and severity rule set up. While the Distress Rules specify classification of crack, the road zone, and distress metrics to be calculated, the Severity Rules determine detailed constraints on distresses that will be rated in
	Distress Rules are setup based on the following: 
	1. : following detection and classification, all cracks are classified into Longitudinal, Transverse, Alligator, or Block. As previously noted, there are two options for distinguishing distresses by zone location. and show the distress types that were considered for this project and their corresponding crack classification for option 1 and option 2, respectively. As it was noted before, these distress types are used for documenting the distresses in a permanent record to facilitate quality control. 
	Crack Classification
	Table 40 
	Table 41 

	Table 40. Distress Types and Corresponding Crack Classification and Severity Levels (option 1 corresponding to used for the reference survey) 
	Figure 63 

	Distress Name 
	Distress Name 
	Distress Name 
	Crack Classification 
	Severity Levels 

	SingleCrack_L 
	SingleCrack_L 
	Longitudinal 
	1B, II, III 

	SingleCrack_T 
	SingleCrack_T 
	Transverse 
	1B, II, III 

	BranchCrack_L 
	BranchCrack_L 
	Longitudinal 
	1B, II, III 

	BranchCrack_T 
	BranchCrack_T 
	Transverse 
	1B, II, III 

	BlockCrack 
	BlockCrack 
	Block 
	II, III 

	AlligatorCrack 
	AlligatorCrack 
	Alligator 
	II, III 

	Raveling 
	Raveling 
	NA 
	III 

	Patching 
	Patching 
	NA 
	III 
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	Table 41. Distress Types and Corresponding Crack Classification and Severity Levels (option 2 corresponding to used for automated results) 
	Figure 64 

	Distress Name 
	Distress Name 
	Distress Name 
	Crack Classification 
	Severity Levels 

	SingleCrack_L_WP 
	SingleCrack_L_WP 
	Longitudinal 
	1B, II, III 

	SingleCrack_L_OP 
	SingleCrack_L_OP 
	Longitudinal 
	1B, II, III 

	SingleCrack_T_WP 
	SingleCrack_T_WP 
	Transverse 
	1B, II, III 

	SingleCrack_T_OP 
	SingleCrack_T_OP 
	Transverse 
	1B, II, III 

	BranchCrack_L_WP 
	BranchCrack_L_WP 
	Longitudinal 
	1B, II, III 

	BranchCrack_L_OP 
	BranchCrack_L_OP 
	Longitudinal 
	1B, II, III 

	BranchCrack_T_WP 
	BranchCrack_T_WP 
	Transverse 
	1B, II, III 

	BranchCrack_T_OP 
	BranchCrack_T_OP 
	Transverse 
	1B, II, III 

	BlockCrack_WP 
	BlockCrack_WP 
	Block 
	II, III 

	BlockCrack_OP 
	BlockCrack_OP 
	Block 
	II, III 

	AlligatorCrack_WP 
	AlligatorCrack_WP 
	Alligator 
	II, III 

	AlligatorCrack_OP 
	AlligatorCrack_OP 
	Alligator 
	II, III 

	Raveling_WP 
	Raveling_WP 
	NA 
	III 

	Raveling_OP 
	Raveling_OP 
	NA 
	III 

	Patching_WP 
	Patching_WP 
	NA 
	III 

	Patching_OP 
	Patching_OP 
	NA 
	III 


	2. : Used only with optionand , this refers to the road zones to be included in the process of identifying a selected Distress Type. For wheel path distresses, the ‘Left Wheel Path’ and ‘Right Wheel Path’ zones created in the ‘Road Zone’ menu of the Schema Editor can be selected. For non-wheel path distresses, the ‘Left Exterior’, ‘Center’, and ‘Right Exterior’ zones created in the ‘Road Zone’ menu of the Schema Editor are selected. For the reference survey in which manual correction of the automated result
	Lane Type
	 2 (Table 41 
	Figure 64)

	3. : These include metrics to be reported for a selected Distress Type after automated identification and quantification. The following metrics were selected in the created rating rules. They will be calculated and recorded in the Vision Database. 
	Metric

	1) Crack Count -Number of Cracks that make up a Crack Group 
	2) Crack Area -Area that contains all Cracks (all cracks in Crack Group) 
	3) Crack Length -Actual length along all cracks in a Crack Group 
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	4) Crack Extent -Longitudinal length of cracks in a Crack Group (Length in y-axis) 
	5) Transverse Extent -Horizontal length of cracks in a Crack Group (Length in x-axis) 
	6) Width -Width of Crack (Average width of cracks in Crack Group) 
	7) Diagonal -Length from bottom left to top right of every distress bounding box 
	Severity Rules are setup based on the following (In current version of Vision software, the unit used in parameter settings is meter): 
	1. : a crack width range is used as a constraint for selected severity levels in this project as demonstrated in 
	Crack Width
	Table 42. 

	Table 42. Crack Width Range 
	Severity Level 
	Severity Level 
	Severity Level 
	Crack Width Range (mm) 

	Class 1B 
	Class 1B 
	Less than 3.18 

	Class II 
	Class II 
	Greater than or equal to 3.18 and less than 6.35 

	Class III 
	Class III 
	Greater than or equal to 6.35 and less than 1000 


	2. : a minimum extent of 0.3 meter (1.0 ft) is used as a constraint for identifying distresses (this was selected based on past experience): 
	Crack Length

	a. 
	a. 
	a. 
	Transverse Extent is used for transverse single and branch cracks 

	b. 
	b. 
	Longitudinal Extent is used for longitudinal single and branch cracks 

	c. 
	c. 
	No extent limitation was considered for alligator or block cracks 


	3. : Used only with option 2 and , this refers to the road zones to be included in the process of rating a selected Distress Severity. For wheel path distresses, the ‘Left Wheel Path’ and ‘Right Wheel Path’ zones created in the ‘Road Zone’ menu of the Schema Editor can be selected. For non-wheel path distresses, the ‘Left Exterior’, ‘Center’, and ‘Right Exterior’ zones created in the ‘Road Zone’ menu of the Schema Editor are selected. This results 
	Road Zone
	(Table 41 
	Figure 64)

	in only the portion of detected cracks within specified zones to be included in each severity rating. This was only used for the fully automated survey. For example, shows that Distress number 195 shows longitudinal cracking in the wheel path and Distress number 196 shows the adjacent longitudinal cracking outside the wheel path. Similarly, Distress number 197 shows alligator cracking in the wheel path, while Distress number 198 indicates the adjacent alligator cracking outside the wheel path. 
	Figure 74 

	Figure
	Figure 74. Automatically Separated Wheel Path and Non-Wheel Path Distress Rating 
	Figure 74. Automatically Separated Wheel Path and Non-Wheel Path Distress Rating 



	Automated Pavement Distress Identification 
	Automated Pavement Distress Identification 
	Fugro Vision software includes batch processors for automated lane detection, crack 
	detection, classification and rating as identified in These batch processors can 
	Table 43. 

	be executed individually or all together. The JPEG Crack Detection Processor is Fugro’s 
	solution for detecting surface defects using machine learning algorithms on 2D or 3D pavement images. 
	Table 43. Batch Processor 
	Batch Processor 
	Batch Processor 
	Batch Processor 
	Function 

	JPEG Lane Detection Processor 
	JPEG Lane Detection Processor 
	Lane Detection 

	JPEG Crack Detection Processor 
	JPEG Crack Detection Processor 
	Crack Detection from 2D or 3D Images 

	Classification Processor 
	Classification Processor 
	Classification 

	Rating Processor 
	Rating Processor 
	Rating 



	JPEG Lane Detection Processor 
	JPEG Lane Detection Processor 
	After this processor is completed, the lane boundary is shown as blue vertical lines in the user interface. Also, the location of detected lane is recorded in the Vision database. 

	JPEG Crack Detection Processor 
	JPEG Crack Detection Processor 
	After this processor is completed, cracks are detected from pavement images and are shown in the ‘Range color’ in the user interface. The crack information, such as Type, Chainage, Offset (in), Crack Length (ft), Crack Width, Cracks (count), Sealed Count, Crack Density (%), Crack Angle (degree), and Crack Depth (in) is listed in the ‘Cracks’ . All the cracks are categorized as ‘Unclassified’ as they are still not classified yet at this stage. 
	table (Figure 75)

	Figure
	Figure 75. Crack Table 
	Figure 75. Crack Table 



	Classification Processor 
	Classification Processor 
	After this processor is completed, the cracks are classified and grouped into crack sets. The Crack table is updated to Crack Set. Each Crack Set includes one or more cracks. 
	 table (Figure 76)

	Figure
	Figure 76. Crack Set Table 
	Figure 76. Crack Set Table 



	Rating Processor 
	Rating Processor 
	During the rating procedure, crack sets are rated. Severity levels and types are assigned to distresses. 

	Semi-Automated Pavement Distress Identification 
	Semi-Automated Pavement Distress Identification 
	A Fugro rater conducted a semi-automated rating on one run of the images for the 12 test sections using 3D LCMS images that were collected on the same test sections and imported into the Vision software. Then another Fugro rater reviewed the results of the 
	first rater to reach consensus on the reference survey (“Ground Truth”). During this 
	procedure, linear distresses and area distresses (boxes) are manually drawn on top of the collected pavement images. The results of the crack detection process, including the color-coded cracks were used by raters as guidance to assign severity levels based on crack width. 
	Due to the lack of range images and ROW video data, the LRIS data is inappropriate to be used for creating a reference close to ground truth. The following examples have been provided to demonstrate the superiority of the 3D LCMS data over 2D LRIS data for generating the reference survey. In E, cracks can be missed if the detection is solely dependent on the intensity image. In, the patching boundary can be falsely rated as transverse crack, if there is no ROW image . 
	xample 1 (Figure 77)
	 Example 2 (Figure 78)
	(Figure 79)

	LCMS Intensity Image LCMS Range Image 
	Figure 77. Demonstrating the Reason for Using 3D Images for Reference Survey: Example 1 
	Figure 77. Demonstrating the Reason for Using 3D Images for Reference Survey: Example 1 
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	LCMS Intensity Image of Patching LCMS Range Image of Patching 
	Figure 78. Demonstrating the Reason for Using 3D Images for Reference Survey: Example 2 
	Figure 78. Demonstrating the Reason for Using 3D Images for Reference Survey: Example 2 


	Figure
	Figure 79. ROW Image of Patching Area 
	Figure 79. ROW Image of Patching Area 
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	It is noted that LRIS data are collected in the order of county ID, while the Section ID in the reference LCMS data are sorted in the order of site ID. documents the relation between the session IDs in the reference database and the LRIS database to avoid confusion. To facilitate the data comparison between 2D database and 3D reference database, this information was imported as a table into the 2D database. 
	Table 44 

	Table 44. Relation Between the 2D Database and the 3D Reference Database 
	Site ID 
	Site ID 
	Site ID 
	ID Session in Reference Database 
	Section ID in LRIS Database 
	ID Session Section ID in LRIS Database 

	Run1 
	Run1 
	Run2 
	Run2 

	1 
	1 
	15 
	1 
	1 
	2 
	3 

	2 
	2 
	19 
	2 
	4 
	5 
	6 

	3 
	3 
	24 
	7 
	19 
	20 
	21 

	4 
	4 
	38 
	9 
	25 
	26 
	27 

	5 
	5 
	31 
	5 
	13 
	14 
	15 

	6 
	6 
	34 
	6 
	16 
	17 
	18 

	7 
	7 
	44 
	8 
	22 
	23 
	24 

	8 
	8 
	45 
	10 
	28 
	29 
	30 

	9 
	9 
	13 
	12 
	34 
	35 
	36 

	10 
	10 
	14 
	11 
	31 
	32 
	33 

	11 
	11 
	49 
	3 
	7 
	8 
	9 

	12 
	12 
	55 
	4 
	10 
	11 
	12 


	As shown in  the Vision Pavement rating module allows the analyst to simultaneously view both the ROW and pavement images while marking and rating pavement distresses. This feature facilitates the semi-automated distress identification. 
	Figure 80,

	Figure
	Figure 80. Vision Pavement Rating Module for Semi-Automated Distress Survey 
	Figure 80. Vision Pavement Rating Module for Semi-Automated Distress Survey 


	The two stages for creating reference data are introduced in Section 
	4.3.2. 




	4.3 Evaluation of the LRIS Technology for Crack Detection and Distress Identification 
	4.3 Evaluation of the LRIS Technology for Crack Detection and Distress Identification 
	In this chapter of the report, the results of crack detection and distress identification using the 2D LRIS images are evaluated. The 2D data collection was conducted by FDOT using their LRIS equipment and the data were analyzed by Fugro staff during Task 4 of this project. The following will describe the success metrics, the reference values, and the results, which will be analyzed to conclude on feasibility of using 2D LRIS technology in identification and quantification of flexible pavement distresses. 
	4.3.1 Success Metrics 
	4.3.1 Success Metrics 
	The three principal success metrics of any process are effectiveness, efficiency, and reliability. In the context of automated distress identification, effectiveness can be expressed in terms of accuracy of the crack detection software when compared to a 
	The three principal success metrics of any process are effectiveness, efficiency, and reliability. In the context of automated distress identification, effectiveness can be expressed in terms of accuracy of the crack detection software when compared to a 
	reference baseline. Accuracy is a qualitative term referring to whether there is agreement between a measurement made on an object and its true (target or reference) value. Bias is a quantitative term describing the difference (or error) between the average of measurements made on the same object and its true value. 

	While systematic errors identified in the bias can be calibrated out, such evaluations must address the random errors as well. The average results may be quite comparable, but individual results can deviate significantly. Efforts must be made to control these deviations to produce results which can ultimately be classified as reliable. Reliability of automated distress surveys is often expressed in terms of precision. Precision is a qualitative term that can describe the degree of repeatability of a measure
	With respect to automated condition evaluations, the success metrics could be considered for two aspects of the process, first for the detection of individual surface defects (cracks), and second for the identification and quantification of the distresses in a distinct section. 
	The following are the success metrics used for evaluating the crack detection results: 
	• 
	• 
	• 
	: length of correctly detected cracking 
	True Positives


	• 
	• 
	: length of detected cracking that don’t exist in the reference survey 
	False Positives


	• 
	• 
	: length of missed cracking 
	False Negatives


	• 
	• 
	: an indicator to be calculated as the ratio of the correctly detected cracks (true positives) to the total detected cracks (true positives and false positives). This statistic indicates the percentage of the detected cracks that was actually present in the reference survey, thereby expressing the validity of the cracks detected by algorithms. 
	Crack Validity



	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
	𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦 (%) = 100 × = 100 × 
	𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
	• : a parameter to be calculated as the ratio of the correctly detected cracks to the total actual cracks existing on the pavement surface (true positives and false negatives). This statistic represents the percentage of the cracks in the reference survey that was detected by the automated method, thereby expressing the sensitivity of the algorithms to existing cracks. 
	Crack Sensitivity (or Recall)

	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) = 100 × = 100 × 
	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) = 100 × = 100 × 
	𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑎𝑐𝑘𝑠 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

	• 
	• 
	• 
	: based on average normalized error (bias) of automatically detected crack length compared to the reference. Accuracy (%) = 100 – Bias (%) 
	Crack Detection Accuracy


	• 
	• 
	: based on coefficient of variation (COV) of detected crack length among three runs (independent of the reference and averaged among the sections). Repeatability (%) = 100 – COV (%) 
	Crack Detection Repeatability


	• 
	• 
	: based on coefficient of variation (COV) of crack detection accuracy among 12 test sections. Consistency (%) = 100 – [Standard Deviation of Accuracy (%) / Average Accuracy (%)] 
	Crack Detection Consistency


	• 
	• 
	: based on the time required for the automated crack detection. Efficiency (second per foot) = time for cracking detection divided by the total length 
	Crack Detection Efficiency



	Based on the overall cumulative amount of each distress among different test sections and multiple runs, the success metrics used to evaluate the feasibility of using 2D images are: 
	1. 
	1. 
	1. 
	: based on average error (bias) with respect to the reference distress survey values for each distress type. Accuracy (%) = 100 – Bias (%) 
	Distress Identification Accuracy


	2. 
	2. 
	2. 
	: based on coefficient of variation (COV) of automatically identified distresses among three runs for each distress type 
	Distress Identification Repeatability


	(independent of the reference and averaged among the sections). Repeatability (%) = 100 – COV (%) 

	3. 
	3. 
	: based on coefficient of variation (COV) of distress identification accuracy among 12 sections for each distress type. Consistency (%) = 100 – [Standard Deviation of Accuracy (%) / Average Accuracy (%)] 
	Distress Identification Consistency


	4. 
	4. 
	: based on the time required for the automated distress survey. Efficiency (second per foot) = time for cracking detection, classification, and rating divided by the total length. 
	Distress Identification Efficiency



	4.3.2 Reference Rating or “Ground Truth” 
	Both Crack Detection Reference and Distress Identification Reference were created for this evaluation based on the 3D LCMS data that were collected as part of Purchase Order No. PR10026557 for this research project (see Appendix : 
	I)

	1. 
	1. 
	1. 
	Crack Detection Reference: the Pavemetrics LCMS crack detection routine was used to generate a baseline crack map and then a Fugro data technician reviewed all the images in one run of the 12 test sections and modified the crack maps. New cracks were added for missed cracks, false positives were deleted, and some cracks with wrong extent were modified to reflect the actual cracks that can be seen on the 3D intensity and range (depth) images and with assistance from the ROW images. 

	2. 
	2. 
	: as it was explained in the semi-automated distress survey part, a reference survey was created by one Fugro engineer and another Fugro technician reviewed the results to reach a consensus for the reference survey. This reference survey was created using the 3D images because they provide both intensity and range (depth) views, along with the ROW images. Therefore, comprehensive sources of data are available in the 3D database for creating this reference survey. 
	Distress Identification Reference




	4.3.3 2D Crack Detection Results 
	4.3.3 2D Crack Detection Results 
	shows the true positives, false positives, false negatives, validity, and 
	Table 45 

	sensitivity of the automated crack detection using Fugro’s machine learning algorithm 
	on 2D images. This table indicates that only about 25 percent of the automatically detected cracks from 2D images were actually present on the pavement surface (Validity). Also, only about 18 percent of the cracks in the ground truth were automatically detected from 2D images (Sensitivity). 
	In the yellow highlighted cells indicate significant false positives (more than 50% of the reference) and the orange colored cells indicate significant amounts of missed cracks (more than 50% of the reference). It is evident that in Sections number 3, 7, and 9, there is a significant number of false positives. This is due to two reasons. First, some patching area boundaries and Automated Vehicle Counter (AVC) loops and Weigh-In-Motion (WIM) devices being falsely detected as cracks. Second, the amount of cra
	Table 45, 
	Table 45, 

	Table 45. Verification of Crack Detection on 2D images Using Fugro Machine Learning Algorithm 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (ft) 
	Crack Detection Results 
	Crack Validity (%) 
	Crack Sensitivity (%) 

	True Positives (ft) 
	True Positives (ft) 
	False Positives (ft) 
	False Negatives (ft) 

	1 
	1 
	22,944.22 
	1,162.61 
	3,337.93 
	21,781.61 
	25.83 
	5.07 

	2 
	2 
	26,741.89 
	824.98 
	3,727.55 
	25,916.91 
	18.12 
	3.08 

	3 
	3 
	132.74 
	42.55 
	16,471.86 
	90.19 
	0.26 
	32.06 

	4 
	4 
	14,823.69 
	3,659.58 
	4,199.93 
	11,164.11 
	46.56 
	24.69 

	5 
	5 
	68,726.86 
	6,226.68 
	10,005.31 
	62,500.18 
	38.36 
	9.06 

	6 
	6 
	112,892.60 
	7,139.73 
	10,005.56 
	105,752.87 
	41.64 
	6.32 

	7 
	7 
	809.34 
	523.47 
	13,969.35 
	285.87 
	3.61 
	64.68 

	8 
	8 
	27,185.46 
	5,184.47 
	13,606.25 
	22,000.99 
	27.59 
	19.07 

	9 
	9 
	3,993.09 
	807.72 
	19,550.12 
	3,185.37 
	3.97 
	20.23 

	10 
	10 
	36,631.86 
	1,718.52 
	12,621.25 
	34,913.34 
	11.98 
	4.69 

	11 
	11 
	30,517.80 
	3,507.70 
	6,274.08 
	27,010.10 
	35.86 
	11.49 

	12 
	12 
	29,327.95 
	3,003.47 
	3,539.88 
	26,324.48 
	45.90 
	10.24 

	TR
	24.97 
	17.56 


	In addition to the crack detection verification results in  other crack detection success metrics including normalized error, average error (bias), variation between multiple runs (repeatability), and variation among 12 test sections (consistency) of the automated crack detection algorithms from 2D images have been listed in 
	Table 45,
	Table 46. 

	The three test sections number 3, 7, and 9 have been highlighted in yellow to indicate the sections that have the greatest number of false positives. The bias has been provided as the average normalized crack detection error both on all the test sections and excluding the three outliers. When excluding the outliers, indicates that the accuracy (100 -Bias) of the automated crack detection from 2D images is only about 32 percent. 
	Table 46 
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	The automated detection from 2D images has demonstrated a sufficiently high run-torun repeatability. Ten out of twelve sections have more 90 percent agreement among runs, while the average repeatability of all 12 sections is about 93 percent. The 2D crack detection is showing poor consistency of results on different sections, as it has about 39 percent agreement in crack detection accuracy among 12 sections. 
	-

	Table 46. Accuracy, Repeatability, and Consistency of Crack Detection based on 2D Images 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (ft) 
	Detected Crack Length 
	Normalized Error 
	100 -AVG ABS Error (%) 
	Repeatabilit y (%) 

	Run 1 (ft) 
	Run 1 (ft) 
	Run 2 (ft) 
	Run 3 (ft) 
	Run1 (%) 
	Run2 (%) 
	Run3 (%) 

	1 
	1 
	22,944.2 
	4,500.5 
	4,564.0 
	4,090.5 
	-80.4 
	-80.1 
	-82.2 
	19.1 
	94.1 

	2 
	2 
	26,741.9 
	4,552.5 
	3,864.7 
	3,843.5 
	-83.0 
	-85.6 
	-85.6 
	15.3 
	90.1 

	3 
	3 
	132.7 
	16,514.4 
	14,055.8 
	15,632.5 
	12341.2 
	10489.0 
	11676.8 
	-11402.3 
	91.9 

	4 
	4 
	14,823.7 
	7,859.5 
	7,699.6 
	7,906.2 
	-47.0 
	-48.1 
	-46.7 
	52.8 
	98.6 

	5 
	5 
	68,726.9 
	16,232.0 
	13,279.2 
	10,427.5 
	-76.4 
	-80.7 
	-84.8 
	19.4 
	78.2 

	6 
	6 
	112,892.6 
	17,145.3 
	18,010.4 
	17,739.2 
	-84.8 
	-84.0 
	-84.3 
	15.6 
	97.5 

	7 
	7 
	809.3 
	14,492.8 
	13,748.8 
	14,703.7 
	1690.7 
	1598.8 
	1716.8 
	-1568.7 
	96.5 

	8 
	8 
	27,185.5 
	18,790.7 
	19,884.4 
	19,572.2 
	-30.9 
	-26.9 
	-28.0 
	71.4 
	97.1 

	9 
	9 
	3,993.1 
	20,357.8 
	19,751.2 
	20,089.8 
	409.8 
	394.6 
	403.1 
	-302.5 
	98.5 

	10 
	10 
	36,631.9 
	14,339.8 
	14,077.4 
	11,809.3 
	-60.8 
	-61.6 
	-67.8 
	36.6 
	89.6 

	11 
	11 
	30,517.8 
	9,781.8 
	9,506.5 
	9,133.1 
	-67.9 
	-68.8 
	-70.1 
	31.0 
	96.6 

	12 
	12 
	29,328.0 
	6,543.4 
	6,448.3 
	6,702.6 
	-77.7 
	-78.0 
	-77.2 
	22.4 
	98.0 

	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	1079.8 
	93.3 

	-68.5 
	-68.5 

	31.5 
	31.5 

	38.8 
	38.8 



	4.3.4 2D Distress Identification Results 
	4.3.4 2D Distress Identification Results 
	In this section, the results of automated distress identification (performance of classification and rating algorithm) from 2D images are evaluated. As it was demonstrated in the previous section, the crack detection from 2D images is missing a significant amount of cracking and as a result, there is a significant negative bias in the distress identification results for the 2D methodology. 
	It should also be noted that the automated algorithm used crack angle to differentiate between longitudinal and transverse cracks, and crack density in a given area to differentiate between single linear cracks and an area of alligator cracking. Therefore, the error compared to ground truth is estimated by comparing the total amount of automatically identified longitudinal and transverse cracks to the sum of the single and branch cracks manually identified in the reference survey. Similarly, the total amoun
	192 
	automatically identified alligator cracking is compared to the sum of the alligator and block cracks manually identified in the reference survey. 
	Evaluation of Automatically Identified Longitudinal, Transverse, and Alligator Cracking from 2D LRIS Images 
	shows the success metrics for automatically identifying Longitudinal cracks from 2D images. In this table, test sections where there was minimal amount of longitudinal cracking in the reference survey, have been highlighted as outliers. Excluding the outliers, the automated distress identification from 2D images has demonstrated about 46 percent accuracy in identifying longitudinal cracking. The results show a negative bias indicating less automatically identified longitudinal cracks from 2D images, compare
	Table 47 

	On average, there is about 89 percent run-to-run agreement among the three runs in the length of automatically identified longitudinal cracks from 2D images. There is about 45 percent section-to-section agreement among the 12 sections in the normalized error (compared to the reference survey) in automatically identifying the length of longitudinal cracks from 2D images. 
	Table 47. Accuracy, Repeatability, and Consistency of Longitudinal Cracks based on 2D Images 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (ft) 
	Automatically Identified Longitudinal Cracks 
	Normalized Error 
	100 -AVG ABS Error (%) 
	Repeatabilit y (%) 

	Run 1 (ft) 
	Run 1 (ft) 
	Run 2 (ft) 
	Run 3 (ft) 
	Run1 (%) 
	Run2 (%) 
	Run3 (%) 

	1 
	1 
	3,596.8 
	1,310.3 
	1,260.2 
	1,126.8 
	-63.6 
	-65.0 
	-68.7 
	34.3 
	92.3 

	2 
	2 
	2,138.4 
	921.8 
	794.5 
	813.3 
	-56.9 
	-62.8 
	-62.0 
	39.4 
	91.8 

	3 
	3 
	9.8 
	5,845.5 
	3,380.4 
	3,256.0 
	59608.6 
	34428.9 
	33158.0 
	-42298.5 
	64.9 

	4 
	4 
	2,744.9 
	2,492.6 
	2,629.6 
	2,541.8 
	-9.2 
	-4.2 
	-7.4 
	93.1 
	97.3 

	5 
	5 
	8,468.6 
	5,782.1 
	4,822.6 
	3,559.0 
	-31.7 
	-43.0 
	-58.0 
	55.8 
	76.4 

	6 
	6 
	9,148.4 
	4,937.9 
	5,869.4 
	5,263.9 
	-46.0 
	-35.8 
	-42.5 
	58.6 
	91.2 

	7 
	7 
	481.8 
	1,812.0 
	1,629.8 
	1,967.1 
	276.1 
	238.3 
	308.3 
	-174.2 
	90.6 

	8 
	8 
	7,717.2 
	3,996.3 
	4,238.6 
	4,446.6 
	-48.2 
	-45.1 
	-42.4 
	54.8 
	94.7 

	9 
	9 
	807.5 
	1,454.5 
	1,181.4 
	1,254.1 
	80.1 
	46.3 
	55.3 
	39.4 
	89.1 

	10 
	10 
	6,599.3 
	3,914.4 
	3,497.8 
	2,383.0 
	-40.7 
	-47.0 
	-63.9 
	49.5 
	75.8 

	11 
	11 
	10,103.9 
	1,817.9 
	1,921.7 
	2,195.5 
	-82.0 
	-81.0 
	-78.3 
	19.6 
	90.1 

	12 
	12 
	19,775.8 
	1,030.8 
	979.4 
	1,151.6 
	-94.8 
	-95.0 
	-94.2 
	5.3 
	91.6 

	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	3520.3 
	89.0 

	-54.4 
	-54.4 

	45.6 
	45.6 

	44.7 
	44.7 


	shows the success metrics for automatically identifying Transverse cracks from 2D images. In this table, test sections where there was minimal amount of 
	Table 48 

	193 
	transverse cracking in the reference survey, have been highlighted as outliers. Excluding the outliers, the automated distress identification from 2D images has demonstrated about 24 percent accuracy in identifying transverse cracking. The results show a negative bias indicating less automatically identified transverse cracks compared to the reference survey. 
	On average, there is about 91 percent run-to-run agreement among the three runs in the length of automatically identified transverse cracks from 2D images. There is about 6 percent section-to-section agreement among the 12 sections in the normalized error (compared to the reference survey) in automatically identifying the length of transverse cracks from 2D images. 
	Table 48. Accuracy, Repeatability, and Consistency of Transverse Cracks based on 2D Images 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (ft) 
	Automatically Identified Transverse Cracks 
	Normalized Error 
	Repeatability (%) 

	Run 1 (ft) 
	Run 1 (ft) 
	Run 2 (ft) 
	Run 3 (ft) 
	Run1 (%) 
	Run2 (%) 
	Run3 (%) 
	100 -AVG ABS Error (%) 

	1 
	1 
	276.9 
	30.6 
	29.1 
	30.5 
	-89.0 
	-89.5 
	-89.0 
	10.8 
	97.2 

	2 
	2 
	273.0 
	51.0 
	52.4 
	55.6 
	-81.3 
	-80.8 
	-79.6 
	19.4 
	95.5 

	3 
	3 
	10.9 
	0.0 
	0.0 
	0.0 
	-100.0 
	-100.0 
	-100.0 
	0.0 
	100.0 

	4 
	4 
	256.7 
	17.4 
	18.2 
	18.6 
	-93.2 
	-92.9 
	-92.8 
	7.0 
	96.7 

	5 
	5 
	109.4 
	65.5 
	66.4 
	63.1 
	-40.1 
	-39.3 
	-42.3 
	59.4 
	97.4 

	6 
	6 
	157.2 
	68.6 
	73.1 
	71.6 
	-56.3 
	-53.5 
	-54.5 
	45.2 
	96.8 

	7 
	7 
	16.5 
	4.7 
	1.0 
	2.3 
	-71.6 
	-93.7 
	-86.1 
	16.2 
	30.6 

	8 
	8 
	965.3 
	42.6 
	41.0 
	39.6 
	-95.6 
	-95.8 
	-95.9 
	4.2 
	96.4 

	9 
	9 
	21.6 
	115.1 
	124.4 
	123.3 
	433.1 
	476.0 
	470.8 
	-360.0 
	95.8 

	10 
	10 
	2,306.4 
	22.5 
	18.9 
	12.8 
	-99.0 
	-99.2 
	-99.4 
	0.8 
	72.8 

	11 
	11 
	170.7 
	99.3 
	90.2 
	93.0 
	-41.8 
	-47.1 
	-45.5 
	55.2 
	95.1 

	12 
	12 
	590.6 
	101.4 
	106.8 
	64.1 
	-82.8 
	-81.9 
	-89.2 
	15.4 
	74.4 

	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	-33.9 
	91.4 

	-75.8 
	-75.8 

	24.2 
	24.2 

	5.6 
	5.6 


	shows the success metrics for automatically identifying Alligator cracks from 2D images. In this table, test sections where there was zero amount of alligator cracking in the reference survey, have been highlighted as outliers. Excluding the outliers, the automated distress identification from 2D images has demonstrated about 0.01 percent accuracy in identifying alligator cracking. 
	Table 49 

	The results show a significant amount of negative bias, indicating that the 2D distress identification has failed in identifying areas with alligator cracking. This is mainly due to the large amount of missed cracking in 2D crack detection, which in turn results in 
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	cracking areas with such low density that cannot be identified by the computer as 
	alligator cracking areas. 
	On average, there is about 16 percent run-to-run agreement among the 3 runs in the automatically identified alligator cracking area from 2D images. There is about -140 percent section-to-section agreement among the 12 sections in the normalized error (compared to the reference survey) in automatically identifying the area of alligator cracking from 2D images. 
	Table 49. Accuracy, Repeatability, and Consistency of Alligator Cracks based on 2D Images 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (Sq Ft) 
	Automatically Identified Alligator Cracks 
	Normalized Error 
	100 -AVG ABS Error (%) 
	Repeatability (%) 

	Run 1 (Sq Ft) 
	Run 1 (Sq Ft) 
	Run 2 (Sq Ft) 
	Run 3 (Sq Ft) 
	Run1 (%) 
	Run2 (%) 
	Run3 (%) 

	1 
	1 
	5,846.8 
	0.0 
	0.0 
	0.0 
	-100.0 
	-100.0 
	-100.0 
	0.0 
	100.0 

	2 
	2 
	9,482.9 
	14.2 
	0.0 
	0.0 
	-99.8 
	-100.0 
	-100.0 
	0.05 
	-73.2 

	3 
	3 
	0.0 
	0.0 
	0.0 
	0.0 
	100.0 

	4 
	4 
	3,100.2 
	0.2 
	0.0 
	0.0 
	-99.9 
	-100.0 
	-100.0 
	0.0 
	-73.2 

	5 
	5 
	18,795.1 
	0.1 
	0.0 
	0.0 
	-100.0 
	-100.0 
	-100.0 
	0.0 
	-73.2 

	6 
	6 
	27,372.5 
	0.0 
	0.0 
	0.0 
	-100.0 
	-100.0 
	-100.0 
	0.0 
	100.0 

	7 
	7 
	0.0 
	0.0 
	0.0 
	0.0 
	100.0 

	8 
	8 
	4,223.7 
	0.0 
	0.0 
	0.0 
	-100.0 
	-100.0 
	-100.0 
	0.0 
	100.0 

	9 
	9 
	0.0 
	0.0 
	0.0 
	0.0 
	100.0 

	10 
	10 
	6,567.4 
	0.0 
	0.0 
	0.0 
	-100.0 
	-100.0 
	-100.0 
	0.0 
	-73.2 

	11 
	11 
	1,533.7 
	0.2 
	0.2 
	0.01 
	-99.9 
	-99.9 
	-100.0 
	0.01 
	34.3 

	12 
	12 
	900.1 
	0.0 
	0.0 
	0.0 
	-100.0 
	-100.0 
	-100.0 
	0.0 
	100.0 

	TR
	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	-99.9 
	15.7 

	-99.9 
	-99.9 

	0.01 
	0.01 

	-139.8 
	-139.8 


	The Vision software records the amount of time that each batch processor had spent on each test section to conduct an automated survey. The automated detection, classification, and rating took about 26 seconds per image frame for the 2D images. The main contributor to slower speed is the crack detection time and the classification and distress identification processes take only about 0.05 seconds per image frame. 
	Evaluation of Automatically Identified Wheel Path and Non-Wheel Path Cracking from 2D LRIS Images 
	In this section, the semi-automated reference rating results were converted to cracking within the wheel path (WP) and outside the wheel path (OP) using a SQL code (see option 1 in Section . The automated distress identification results were already available in WP and OP format, because the distress schema was setup accordingly (see option 2 in Section . The total amount of cracking within the wheel paths (CW) was calculated by adding the longitudinal, transverse, and alligator cracking 
	4.2.3)
	4.2.3)
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	areas. The longitudinal and transverse cracking areas were calculated by multiplying their length by one foot, as specified in the FDOT Flexible Pavement Condition Survey Handbook (2017). 
	and show the automated distress identification results for CO and CW distresses from 2D images, respectively. The accuracy in determining the CO distresses from 2D images is about 33 percent. The run-to-run repeatability in determining the CO distresses from 2D images is about 86 percent. The section-tosection consistency in determining the CO distresses from 2D images is about 34 percent. 
	Table 50 
	Table 51 
	-

	Table 50. Accuracy, Repeatability, and Consistency of Cracking Outside Wheel Paths (CO) Based on 2D Images 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (Sq Ft) 
	Automatically Identified Cracking 
	Normalized Error 
	100 -AVG ABS Error (%) 
	Repeatability (%) 

	Run 1 (Sq Ft) 
	Run 1 (Sq Ft) 
	Run 2 (Sq Ft) 
	Run 3 (Sq Ft) 
	Run1 (%) 
	Run2 (%) 
	Run3 (%) 

	1 
	1 
	2,269.16 
	413.16 
	332.64 
	276.57 
	-81.79 
	-85.34 
	-87.81 
	15.02 
	79.85 

	2 
	2 
	2,929.56 
	326.82 
	267.14 
	349.21 
	-88.84 
	-90.88 
	-88.08 
	10.73 
	86.51 

	3 
	3 
	11.98 
	5,845.47 
	3,380.38 
	3,255.96 
	48,693.57
	28,116.86
	27,078.30 
	-34529.58 
	100.00 

	4 
	4 
	3,452.35 
	1,675.19 
	1,837.38 
	1,755.16 
	-51.48 
	-46.78 
	-49.16 
	50.86 
	95.38 

	5 
	5 
	13,550.71
	4,981.47 
	3,890.31 
	2,891.53 
	-63.24 
	-71.29 
	-78.66 
	28.94 
	73.34 

	6 
	6 
	15,456.96
	3,289.52 
	3,959.84 
	3,622.93 
	-78.72 
	-74.38 
	-76.56 
	23.45 
	90.75 

	7 
	7 
	296.23 
	1,807.72 
	1,626.94 
	1,962.51 
	510.24 
	449.22 
	562.50 
	-407.32 
	90.66 

	8 
	8 
	4,232.96 
	2,919.43 
	3,178.08 
	3,411.57 
	-31.03 
	-24.92 
	-19.40 
	74.88 
	92.23 

	9 
	9 
	249.79 
	1,369.37 
	1,063.21 
	1,164.95 
	448.21 
	325.64 
	366.37 
	-280.07 
	87.00 

	10 
	10 
	6,584.24 
	3,900.46 
	3,461.47 
	2,344.54 
	-40.76 
	-47.43 
	-64.39 
	49.14 
	75.21 

	11 
	11 
	4,653.28 
	1,678.48 
	1,732.75 
	2,033.89 
	-63.93 
	-62.76 
	-56.29 
	39.01 
	89.45 

	12 
	12 
	11,403.25 
	990.18 
	940.88 
	1,061.73 
	-91.32 
	-91.75 
	-90.69 
	8.75 
	93.91 

	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	2909.81 
	86.29 

	-66.58 
	-66.58 

	33.42 
	33.42 

	34.07 
	34.07 


	The accuracy in determining the CW distresses from 2D images is about nine percent. The run-to-run repeatability in determining the CW distresses from 2D images is about 91 percent. The section-to-section consistency in determining the CO distresses from 2D images is about 0.4 percent. 
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	Table 51. Accuracy, Repeatability, and Consistency of Cracking Within Wheel Paths (CW) Based on 2D Images 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (Sq Ft) 
	Automatically Identified Cracking 
	Normalized Error 
	100 -AVG ABS Error (%) 
	Repeatability (%) 

	Run 1 (Sq Ft) 
	Run 1 (Sq Ft) 
	Run 2 (Sq Ft) 
	Run 3 (Sq Ft) 
	Run1 (%) 
	Run2 (%) 
	Run3 (%) 

	1 
	1 
	7,451.30 
	927.65 
	956.62 
	880.79 
	-87.55 
	-87.16 
	-88.18 
	12.37 
	95.85 

	2 
	2 
	8,964.78 
	660.09 
	579.74 
	519.69 
	-92.64 
	-93.53 
	-94.20 
	6.54 
	87.99 

	3 
	3 
	8.74 
	0.00 
	0.00 
	0.00 
	-100.00 
	-100.00 
	-100.00 
	0.00 
	100.00 

	4 
	4 
	2,649.44 
	835.01 
	810.36 
	805.19 
	-68.48 
	-69.41 
	-69.61 
	30.83 
	98.05 

	5 
	5 
	13,822.31 
	866.24 
	998.70 
	730.53 
	-93.73 
	-92.77 
	-94.71 
	6.26 
	84.50 

	6 
	6 
	21,221.13
	1,717.08 
	1,982.63 
	1,712.50 
	-91.91 
	-90.66 
	-91.93 
	8.50 
	91.43 

	7 
	7 
	202.05 
	9.02 
	3.91 
	6.91 
	-95.54 
	-98.06 
	-96.58 
	3.27 
	61.17 

	8 
	8 
	8,673.24 
	1,119.50 
	1,101.42 
	1,074.67 
	-87.09 
	-87.30 
	-87.61 
	12.67 
	97.95 

	9 
	9 
	579.29 
	200.31 
	242.65 
	212.42 
	-65.42 
	-58.11 
	-63.33 
	37.71 
	90.02 

	10 
	10 
	8,888.91 
	36.51 
	55.22 
	51.26 
	-99.59 
	-99.38 
	-99.42 
	0.54 
	79.31 

	11 
	11 
	7,155.08 
	238.93 
	279.39 
	254.64 
	-96.66 
	-96.10 
	-96.44 
	3.60 
	92.08 

	12 
	12 
	9,863.21 
	142.03 
	145.32 
	153.92 
	-98.56 
	-98.53 
	-98.44 
	1.49 
	95.83 

	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	-89.68 
	91.44 

	-90.80 
	-90.80 

	9.20 
	9.20 

	0.38 
	0.38 



	4.3.5 Results Analysis 
	4.3.5 Results Analysis 
	False Positive Analysis 
	False Positive Analysis 
	It is evident that in Sections number 3, 7, and 9, the 2D method has demonstrated a significant number of false positives (more than 50% compared to the reference). This is due to two reasons: 
	First, some road lane markings are falsely identified as cracks. The existing Vision road lane detection system detects the lane marking boundaries as vertical lines and records x coordinates of these detected lines in the database. All cracks of which x coordinates are less than or equals to x coordinate of left lane, or greater than or equal to x coordinate of right lane are not considered for distress rating. However, in some pavement images, the lane marking may not be completely vertical. The image pix
	Figure 81)
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	Detected lane boundaries and cracks Lane boundaries identified as cracks 
	Figure 81. Lane boundaries identified as cracks 
	Figure 81. Lane boundaries identified as cracks 


	Second, patching boundaries, pavement markings, joints of brick paving are other typical causes of false positives. See for an example. 
	Figure 82 

	Figure
	Figure 82. Other Features Falsely Detected as Cracks 
	Figure 82. Other Features Falsely Detected as Cracks 



	False Negative Analysis 
	False Negative Analysis 
	The significant amount of missed cracking has resulted in poor accuracy of the 2D technology in identifying transverse and alligator cracking distress types. This type of false negative arises for two reasons: 
	First, the sensitivity of crack detection algorithm is significantly impacted by the lighting condition when the pavement images are collected. In a lower lighting condition, the contrast between crack pixels and surrounding pavement surface pixels is reduced, therefore, small cracks are difficult to be. 
	 detected (Figure 83)

	Pavement Surface Detected Cracks 
	Figure 83. Low Contrast Between Crack and Surrounding Pixels Resulting in Missed Cracks 
	Figure 83. Low Contrast Between Crack and Surrounding Pixels Resulting in Missed Cracks 


	Second, the crack detection algorithm may also fail to detect bright cracks on dark 
	pavement surface and cracks of thick width. 
	(Figure 84) 
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	Figure
	Figure 84. White Alligator Cracks on Dark Pavement 
	Figure 84. White Alligator Cracks on Dark Pavement 


	4.3.6 Potentials and Limitations of the LRIS Technology 
	The 2D LRIS technology has the following potentials: 
	1. 
	1. 
	1. 
	The LRIS equipment is more affordable than the 3D LCMS equipment. 

	2. 
	2. 
	The run-to-run repeatability of crack detection from 2D images is acceptable. However, there are several important limitations of the 2D LRIS technology: 


	1. 
	1. 
	1. 
	The accuracy of crack detection from 2D images is very low (31 percent), as evidenced by the crack detection algorithm only detecting 18 percent of the cracks that were in the reference survey. Also, only 25 percent of the cracks detected from the 2D images were actually present in the reference survey. 

	2. 
	2. 
	The section-to-section consistency of crack detection from 2D images is very low. 

	3. 
	3. 
	Even excluding some outliers, significant amount of missed cracking has resulted in poor accuracy of the 2D technology in identifying cracking distress types. 

	4. 
	4. 
	When the pavement surface is damp, the area around the crack edges become darker in the 2D images and as a result, the crack detection algorithms result in exaggerated crack width measurements based on pixel intensities. This issue negatively impacts severity rating of cracking distresses. 


	4.4 Conclusion and Recommendations 
	This chapter described the efforts undertaken in Task 4 of this FDOT research project to evaluate the feasibility of the 2D LRIS technology for crack detection and distress identification. The findings of this effort can be summarized as follows: 
	1. 
	1. 
	1. 
	While the results of 2D crack detection were comparable from run to run, there were a significant number of missed cracks when compared to the ground truth. 

	2. 
	2. 
	While the run-to-run repeatability of the 2D technology was acceptable in identifying the length of longitudinal and transverse cracks in most cases, the accuracy compared to the ground truth and section-to-section consistency of the 2D technology was very poor in identifying any type of cracking. 


	Based on the noted evaluation results, it is recommended that alternative technologies are considered for detection of cracks and the corresponding identification and quantification of flexible pavement surface distresses. 
	CHAPTER 5 – FLEXIBLE PAVEMENT APPLICATION DESIGN 
	Task 5 of this research project included an evaluation of the existing survey methods, a gap analysis of the existing automated software, and the development of design recommendations for addressing identified gaps. This chapter is organized into five sections. Following this introduction, Section describes the test sections used throughout the flexible pavement survey evaluation and software design process. Section and Section describe the manual windshield survey and the existing automated software result
	5 
	5.2 
	5.3 
	5.4. 
	5.5. 

	Please note the following reference phrases in this chapter: 
	• “Vision 3.1”: this refers to Fugro’s Vision 3.1 software, which includes a machine 
	learning algorithm for crack detection and an automated routine for distress classification and rating. This existing automated software was evaluated in Task 5 and the existing gaps were identified so that the software development activities in Task 6 could address these gaps. 
	• “crack detection”: this refers to the process of locating and marking the 
	pavement surface defects from the collected imagery. 
	• “crack classification”: this refers to the process of classifying each detected 
	crack into a specific crack type and assigning a severity level to it. 
	• “reference survey”: this refers to the semi-automated surveys conducted on one run of the collected pavement images, which serve as benchmarks when evaluating the automated software results. There are two reference surveys: one serving as benchmark for crack detection and one for crack classification and severity rating. 
	5.1 Representative Test Sections 
	The evaluation of the existing two distress survey methods included a comparison of the overall cumulative quantities of various distress types found in the existing FDOT manual windshield survey and a readily available existing automated software (Vision 3.1). To conduct this evaluation, FDOT engineers identified a set of 12 representative test sections that are each at least a standard evaluation length (0.1-mile-long) and contain several of the flexible pavement distresses in them. and show the selected 
	Table 16 
	Figure 85 

	Table 52. Selected 12 Flexible Pavement Test Sections 
	Table 52. Selected 12 Flexible Pavement Test Sections 
	Table 52. Selected 12 Flexible Pavement Test Sections 

	NO 
	NO 
	COUNTY 
	SECTION ID 
	ROUTE 
	DIR 
	LANE 
	BMP 
	EMP 
	LNGTH 

	1 
	1 
	Baker 
	02050000 
	SR44 
	E 
	R2 
	0 
	0.604 
	0.604 

	2 
	2 
	Baker 
	02050000 
	SR44 
	W 
	L2 
	0 
	0.604 
	0.604 

	3 
	3 
	Collier 
	11010000 
	SR44 
	E 
	R2 
	0 
	1.592 
	1.592 

	4 
	4 
	Collier 
	11100000 
	SR19 
	N 
	R2 
	3.816 
	4.906 
	1.09 

	5 
	5 
	Collier 
	11002000 
	SR44 
	E 
	R2 
	1.183 
	2.276 
	1.093 

	6 
	6 
	Collier 
	11002000 
	SR44 
	E 
	R2 
	3.184 
	4.514 
	1.33 

	7 
	7 
	Collier 
	11080000 
	SR19 
	N 
	R1 
	0 
	0.925 
	0.925 

	8 
	8 
	Flagler 
	18020000 
	SR50 
	E 
	R1 
	5.356 
	6.421 
	1.065 

	9 
	9 
	Hendry 
	26050000 
	SR24 
	S 
	L2 
	3.367 
	6.095 
	2.728 

	10 
	10 
	Hendry 
	26050000 
	SR24 
	S 
	L2 
	6.095 
	7.67 
	1.575 

	11 
	11 
	Clay 
	10190000 
	SR400 
	E 
	R3 
	11.098 
	12.332 
	1.234 

	12 
	12 
	Clay 
	10190000 
	SR400 
	E 
	R3 
	20.407 
	21.476 
	1.069 


	Figure
	Figure 85. Selected 12 Flexible Pavement Test Sections 
	Figure 85. Selected 12 Flexible Pavement Test Sections 


	5.2 Manual Windshield Survey 
	Three FDOT raters conducted a manual windshield distress survey of the 12 test sections according to the FDOT protocol. Each rater conducted the manual distress survey separately in a separate vehicle and according to the FDOT Flexible Pavement 
	Three FDOT raters conducted a manual windshield distress survey of the 12 test sections according to the FDOT protocol. Each rater conducted the manual distress survey separately in a separate vehicle and according to the FDOT Flexible Pavement 
	Condition Survey Handbook (2017). The average, standard deviation, and coefficient of variation (COV) of each distress type at each severity level found on each test section has been documented in Appendix 
	J. 


	A summary of the overall agreement among raters is presented in The summary statistics show that there was a low level of agreement for any individual distress and severity. Some test sections exhibited minimal amounts of a particular distress type, and variation among raters for distress types with small quantities led to high values of COV and low levels of agreement. The results also show a higher level of agreement among the three raters when adding the quantities of class IB, class II, and class III cr
	Table 53. 

	Table 53. Overall Agreement Among Raters in Manual Windshield Survey (See Appendix for Details) 
	J 

	Distress Type 
	Distress Type 
	Distress Type 
	Agreement Among Raters in Total Distress Amount, 100 COV (%) 
	-


	CW (Wheel Path Cracking) 
	CW (Wheel Path Cracking) 
	CO (Cracking Outside Wheel Paths) 

	Class IB 
	Class IB 
	-6% 
	-2% 

	Class II 
	Class II 
	11% 
	3% 

	Class III 
	Class III 
	3% 
	10% 

	Class IB + Class II + Class III 
	Class IB + Class II + Class III 
	46% 
	34% 

	Raveling 
	Raveling 
	-19% 
	1% 

	Patching 
	Patching 
	7% 
	0% 


	5.3 Automated Distress Survey Using Vision 3.1 
	In this chapter of the report, the results of crack detection and crack classification and severity rating using 3D pavement images are evaluated. The 3D data collection was conducted by Fugro using the Automatic Road Analyzer (ARAN) Laser Crack Measurement System (LCMS) equipment and the data were analyzed by Fugro staff using the readily available existing automated software (Vision 3.1) as part of the required activities for Purchase Order (PO) 10026557. For further information on the automated data coll
	I. 

	5.3.1 Success Metrics 
	In the context of automated distress identification, effectiveness can be expressed in terms of accuracy of the software results when compared to a reference baseline, which 
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	can be quantified by bias or average normalized error. Reliability of automated distress surveys is often expressed in terms of precision. Precision is a qualitative term that can describe the degree of repeatability of a measurement value on the same sample, or consistency in accuracy of measurement on different samples. Coefficient of variation of actual measurement values on the same sample is a quantitative estimate of repeatability. Standard deviation of error (standard error) is a quantitative estimat
	With respect to automated condition evaluations, the success metrics could be considered for two aspects of the process, first for the detection of individual surface defects (cracks), and second for the identification and quantification of the distresses in a distinct section. 
	The following are the success metrics used for evaluating the crack detection results: 
	• 
	• 
	• 
	: length of correctly detected cracks 
	True Positives


	• 
	• 
	: length of detected cracks that don’t exist in the reference survey 
	False Positives


	• 
	• 
	: length of missed cracks 
	False Negatives


	• 
	• 
	: This statistic indicates the percentage of the detected cracks that was actually present in the reference survey, thereby expressing the validity of the cracks detected by algorithms. 
	Crack Validity



	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
	𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦 (%) = 100 × = 100 × 
	𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
	• : This statistic represents the percentage of the cracks in the reference survey that was detected by the automated method, thereby expressing the sensitivity of the algorithms to existing cracks. 
	Crack Sensitivity (or Recall)

	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) = 100 × = 100 × 
	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) = 100 × = 100 × 
	𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑎𝑐𝑘𝑠 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

	• 
	• 
	• 
	: This statistic is evaluated based on average normalized error (bias) of automatically detected crack length compared to the reference. Accuracy (%) = 100 – Bias (%) 
	Crack Detection Accuracy


	• 
	• 
	: This statistic is evaluated based on coefficient of variation (COV) of detected crack length among three runs (independent of the reference and averaged among the sections). Repeatability (%) = 100 – COV (%) 
	Crack Detection Repeatability


	• 
	• 
	: This statistic is evaluated based on coefficient of variation (COV) of crack detection accuracy among 12 test sections. Consistency (%) = 100 – [Standard Deviation of Accuracy (%) / Average Accuracy (%)] 
	Crack Detection Consistency


	• 
	• 
	: This statistic is evaluated based on the time required for the automated crack detection. Efficiency (second per foot) = time for cracking detection divided by the total length 
	Crack Detection Efficiency



	The following are the success metrics used for evaluating the crack classification and severity rating results based on the overall cumulative amount of each crack type among different test sections and multiple runs: 
	1. : This statistic is evaluated based on average error (bias) with respect to the reference distress survey values for each crack type. 
	Crack Classification Accuracy

	Accuracy (%) = 100 – Bias (%) 
	2. : This statistic is evaluated based on coefficient of variation (COV) of automatically identified cracking among three runs for each crack type (independent of the reference and averaged among the sections). 
	Crack Classification Repeatability

	Repeatability (%) = 100 – COV (%) 
	3. 
	3. 
	3. 
	: This statistic is evaluated based on coefficient of variation (COV) of crack classification accuracy among 12 sections for each crack type. 
	Crack Classification Consistency


	4. 
	4. 
	: This statistic is evaluated based on the time required for the automated distress survey. 
	Crack Classification Efficiency



	Consistency (%) = 100 – [Standard Deviation of Accuracy (%) / Average Accuracy (%)] 
	Efficiency (second per foot) = time for cracking detection, classification, and rating divided by the total length. 
	5.3.2 Reference Surveys 
	Two reference surveys were created for this evaluation: 
	1. 
	1. 
	1. 
	: the Pavemetrics LCMS crack detection algorithm was used to generate a baseline crack map and then a Fugro data technician reviewed all the images in one run (run number 1 out of the three collected runs) of the 12 test sections and modified the crack maps. False negatives (missed cracks) were mapped, false positives were deleted, and cracks with incorrect extent (length or area) were modified to reflect the actual cracks that can be seen on the 3D intensity and range (depth) images and with assistance fro
	Crack Detection Reference


	2. 
	2. 
	: a reference distress survey was manually created by one Fugro engineer using the collected images, and another Fugro technician reviewed the results to reach a consensus for the reference survey. 
	Crack Classification Reference



	The crack detection reference was used to evaluate the effectiveness of the crack detection algorithm and the crack classification reference was used to evaluate the effectiveness of the distress classification and rating routine. 
	5.3.3 Evaluation Limitations 
	The evaluation was conducted considering the following limitations of this analysis: 
	1. 
	1. 
	1. 
	The 12 test sections were selected as representative of the actual pavement surfaces found across Florida. With such a small sample, it is possible that not all the actual pavement network is represented in this study. Every effort was made to select a representative sample. However, the budgetary and schedule limitations of this project would not allow for collection and processing of data across a wider network. 

	2. 
	2. 
	2. 
	Vision 3.1 as it stands does not exactly differentiate between the crack types as defined in the FDOT Flexible Pavement Condition Survey Handbook (2017), because those definitions were originally intended for human raters and not for 

	computers. Vision 3.1 uses crack angle to differentiate between longitudinal and transverse cracks, and crack density in a given area to differentiate between single linear cracks and an area of alligator cracking. Therefore, the error compared to the reference is estimated by comparing the total amount of automatically identified longitudinal and transverse cracks to the sum of the single and branch cracks manually identified in the reference survey. Similarly, the total amount of automatically identified 

	3. 
	3. 
	This study is mainly focused on cracking distresses and patching and raveling were not considered in this evaluation. The 3D technology provides pavement surface macro-texture measurements which could potentially be used for identifying raveling. However, these texture measurements need to be calibrated to corresponding areas of raveling identified by experienced raters. 


	5.3.4 Evaluation of Automatically Detected Crack Quantities 
	shows the true positives, false positives, false negatives, validity, and sensitivity of the automated crack detection using the Vision 3.1 (machine learning algorithm) on 3D images. This table includes the crack detection results on run number 1 of the 3 runs. This table indicates that on average, about 75 percent of the automatically detected cracks were actually present on the pavement surface (Validity). Also, on average, about 89 percent of the cracks in the reference crack map were automatically detec
	Table 54 

	In the yellow highlighted cells indicate outlier test sections with significant false positives (more than 50% of the reference). It is evident that in sections number 3, 7, and 9, Vision 3.1 has demonstrated a significant amount of false positive. This is due to two reasons. First, some patching area boundaries and Automated Vehicle Counter (AVC) loops and Weigh-In-Motion (WIM) devices being falsely detected as cracks. Second, the amount of cracking in the reference survey for these three sections is lower
	Table 54, 

	In addition to the crack detection verification results in  other crack detection success metrics including accuracy, consistency, and repeatability of Vision 3.1 are illustrated in When excluding the outlier sections (sections 3, 7, and 9), the accuracy (100 -Bias) of Vision 3.1 in crack detection is about 99 percent. The run-torun repeatability exhibited 97 percent agreement among runs. Vision 3.1 is showing high consistency of results on different sections, about 95 percent agreement in crack detection a
	Table 54,
	Figure 86. 
	-

	Table 54. Verification of Crack Detection on 3D images Using Vision 3.1 
	Test Section 
	Test Section 
	Test Section 
	Reference (ft) 
	Crack Detection Results 
	Crack Validity (%) 
	Crack Sensitivity (%) 

	True Positives (ft) 
	True Positives (ft) 
	False Positives (ft) 
	False Negatives (ft) 

	1 
	1 
	22,944.22 
	18,464.62 
	2,762.11 
	4,479.60 
	86.99 
	80.48 

	2 
	2 
	26,741.89 
	24,873.49 
	1,217.80 
	1,868.40 
	95.33 
	93.01 

	3 
	3 
	132.74 
	126.10 
	824.84 
	6.64 
	13.26 
	94.99 

	4 
	4 
	14,823.69 
	12,015.20 
	1,429.99 
	2,808.49 
	89.36 
	81.05 

	5 
	5 
	68,726.86 
	65,286.40 
	3,453.19 
	3,440.46 
	94.98 
	94.99 

	6 
	6 
	112,892.60 
	102,199.75 
	11,059.70 
	10,692.85 
	90.24 
	90.53 

	7 
	7 
	809.34 
	687.92 
	1,820.47 
	121.42 
	27.42 
	85.00 

	8 
	8 
	27,185.46 
	23,990.87 
	2,097.65 
	3,194.59 
	91.96 
	88.25 

	9 
	9 
	3,993.09 
	2,881.59 
	6,082.98 
	1,111.50 
	32.14 
	72.16 

	10 
	10 
	36,631.86 
	38,825.92 
	1,803.39 
	(2,194.06) 
	95.56 
	105.99 

	11 
	11 
	30,517.80 
	27,386.58 
	4,025.66 
	3,131.22 
	87.18 
	89.74 

	12 
	12 
	29,327.95 
	28,174.06 
	3,057.05 
	1,153.89 
	90.21 
	96.07 

	TR
	Total Average 
	74.55 
	89.36 

	TR
	Average Excluding Sections 3, 7, and 9 
	91.31 
	91.12 


	3D Crack Detection 
	98.89 
	97.20 
	94.95 
	Accuracy (%) Consistency (%) Repeatability (%) 
	0 10 20 30 40 50 60 70 80 90 100 
	Figure 86. Crack Detection Success Metrics for Vision 3.1 
	To better demonstrate the capability of 3D technology in detecting surface cracks, two example locations have been selected. and show the 3D crack detection results for the two example locations. 
	Figure 87 
	Figure 88 

	Figure
	Figure 87. Example LCMS Intensity (left), Range (center), and Detected Crack Map (right) 
	Figure 87. Example LCMS Intensity (left), Range (center), and Detected Crack Map (right) 


	Figure
	Figure 88. Example LCMS Intensity (left), Range (center), and Detected Crack Map (right) 
	Figure 88. Example LCMS Intensity (left), Range (center), and Detected Crack Map (right) 


	5.3.5 Evaluation of Automatically Classified Cracking Quantities 
	In this section, the results of Vision 3.1 in terms of crack classification are evaluated. 
	Vision 3.1 records the amount of time that each batch processor had spent on each test 
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	section to conduct an automated survey. The automated crack detection, crack classification, and severity rating took about 6 seconds per image frame for the 3D images. The majority of the processing time is consumed during the crack detection time. The classification and severity rating processes take only about 0.05 seconds per image frame. These time records have been achieved with an Intel Core i5 3.3GHz CPU and an 8GB RAM, with a Windows 10 64-bit operating system. 

	Evaluation of Automatically Identified Longitudinal, Transverse, and Alligator Cracking 
	Evaluation of Automatically Identified Longitudinal, Transverse, and Alligator Cracking 
	In this section, the evaluation is conducted based on the amount of automatically identified Longitudinal, Transverse, and Alligator cracking. It should be noted that Vision 
	3.1 uses crack angle to differentiate between longitudinal and transverse cracks, and crack density in a given area to differentiate between single linear cracks and an area of alligator cracking. Therefore, the normalized error compared to the reference survey is estimated by comparing the total amount of automatically identified longitudinal or transverse cracks to the sum of single and branch cracks (manually identified in the reference survey) that are positioned longitudinally or transversely. Similarl
	shows the success metrics for automatically identifying Longitudinal cracks. Excluding the outlier sections (test sections with minimal amount of longitudinal cracking in the reference survey: sections 3, 7, and 9), the automated longitudinal cracking identification has demonstrated about 93 percent accuracy. The results show a positive bias (on average +7%; see PO 10026557 Report in Appendix for details) indicating more automatically identified longitudinal cracks compared to the reference survey. 
	Figure 89 
	I 

	3D Longitudinal Cracking Identification 
	97.02 
	100 92.86 
	Accuracy (%) Consistency (%) Repeatability (%) 
	81.23 0 10 20 30 40 50 60 70 80 90 
	Figure 89. Longitudinal Cracking Success Metrics for Vision 3.1 
	On average, there is about 97 percent run-to-run repeatability in the length of automatically identified longitudinal cracks. There is about 81 percent section-to-section consistency in the accuracy in automatically identifying the length of longitudinal cracks. 
	shows the success metrics for automatically identifying Transverse cracks. Excluding the outlier sections (test sections with minimal amount of transverse cracking in the reference survey: sections 3, 7, and 9), the automated transverse cracking identification have demonstrated about 90 percent accuracy. The results show a negative bias (on average -10%; see PO 10026557 Report in Appendix for details) indicating less automatically identified transverse cracks compared to the reference survey. On average, th
	Figure 90 
	I 

	3D Transverse Cracking Identification 
	100 
	90.24 89.84 
	Accuracy (%) Consistency (%) Repeatability (%) 
	73.80 0 10 20 30 40 50 60 70 80 90 
	Figure 90. Transverse Cracking Success Metrics for Vision 3.1 
	shows the success metrics for automatically identifying Alligator cracks. Excluding the outlier sections (test sections free of alligator cracking: sections 3, 7, and 9), the automated alligator cracking identification has demonstrated about 95 percent accuracy. The results show a negative bias (on average -5%; see PO 10026557 Report in Appendix for details) indicating less automatically identified alligator cracks compared to the reference survey. On average, there is about 93 percent run-to-run repeatabil
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	Figure 91. Alligator Cracking Success Metrics for Vision 3.1 

	Evaluation of Automatically Identified Wheel Path and Non-Wheel Path Cracking 
	Evaluation of Automatically Identified Wheel Path and Non-Wheel Path Cracking 
	In this section, the reference rating results were converted to cracking within the wheel path (CW) and outside the wheel path (CO) using a SQL code. The total amount of cracking within the wheel paths (CW) was calculated by adding the longitudinal, transverse, and alligator cracking areas. The longitudinal and transverse cracking areas were calculated by multiplying their length by one foot, as specified in the FDOT Flexible Pavement Condition Survey Handbook (2017). 
	shows Vision 3.1 results for CW distresses from 3D images. The accuracy in determining the CW distresses is about 92 percent. The results show a negative bias (on average -7%; see PO 10026557 Report in Appendix for details) indicating less automatically identified CW cracks compared to the reference survey. The run-to-run repeatability in determining the CW distresses is about 97 percent. The section-tosection consistency in determining the CW distresses is about 84 percent. 
	Figure 92 
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	shows Vision 3.1 results for CO distresses from 3D images. The accuracy in determining the CO distresses is about 89 percent. The results show a negative bias (on average -10%; see PO 10026557 Report in Appendix for details) indicating less automatically identified CO cracks compared to the reference survey. The run-to-run repeatability in determining the CO distresses is about 96 percent. The section-tosection consistency in determining the CO distresses is about 85 percent. 
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	Figure 92. Wheel Path Cracking (CW) Success Metrics for Vision 3.1 
	3D Outside Wheel Path Cracking (CO) Identification 
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	Figure 93. Outside Wheel Path Cracking (CO) Success Metrics for Vision 3.1 
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	Automatically Identified Cracking Summary 
	Automatically Identified Cracking Summary 
	provides the summary statistics for the automated distress survey results using Vision 3.1 on 3D images. As it is evident from this table, the average accuracy compared to the reference survey and the run-to-run repeatability of Vision 3.1 in identifying cracking distress types are above 90% in almost all cases. One reason for the high accuracy and repeatability is that cracks from all severity levels are categorized in the same group based on crack type. However, there is less consistency in Vision 3.1 res
	Table 55 

	Table 55. Summary Statistics for Vision 3.1 Results from 3D Images 
	Distress 
	Distress 
	Distress 
	Accuracy (%) 
	Section-To-Section Consistency (%) 
	Run-To-Run Repeatability (%) 

	Longitudinal Cracking 
	Longitudinal Cracking 
	92.86 
	81.23 
	97.02 

	Transverse Cracking 
	Transverse Cracking 
	90.24 
	73.80 
	89.84 

	Alligator Cracking 
	Alligator Cracking 
	94.55 
	68.46 
	93.23 

	Wheel Path Cracking (CW) 
	Wheel Path Cracking (CW) 
	92.51 
	83.93 
	97.22 

	Non-Wheel Path Cracking (CO) 
	Non-Wheel Path Cracking (CO) 
	89.62 
	84.81 
	96.19 


	5.3.6 Evaluation of Automatically Rated Crack Severities 
	Vision 3.1 was used to automatically rate the crack severities for each of the 12 test sections. Vision 3.1 uses average crack width measurement to determine crack severities according to the FDOT Flexible Pavement Condition Survey Handbook (2017). and compare Vision 3.1 results to those of the reference survey for severity levels 1B, II, and III, respectively (note: vertical axis ranges vary). Class IB are hairline cracks that are less than or equal to ⅛ inch (3.18 mm) wide, Class II are cracks greater tha
	Figure 94, 
	Figure 95, 
	Figure 96 

	mm) wide, and Class III are cracks greater than ¼ inch (6.35 mm) wide. Note that the extent of Class1B cracks is the sum of the length of single and branch cracks. But the extent of the Class II and Class III cracks is the sum of the area of single, branch, and alligator cracks, where the single and branch cracks are assumed to have a width of one foot. 
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	Figure 94. Severity Level 1B Rating Results for Vision 3.1 
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	Figure 95. Severity Level II Rating Results for Vision 3.1 
	The figures demonstrate that Vision 3.1 rates the majority of cracks as severity level II. It should be noted that the manual assignment of severity levels in the reference survey is always more subjective than classification of cracks into single, branch, and alligator distress types. This is because it is easier to visually differentiate between single, branch, and alligator cracks than it is to visually differentiate between various crack widths. In the reference survey, the rater can use the measurement
	The figures demonstrate that Vision 3.1 rates the majority of cracks as severity level II. It should be noted that the manual assignment of severity levels in the reference survey is always more subjective than classification of cracks into single, branch, and alligator distress types. This is because it is easier to visually differentiate between single, branch, and alligator cracks than it is to visually differentiate between various crack widths. In the reference survey, the rater can use the measurement
	rater then relies on this visual representation to manually rate the severity levels of each identified cracking distress. 
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	Figure 96. Severity Level III Rating Results for Vision 3.1 
	Figure 96. Severity Level III Rating Results for Vision 3.1 


	5.4 Comparison of Different Survey Methods 
	This section compares the results of the manual windshield surveys conducted by FDOT distress raters, Vision 3.1 on 3D images, and the reference survey described in Section The results compared in this section include percent wheel path cracking (CW) and percent non-wheel path cracking (CO). While patching and raveling are typically included in the total cracking percentages, Vision 3.1 results presented do not include patching or raveling. The outlier test sections discussed previously (sections 3, 7, and 
	5.3.2. 

	5.4.1 Success Metrics 
	The following are the success metrics used for comparing different survey methods based on the overall cumulative amount of each crack type among different test sections and multiple runs: 
	1. 
	1. 
	1. 
	: This statistic is evaluated based on average error (bias) with respect to the reference distress survey values for each crack type. 
	Crack Classification Accuracy


	2. 
	2. 
	: This statistic is evaluated based on coefficient of variation (COV) of manually identified cracking among three raters for each crack type (independent of the reference and averaged among the sections). 
	Manual Windshield Survey Reproducibility



	Accuracy (%) = 100 – Bias (%) 
	Reproducibility (%) = 100 – COV (%) 
	3. : This statistic is evaluated based on coefficient of variation (COV) of automatically identified cracking among three runs for each crack type (independent of the reference and averaged among the sections). 
	Automated Crack Classification Repeatability

	Repeatability (%) = 100 – COV (%) 
	4. : This statistic is evaluated based on coefficient of variation (COV) of crack classification accuracy among 12 sections for each crack type. 
	Crack Classification Consistency

	Consistency (%) = 100 – [Standard Deviation of Accuracy (%) / Average Accuracy (%)] 
	5.4.2 Comparison Results on Overall Section Cracking Quantities 
	and show the success metrics for the manual windshield survey and 
	Table 56 
	Table 57 

	Vision 3.1, respectively, compared to the reference survey for the total amounts of CW 
	and CO cracking (all severities) in each section. 
	Table 56. Comparison of Manual Windshield Survey Rating to the Reference Survey 
	Metric 
	Metric 
	Metric 
	CW 
	CO 

	Accuracy (%) 
	Accuracy (%) 
	70.51 
	68.82 

	Section-To-Section Consistency (%) 
	Section-To-Section Consistency (%) 
	98.48 
	98.61 

	Rater-To-Rater Reproducibility (%) 
	Rater-To-Rater Reproducibility (%) 
	50.71 
	37.36 


	Table 57. Comparison of Vision 3.1 Rating to the Reference Survey 
	Table 57. Comparison of Vision 3.1 Rating to the Reference Survey 
	Table 57. Comparison of Vision 3.1 Rating to the Reference Survey 

	Metric 
	Metric 
	CW 
	CO 

	Accuracy (%) 
	Accuracy (%) 
	92.51 
	89.62 

	Section-To-Section Consistency (%) 
	Section-To-Section Consistency (%) 
	99.85 
	99.85 

	Run-To-Run Repeatability (%) 
	Run-To-Run Repeatability (%) 
	97.22 
	96.19 


	compares the accuracy of the two rating methods as calculated by 100 minus the absolute value of bias (%). 
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	Figure 97. Comparison of Different Methods in terms of Accuracy 
	The results indicate that Vision 3.1 is relatively more successful in detecting and identifying the extent of CW cracking (accuracy 93%) compared to CO cracking (accuracy of 90%). The accuracy of Vision 3.1 for both CW and CO cracking (93% and 90%, respectively) is higher than that of the manual windshield survey (71% and 69%, respectively).  
	shows a comparison among the methods in terms of consistency as calculated by 100 minus the coefficient of variation of accuracy among 12 test sections. The manual windshield survey is showing a slightly lower consistency compared to Vision 3.1. However, both methods show high consistency among the test sections, excluding the outliers (sections 3, 7, and 9). 
	Figure 98 
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	Figure 98. Comparison of Different Methods in terms of Consistency 
	compares the reproducibility of the manual windshield survey to the repeatability of Vision 3.1 using 100 minus the coefficient of variation of distress amounts among the three raters/runs. Vision 3.1 is showing much higher repeatability among multiple runs when compared to the reproducibility among multiple raters in the manual windshield survey. 
	Figure 99 
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	Figure 99. Comparison of the Reproducibility of Manual Windshield Survey to the Repeatability of Vision 3.1 Results 
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	5.5 Gap Analysis and Design Considerations 
	In this section of the report, the gaps in the performance of Vision 3.1 are identified. In addition, a potential design consideration is offered as the solution to address each identified gap. 
	5.5.1 Identified Gaps 
	Based on the results of Vision 3.1 evaluations on 3D images, it is evident that Vision 3.1 has an adequate performance in detecting pavement surface cracks, but it is not performing well regarding classification and rating of the detected cracks into corresponding distress types and severities according to the FDOT Flexible Pavement Condition Survey Handbook (2017). Regarding crack detection, it should be noted that on three test sections (number 3, 7, and 9), the total length of false positives was more th

	Setup Parameters 
	Setup Parameters 
	To utilize the classification and rating functions of Vision 3.1, many parameters must be input by the user. The reason for this was that by design, this software was supposed to have the flexibility to be used on a variety of pavement surfaces in various conditions across the world. A wide range of setup parameters could not only introduce inconsistency to results if different parameters are selected by different users, but it could also make the analysis seem overly complicated and challenging. Fugro will

	Crack Classification Issues 
	Crack Classification Issues 
	Vision 3.1 classifies crack types based on a table of coordinates for each crack node. Vision 3.1 uses the table to determine the crack angle to differentiate longitudinal from transverse cracks and uses density of cracking in a given area to identify alligator cracking areas. While the software displays a crack map on the user interface, the crack map is not used for distress classification purposes. Fugro will develop a crack map, which can be used for the distress classification process. 
	Vision 3.1 does not include the “Branch Crack” crack type, and it does not have the 
	capability of classifying branch cracks. Using a crack map, single and branch crack distress types can be identified based on geometric properties in addition to crack angle. Also, alligator cracking can be detected using characteristics other than crack 
	capability of classifying branch cracks. Using a crack map, single and branch crack distress types can be identified based on geometric properties in addition to crack angle. Also, alligator cracking can be detected using characteristics other than crack 
	density. Developing a crack map will enable new algorithms to increase the accuracy and consistency of distress classification. 

	While there may be potential to improve the block cracking classification capabilities of Vision 3.1, block cracking will not be included in FDOT automated classification processors. Due to a limited amount of block cracking across Florida highways, there are currently no test sections that exhibit sufficient block cracking, with which to evaluate automatic results. 

	Crack Severity Rating Issues 
	Crack Severity Rating Issues 
	As illustrated in Section  the automatically rated crack severities do not align well with the severities determined using the reference survey. Since distress severities are primarily dependent on crack width, the crack width determined using Vision 3.1 is likely insufficient for effectively rating distress severities according to the FDOT protocol. Fugro will improve the crack width detection algorithm to improve the automatic rating results. 
	5.3.6,

	5.5.2 Recommended Design Solutions 
	summarizes the identified gaps in Vision 3.1 and corresponding recommended solutions. Based on this gap analysis, the following development efforts will be considered for Task 6 of this project. The algorithm logic design is briefly explained for each development effort. 
	Table 58 

	Table 58. Identified Gaps and Recommended Solutions 
	Table 58. Identified Gaps and Recommended Solutions 
	Table 58. Identified Gaps and Recommended Solutions 

	Number 
	Number 
	Gap in Vision 3.1 
	Recommended Solution 

	1 
	1 
	Numerous setup parameters 
	Develop batch processor with minimal setup parameters 

	2 
	2 
	Distress classification based on crack angle and density has issues with classifying alligator cracks Vision 3.1 cannot classify branch cracks 
	Develop crack map for use during distress classification Develop methodology to classify alligator cracks based on closed cells Develop methodology to classify branch cracks based on joint pixels 

	3 
	3 
	Block crack classification is not available 
	No recommendation due to lack of test sections which exhibit block cracking 

	4 
	4 
	Inaccurate distress severity rating 
	Develop improved crack width algorithm for distress severity rating purposes 



	Batch Processor Development 
	Batch Processor Development 
	A batch processor is designed to be developed as a plugin for Vision 3.1. The batch processor shall include the improvements described below and developed in Task 6 of this project. The batch processor shall be tailored to the FDOT distress rating protocol. 

	Crack Map 
	Crack Map 
	1. 
	1. 
	1. 
	Create a binary image using the detected crack node coordinates in which white pixels represent cracks and all other pixels are black based. 

	2. 
	2. 
	The binary image includes redundant information which can be reduced using the following morphological processes (see : 
	Figure 100)



	i. : keeps the essential information but improves the processing speed by reducing the size and number of pixels. 
	Resizing

	ii. : enlarges the boundaries of regions of white pixels. This process reduces the size of gaps within each region, and some gaps are filled completely to establish closed crack cells that can be categorized as alligator cracking. 
	Dilation

	iii. : reduces the white regions in the binary image to a skeletal remnant that preserves the extent and connectivity of the original.  The thickness of features in the skeleton is one pixel. 
	Skeletonizing

	Figure
	Figure 100. Example Showing Resizing, Dilation, and Skeletonizing to Create Crack Map 
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	Alligator Cracking Classification 
	Alligator Cracking Classification 
	The crack map is analyzed to locate all regions in which the cracks have formed a closed cell. Connected closed-cell regions are combined into a bounding box which represents the area of alligator cracking (see . 
	Figure 101)

	Figure
	Figure 101. Example Showing Extraction of Alligator Cracking Areas from the Crack Map 

	Single and Branch Cracking Classification 
	Single and Branch Cracking Classification 
	Single and Branch Cracking Classification 
	Any cracks in the crack map that do not fall within alligator cracking bounding boxes are 
	considered linear or branch cracks (see . 
	Figure 102)

	Branch cracks will be distinguished from linear cracks based on the number of adjoining 
	pixels. In a skeletonized image, there are three types of pixels: 
	i. End pixels which have one adjoining pixel 
	ii. Center pixels which have two adjoining pixels 
	iii. Joint pixels which have more than two adjoining pixels 
	225 
	A branch crack is an element in the crack map with at least one joint pixel (see . 
	Figure 
	103)

	Figure
	Figure 102. Example Showing Extraction of Single and Branch Cracks from the Crack Map 
	Figure
	Figure 103. Joint Pixels and Branch Cracks Develop Improved Crack Width Algorithm 
	1. Create a binary image using the range image, which includes the 3D depth data. The crack map and binary image developed in the classification development 
	226 
	effort was based on the intensity image and contain crack locations, but they do not contain width information. 
	i. Pre-process the range image using contrast stretching and histogram equalization techniques. The grayscale range image will produce a better binary image if it exhibits high contrast rather than low contrast (see . 
	Figure 104)

	Figure
	Figure 104. Example Preprocessing of 3D Range Image 
	Figure 104. Example Preprocessing of 3D Range Image 
	Figure 104. Example Preprocessing of 3D Range Image 

	ii. 
	ii. 
	Extract the binary image from the pre-processed range image using an edge-detection thresholding algorithm. 

	iii. 
	iii. 
	Remove extraneous information from the binary image. The binary image will contain white pixels which do not correspond to cracks that were detected or included on the crack map. The crack map can be overlaid on the range binary image to keep only white pixels which correspond to a detected crack (see Figure 105). 
	Remove extraneous information from the binary image. The binary image will contain white pixels which do not correspond to cracks that were detected or included on the crack map. The crack map can be overlaid on the range binary image to keep only white pixels which correspond to a detected crack (see Figure 105). 



	Figure
	Figure 105. Example Development of Enhanced Crack Map for Crack Width Determination 
	2. Determine crack width using the range binary image. 
	i. Overlay the bounding boxes from the classification results onto the range binary image. 
	ii. Sum the number of white pixels within each bounding box. 
	Number of white pixels 
	Number of white pixels 

	iii. Average crack width for each bounding box = 
	Crack length 
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	CHAPTER 6 – FLEXIBLE PAVEMENT APPLICATION DEVELOPMENT AND VALIDATION 
	Task 6 of this research project included the development of the FDOT Flexible Pavement Distress Application (FFPDA) according to the algorithm design, which was devised during Task 5 for addressing identified gaps. This chapter is organized into four sections. Following this introduction, Section 1 summarizes the algorithm design and the application development efforts. Section describes the experiment design for validation of the developed application. Section presents the results of the validation experim
	6.
	6.2 
	6.3 
	6.4 
	L 

	Please note the following reference phrases in this report: 
	• “Vision 3.1”: this refers to Fugro’s Vision 3.1 software, which includes a machine 
	learning algorithm for crack detection and an automated routine for distress classification and rating. This existing automated software was evaluated in Task 5 and the existing gaps were identified so that the software development activities in Task 6 could address these gaps. 
	• “crack detection”: this refers to the process of locating and marking the 
	pavement surface defects from the collected imagery. 
	• “crack classification”: this refers to the process of classifying each detected 
	crack into a specific crack type and assigning a severity level to it. 
	• “reference survey”: this refers to the semi-automated survey conducted on one run of the collected pavement images, which serves as a benchmark when evaluating the automated software results. 
	6.1 Application Development 
	Based on the results of Vision 3.1 evaluations in Task 5, it was evident that Vision 3.1 had an adequate performance in detecting pavement surface cracks, but it was not performing well regarding classification and rating of the detected cracks into corresponding crack types and severities according to the FDOT Flexible Pavement Condition Survey Handbook (2017). summarizes the identified gaps and corresponding recommended solutions. Based on this gap analysis that was performed 
	Based on the results of Vision 3.1 evaluations in Task 5, it was evident that Vision 3.1 had an adequate performance in detecting pavement surface cracks, but it was not performing well regarding classification and rating of the detected cracks into corresponding crack types and severities according to the FDOT Flexible Pavement Condition Survey Handbook (2017). summarizes the identified gaps and corresponding recommended solutions. Based on this gap analysis that was performed 
	Table 59 

	in Task 5, the following development efforts were conducted for Task 6 of this project. The algorithm logic design is briefly explained for each development effort. 

	Table 59. Identified Gaps and Recommended Solutions 
	Number 
	Number 
	Number 
	Gap 
	Recommended Solution 

	1 
	1 
	Numerous setup parameters 
	Develop batch processors with minimal setup parameters 

	2 
	2 
	Crack classification based on crack angle and density has issues with classifying Alligator cracks 
	Develop improved crack map for use during crack classification Develop methodology to classify Alligator cracks based on closed cells 

	3 
	3 
	Inability to classify Branch cracks 
	Develop methodology to differentiate Branch cracks from Single cracks based on joint pixels 

	4 
	4 
	Single and Branch cracks in proximity of each other and Alligator cracks are classified separately 
	Develop methodology to group cracks that are in proximity to each other 

	5 
	5 
	Vision 3.1 requires wheel path and non-wheel path cracks to be defined in the distress schema ahead of distress survey 
	Develop methodology to automatically differentiate wheel path cracks from non-wheel path cracks after automated survey and manual QC 

	6 
	6 
	Block crack classification is not accurate enough 
	No recommendation due to lack of test sections which exhibit Block cracking 

	7 
	7 
	Inaccurate crack severity rating 
	Develop improved crack width algorithm for distress severity rating purposes 

	8 
	8 
	Need to output summary data in the FDOT protocol format 
	Develop batch processor to summarize the results of automated survey and manual QC in output file 


	6.1.1 Batch Processor Development 
	Two batch processors were developed as plugins for Vision 3.1: 
	1. 
	1. 
	1. 
	‘FDOT Flexible Pavement Distress Application (FFPDA)’ which takes the results of automated crack detection as an input, classifies the cracks as single, branch, and alligator, and then assigns a severity level of 1B, II, or III based on crack classification and width. This processor addresses gaps number 1, 2, 3, 4, 5, and 7. 

	2. 
	2. 
	‘FDOT Flexible Pavement Rating Results Summary’ which takes the results of FFPDA and any QC (manually drawing or modifying distresses on the images), differentiates wheel path from non-wheel path cracks, and summarizes all the distress information into comma separated value (csv) files. This processor addresses gap number 8. 


	The batch processors include the improvements described below and developed in Task 6 of this project. The batch processors are tailored to the FDOT distress rating protocol. This built-in customization will eliminate the need for numerous setup parameters and user-defined distress schemas. 
	6.1.2 Improved Crack Map Development 
	The following steps describe how the FFPDA algorithm was developed to generate an improved crack map based on the automated crack detection results: 
	1. 
	1. 
	1. 
	Create a binary image using the detected crack node coordinates, in which white pixels represent cracks and all other pixels are black (see first image from left in 
	Figure 106) 


	2. 
	2. 
	The binary image includes redundant information, which can be reduced using the following morphological processes (see : 
	Figure 106)



	i. : keeps the essential information but improves the processing speed by reducing the size and number of pixels. 
	Resizing

	ii. : enlarges the boundaries of regions of white pixels. This process reduces the size of gaps within each region, and some gaps are filled completely (Szeliski 2010). 
	Dilation

	Figure
	Figure 106. Example Showing Resizing, Dilation, and Skeletonizing to Create Improved Crack Map 
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	The dilation operator takes two pieces of data as inputs. The first is the binary image (crack map) which is to be dilated. The second is a (usually small) set of coordinate points known as a structuring element (also known as a kernel). It is this structuring element (see for example) that determines the precise effect of the dilation on the input image. 
	Figure 107 

	The mathematical definition of dilation for binary images is as follows: 
	Suppose that X is the set of Euclidean coordinates corresponding to the input binary image, and that K is the set of coordinates for the structuring element. 
	Let Kx denote the translation of K so that its origin is at X. 
	Then, the dilation of X by K is simply the set of all points in X such that the intersection of Kx with X is non-empty. 
	As an example of binary dilation, suppose that the structuring element is a 3×3 square, with the origin at its center, as shown in Note that in this and subsequent diagrams, foreground (white) pixels are represented by 1's and background (black) pixels by 0's. 
	Figure 107. 

	Figure
	Figure 107. A 3×3 Square Structuring Element 
	To compute the dilation of a binary input image by this structuring element, each of the background (black) pixels in the input image is considered in turn. For each background pixel (called the input pixel), the structuring element is superimposed on top of the input image, so that the origin of the structuring element coincides with the input pixel position. If at least one pixel in the structuring element coincides with a foreground (white) pixel in the image underneath, then the input pixel is set to th
	For the example 3×3 structuring element in  the effect of this operation is to change any black pixels that have a neighboring white pixel to the white color. Such pixels must lie at the edges of white regions, and so the practical upshot is that foreground regions grow (and holes inside a region shrink). 
	Figure 107,

	iii. : reduces the white regions in the binary image to a skeletal remnant that largely preserves the extent and connectivity of the original region. The thickness of any linear feature in the skeleton is one pixel. The skeleton of the binary image is acquired using the Zhang-Suen Thinning Algorithm (Zhang and Suen 1984). The details of this algorithm are described as following: 
	Skeletonizing

	The algorithm operates on all white pixels P1 that can have eight neighbors. The neighbors are arranged in a clock-wise sequence as indicated in  Obviously, the boundary pixels of the image cannot have the full eight neighbors. 
	Figure 108.
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	Figure 108. The Pixel Arrangement in the Zhang-Suen Thinning Algorithm 
	Define {A(P1)} = the number of transitions from black to white, (0 to 1) when moving in the clock-wise sequence P2 to P3 to P4 to P5 to P6 to P7 to P8 to P9 back to P2. (Note the extra P2 at the end -it is circular). 
	Define {B(P1)} = The number of white pixel neighbors of P1 = (sum(P2 .. P9)) 
	: All pixels are tested and pixels satisfying all the following conditions (simultaneously) are set to black: 
	Step 1

	1) The P1 pixel is white and has eight neighbors 
	2) {2 ≤ B(P1) ≤ 6} in other words, P1 has between 2 to 6 white pixel neighbors 
	3) A(P1) = 1 in other words, there is only one transition from black to white when moving in the clock-wise sequence above 
	4) At least one of P2 and P4 and P6 is black 
	5) At least one of P4 and P6 and P8 is black 
	: All pixels are tested again and pixels satisfying all the following conditions (simultaneously) are set to black: 
	Step 2

	1) The pixel is white and has eight neighbors 
	2) {2 ≤ B(P1) ≤ 6} in other words, P1 has between 2 to 6 white pixel neighbors 
	3) A(P1) = 1 in other words, there is only one transition from black to white when moving in the clock-wise sequence above 
	4) At least one of P2 and P4 and P8 is black 
	5) At least one of P2 and P6 and P8 is black : Steps one and two are repeated until image pixels are no longer changed shows the results of the three morphological processes of resizing, dilation, 
	Iteration
	Figure 106 

	and skeletonizing on an example pavement image. 
	6.1.3 Alligator Cracking Classification 
	The improved crack map is analyzed to locate all regions in which the cracks have formed a closed cell. Connected closed-cell regions are combined into a bounding box which represents the area of alligator cracking (see . 
	Figure 109)

	Figure
	Figure 109. Example Showing Extraction of Alligator Cracking Areas from the Crack Map 
	The locations of closed cells are acquired by Contour Hierarchy Analysis (Suzuki and Abe 1985). Contours can be explained simply as a curve joining all the continuous points (along the boundary), having the same color or intensity. In some cases, some contours are inside other contours; the outer ones are called parents and inner ones are called children. This way, contours in an image have some relationship to each other. And we can specify how one contour is connected to another, is it a child of some oth
	Consider the example image shown in  Contour lines 2 and 2a denote the external and internal contours of the outermost box. Here, contours 0, 1, and 2 are external or outermost. We can say, they are in hierarchy-0 or simply they are in the same hierarchy level. Next comes contour 2a. It can be considered as a child of contour 2 (or in opposite way, contour 2 is parent of contour 2a). So, let contour 2a be in hierarchy-1. A closed cell is an indication of alligator cracking and closed cells are detected if a
	Figure 110.
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	Figure
	Figure 110. Schematic Description of Contour Hierarchy Analysis 
	6.1.4 Single and Branch Cracking Classification 
	Any cracks in the crack map that do not fall within alligator cracking bounding boxes are considered single or branch cracks (see . 
	Figure 111)

	Branch cracks were distinguished from single cracks based on the number of adjoining pixels. In a skeletonized image, there are three types of pixels: 
	i. End pixels which have one adjoining pixel 
	ii. Center pixels which have two adjoining pixels 
	iii. Joint pixels which have more than two adjoining pixels 
	A branch crack is defined as an element in the crack map with at least one joint pixel (see  if the branch stemming from that joint pixel is longer than 1 foot. 
	Figure 112)

	Figure
	Figure 111. Example Showing Extraction of Single and Branch Cracks from the Crack Map 
	Figure
	Figure 112. Joint Pixels and Branch Cracks 
	6.1.5 Wheel-Path and Non-Wheel-Path Cracking 
	During the classification, the cracks are assigned with different crack types: alligator, branch or single. The cracks are then further classified into wheel-path cracks and nonwheel-path cracks based on the location across the lane width, more specifically, its x coordinate. 
	-
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	For any identified distress, if the corresponding bounding boxes crossed any boundaries of the five road zones shown in (and defined in the 2017 FDOT Flexible Pavement Condition Survey Handbook), those bounding boxes were cropped into multiple sub-boxes as shown in The original bounding boxes can span multiple road zones, but these final sub-boxes can only exist in one road zone. In this manner, the identified cracking can be divided between wheel-path and outside wheel-path zones. 
	Figure 113 
	Figure 114. 

	Figure
	Figure 113. FDOT Defined Road Zones Across the Lane Width 
	Figure 113. FDOT Defined Road Zones Across the Lane Width 
	Figure 114. Cropping Bounding Box into Sub-Boxes According to Road Zone 

	Figure
	6.1.6 Bounding Box Grouping 
	Three types of groupings are performed on the bounding boxes (cropped sub-boxes). If the minimum longitudinal (y) distance between an alligator cracking bounding box and a branch cracking bounding box is less than or equal to 1ft, they are merged as one alligator cracking bounding box. Similarly, if the minimum y distance between a branch cracking bounding box and a single crack bounding box is less than or equal to 1ft, they are merged as one branch cracking bounding box. Also, if the minimum y distance be
	Figure 115 

	Crack bounding boxes are finalized in this step, cracks in the same crack bounding boxes are grouped as one crack set. After width information is assigned to these crack sets, crack sets are converted to distresses. 
	Figure
	Figure 115. Grouped Bounding Box 
	6.1.7 Improved Crack Width Identification 
	There was a need to improve the estimation of crack width to improve the accuracy of the software in assigning severity levels to cracks. The crack map and binary image developed in the classification development effort contain crack locations, but they do not contain width information. The following explains the development efforts to create a binary image using the range image (which includes the 3D depth data), and the estimation of crack width: 
	1. Pre-process the range image using contrast stretching and histogram equalization techniques. The grayscale range image will produce a better binary image if it exhibits high contrast rather than low contrast (see . 
	Figure 116)

	Range Image Normalized Range Image Equalized Range Image 
	Figure 116. Example Preprocessing of 3D Range Image 
	i. : Often called normalization, this is a simple image enhancement technique that attempts to improve the contrast in an image by `stretching' the range of intensity values it contains to span a desired range of values, e.g. the full range of pixel values that the image type concerned allows (Kaur and Choudhary 2012). 
	Contrast Stretching

	Before the stretching can be performed, it is necessary to specify the upper and lower pixel value limits over which the image is to be normalized. Often these limits will just be the minimum and maximum pixel values that the image type concerned allows. For example, for 8-bit gray level images, the lower and upper limits might be 0 and 255. Call the lower and the upper limits a and b respectively. 
	The contrast stretching algorithm then scans the image to find the lowest and highest pixel values currently present in the image. Call these c and d. Then each pixel P is scaled using the following function: 
	Figure
	Values below 0 are set to 0 and values above 255 are set to 255. 
	ii. : is a method that improves the contrast in an image, to stretch out the intensity range (Szeliski 2010). In  the pixels in the intensity histogram of the center image seem clustered around the middle of the available range of intensities. What Histogram Equalization does is to stretch out this range. The tails of this histogram indicate the underpopulated intensities. After applying the equalization, the histogram for the image on the right shows that pixels in the resulting image have intensities that
	Histogram Equalization
	Figure 116,

	2. Extract the binary image from the pre-processed range image using a Multi-Threshold Maximum Entropy Algorithm (Apro et al. 2011). The Maximum Entropy is an automatic thresholding (classification) method where the optimal threshold value (for differentiating pixels in two classes of cracks and non-cracks) can be found by maximizing the entropy (minimizing the homogeneity) of the resulting classes. This thresholding technique is called a bi-level approach, where a unique threshold value is defined to diffe
	Suppose that h(i) is a value in a normalized histogram. Typically, i takes integer values from 0 to 255 (for 8-bit depth images). h(i) is the number of pixels that have the intensity 
	i. It is assumed that h(i) is normalized, meaning the total area under the frequency distribution histogram is equal to 1: 
	Figure
	The entropy of black (background) pixels is defined as: 
	The entropy of black (background) pixels is defined as: 
	The entropy of white (foreground) pixels is defined as: 

	Figure
	Figure
	The optimal threshold can be selected by maximizing the sum of foreground and background entropies as: 
	Figure
	The above formula for optimal threshold value (bi-level thresholding) can be extended to multi-level thresholding of an image. Assuming that there are n thresholds dividing the original image into n+1 classes, the optimal thresholds {T1 , T2 , …, Tn } are chosen by maximizing the sum of entropies as follows 
	Figure
	where: 
	Figure
	In this project, the n is set to be 2. In other words, two thresholding values are obtained and applied to the pre-processed range image. The pre-processed gray-scale range images are converted to binary images (see . 
	Figure 117)

	3. Remove extraneous information from the binary image. The binary image will contain white pixels which do correspond to cracks that were 
	3. Remove extraneous information from the binary image. The binary image will contain white pixels which do correspond to cracks that were 
	not 

	detected or included on the crack map. The width of the cracks in the skeletonized crack map (see  is increased from one to 20 pixels, and then this crack map is overlaid on the pre-processed binarized image from step 3 to keep only white pixels in the binary image that correspond to detected cracks (see . 
	Figure 106)
	Figure 117)


	Figure
	Figure 117. Example Development of Enhanced Crack Map for Crack Width Determination 
	4. Determine crack width using the final range binary image (see . 
	Figure 
	117)

	i. Overlay the bounding boxes from the classification results onto the range binary image. 
	ii. Sum the number of white pixels within each bounding box. The width of each pixel in the LCMS image is very close to 1 mm. 
	iii. Average crack width in millimeter for each bounding box = 
	Crack length (mm) 
	Number of white pixels 
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	6.1.8 Improving Crack Severity Level Assignment 
	If the average crack width for a branch cracking area is less than or equal to ⅛ inch 
	(3.18 mm) wide, that area would be assigned a Class 1B severity level. However, during the manual distress workshop conducted with the FDOT raters, it was discovered that if the same area had a lot of branching (no closed cells that would indicate alligator cracking), then the FDOT raters would bump its severity level to Class II. 
	Since the automated software is supposed to replace the manual windshield survey for the annual pavement condition survey (PCS), it was decided that this practice needs to be incorporated into the software. Therefore, the following algorithm was developed in this regard: 
	1. 
	1. 
	1. 
	If a crack group is classified as branch cracking, and 

	2. 
	2. 
	the average crack width is less than or equal to ⅛ inch (3.18 mm), and 

	3. 
	3. 
	in every 10 feet of the crack length, there are at least 5 branches of minimum 1 foot each, 

	4. 
	4. 
	then the cracking is assigned as Class II. 


	6.2 Validation Experiment Design 
	The following sections will describe the experiment test sections, the success metrics, the reference values, and the evaluation limitations. 
	6.2.1 Experiment Test Sections 
	To conduct this validation experiment, FDOT engineers identified a set of 12 representative test sections that are each at least a standard evaluation length (0.1mile-long) and contain several of the flexible pavement distresses in them. and show the selected 12 flexible pavement sections. 
	-
	Table 52 
	Figure 85 

	6.2.2 Manual Windshield Survey 
	Three FDOT raters conducted a manual windshield distress survey of the 12 test sections according to the FDOT protocol. Each rater conducted the manual distress survey separately in a separate vehicle and according to the FDOT Flexible Pavement Condition Survey Handbook (2017). 
	6.2.3 Automated Survey 
	The 3D data collection was conducted by Fugro using the Automatic Road Analyzer (ARAN) Laser Crack Measurement System (LCMS) equipment and the data were analyzed by Fugro staff using the readily available Vision 3.1 software. The ARAN collected 3 repeated runs on each of the 12 test sections. Surface defects were detected using the machine learning algorithm in Vision 3.1. Then the FFPDA batch processor developed in Task 6 was used to classify and rate the detected cracks according to the FDOT Flexible Pave
	6.2.4 Success Metrics 
	The following are the success metrics used for evaluating the crack classification and severity rating results based on the overall cumulative amount of each crack type among different test sections and multiple runs: 
	1. : This statistic is evaluated based on average error (bias) with respect to the reference distress survey values for each crack type. 
	Crack Classification Accuracy

	Accuracy (%) = 100 – Bias (%) 
	2. : This statistic is evaluated based on coefficient of variation (COV) of manually identified cracking among three raters for each crack type (independent of the reference and averaged among the sections). 
	Manual Windshield Survey Reproducibility

	Reproducibility (%) = 100 – COV (%) 
	3. : This statistic is evaluated based on coefficient of variation (COV) of automatically identified cracking among three runs for each crack type (independent of the reference and averaged among the sections). 
	Automated Crack Classification Repeatability

	Repeatability (%) = 100 – COV (%) 
	4. 
	4. 
	4. 
	: This statistic is evaluated based on coefficient of variation (COV) of crack classification accuracy among 12 sections for each crack type. 
	Crack Classification Consistency


	5. 
	5. 
	: This statistic is evaluated based on the time required for the automated distress survey. 
	Crack Classification Efficiency



	Consistency (%) = 100 – [Standard Deviation of Accuracy (%) / Average Accuracy (%)] 
	Efficiency (second per foot) = time for crack detection, classification, and rating divided by the total length. 
	6.2.5 Reference Survey 
	A reference distress survey was manually created by one Fugro engineer using the collected images from one automated run (run number 1), and another Fugro technician reviewed the results to reach a consensus for the reference survey. This reference survey was used to evaluate the effectiveness of the crack classification and rating routine. 
	6.2.6 Evaluation Limitations 
	The evaluation was conducted considering the following limitations of this analysis: 
	1. 
	1. 
	1. 
	The 12 test sections were selected as representative of the actual pavement surfaces found across Florida. With such a small sample, it is possible that not all of the actual pavement network is represented in this study. Every effort was made to select a representative sample. However, the budgetary and schedule limitations of this project would not allow for collection and processing of data across a wider network. For example, there were not a significant amount of block cracking present in the selected 

	2. 
	2. 
	This study is mainly focused on cracking distresses; patching and raveling were not considered in this evaluation. 


	6.3 Validation Experiment Results 
	The results of the validation experiment are presented according to the experiment design described in the previous section. The amount of cracking automatically identified using FFPDA after the development effort is compared to that using Vision 3.1, the manual windshield survey by FDOT raters and the semi-automated reference survey by Fugro staff. The automated results are averaged among the three runs and the manual results are averaged among the three raters. The automated results were for cracking foun
	6.3.1 Automatically Identified Crack Types 
	In this section, the evaluation is conducted based on the amount of automatically identified Single, Branch, and Alligator cracking. The following results are for cracking in all 5 road zones between the lane markings. FDOT raters report only the predominant crack type and severity in CW and CO, when performing the PCS windshield survey. Therefore, a direct comparison of their results to the automated results could not be conducted for crack type. 
	-3,000 6,000 9,000 12,000 15,000 1 2 3 4 5 6 7 8 9 10 11 12 AVGCracking Area (Square Feet) Section Single Cracking Semi-Automated Reference Automated Vision 3.1 Automated FFPDA 
	shows the amount of automatically identified Single cracks in each of the 12 sections, compared to the reference survey. Compared to Vision 3.1, FFPDA has resulted in less amount of identified single cracking. This is because Vision 3.1 was not capable of classifying branch cracks and was identifying all branch cracks as single cracks. 
	shows the amount of automatically identified Single cracks in each of the 12 sections, compared to the reference survey. Compared to Vision 3.1, FFPDA has resulted in less amount of identified single cracking. This is because Vision 3.1 was not capable of classifying branch cracks and was identifying all branch cracks as single cracks. 
	Figure 118 



	Figure 118. Comparison of Automatically Identified Single Cracks to Reference Survey 
	shows the amount of automatically identified Branch cracks on each of the 12 sections, compared to the reference survey. Vision 3.1 was not capable of identifying branch cracking but FFPDA has identified branch cracks at a relatively lower extent compared to the reference survey. 
	Figure 119 

	 -3,000 6,000 9,000 1 2 3 4 5 6 7 8 9 10 11 12 AVGCracking Area (Square Feet) Section Branch Cracking Semi-Automated Reference Automated Vision 3.1 Automated FFPDA
	Figure 119. Comparison of Automatically Identified Branch Cracks to Reference Survey 
	shows the amount of automatically identified Alligator cracks on each of the 12 sections, compared to the reference survey. Compared to the reference and the Vision 3.1, FFPDA has resulted in higher amount of identified alligator cracking. This is because of the grouping mechanism that was devised in FFPDA to group cracking areas that are in proximity to each other. The grouping mechanism was incorporated to better match the practice of FDOT manual raters. 
	Figure 120 
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	Figure 120. Comparison of Automatically Identified Alligator Cracking to Reference Survey 
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	6.3.2 Automatically Rated Crack Severities 
	Both Vision 3.1 and FFPDA use average crack width measurements to determine crack severities according to the FDOT Flexible Pavement Condition Survey Handbook (2017). However, FFPDA has an improved methodology as described in Section 
	6.1.7. 

	Class IB are hairline cracks that are less than or equal to ⅛ inch (3.18 mm) wide, Class II are cracks greater than ⅛ inch (3.18 mm) and less than or equal to ¼ inch (6.35 mm) 
	wide, and Class III are cracks greater than ¼ inch (6.35 mm) wide. Note that the extent of Class1B cracks is the sum of the length of single and branch cracks. But the extent of the Class II and Class III cracks is the sum of the area of single, branch, and alligator cracks, where the single and branch cracks are assumed to have a width of one foot. 
	It should be noted that the manual assignment of severity levels in the reference survey is always more subjective than classification of cracks into single, branch, and alligator crack types. This is because it is easier to visually differentiate between single, branch, and alligator cracks than it is to visually differentiate between various crack severities. In the reference survey, the rater can use the measurement tool in Vision 3.1 to get familiar with the visual representation of various crack widths
	and compare the automatically rated results to those of the manual windshield survey and the reference survey for Class 1B, Class II, and Class III cracks, respectively (note: vertical axis ranges vary). FFPDA has resulted in a higher amount of Class 1B cracking compared to Vision 3.1, which compares better against the reference survey. On the other hand, FFPDA has resulted in a lower amount of Class II cracking compared to Vision 3.1, which compares very well against both the reference survey and the manua
	Figure 121, 
	Figure 122, 
	Figure 123 
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	Figure 121. Comparison of Automatically Identified Class 1B Cracks to the Manual Windshield and Reference Surveys 
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	Figure 122. Comparison of Automatically Identified Class II Cracks to the Manual Windshield and Reference Surveys 
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	Figure 123. Comparison of Automatically Identified Class III Cracks to the Manual Windshield and Reference Surveys 
	Overall, the performance of the FFPDA is acceptable compared to the reference and the manual windshield survey regarding Class 1B and Class II cracks. But the same cannot be stated regarding Class III cracks. The caveat in all these comparisons is that the FFPDA has a more systematic methodology for measuring crack width and assigning severity levels compared to the subjective visual methodology of the manual windshield survey and the semi-automated reference survey. 
	6.3.3 Automatically Identified Wheel Path and Non-Wheel Path Cracking 
	In this section, the rating results were converted to cracking within the wheel path and outside the wheel path according to the FDOT Flexible Pavement Condition Survey Handbook (2017). and show a comparison of the automated Vision 3.1 and FFPDA software to the manual windshield and reference surveys for wheel path and non-wheel path cracking, respectively. 
	Figure 124 
	Figure 125 
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	Figure 124. Comparison of Automatically Identified Wheel Path Cracking to the Manual Windshield and Reference Surveys 
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	Figure 125. Comparison of Automatically Identified Non-Wheel Path Cracking to the Manual Windshield and Reference Surveys 
	6.3.4 Comparison of Different Rating Methods 
	This section compares the results of the manual windshield surveys conducted by FDOT distress raters, the fully automated distress surveys using Vision 3.1 and FFPDA, 
	253 
	and the semi-automated reference survey described in Section  according to the success metrics described in Section The results compared in this section include percent wheel path cracking (CW) and percent non-wheel path cracking (CO). The outlier test sections with minimal amount of cracking (sections 3, 7, and 9) were excluded from this analysis. 
	5.3.2,
	6.2.4. 

	compares the accuracy of the three rating methods of manual windshield, automated Vision 3.1, and automated FFPDA, compared to the reference survey. FFPDA is showing a lower accuracy compared to Vision 3.1, but it is closer to the manual windshield results. This is mainly because of the grouping mechanism that was developed in Task 6 for the automated results to better reflect the practice of the FDOT raters in the field. 
	Figure 126 
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	Figure 126. Comparison of Different Methods in terms of Accuracy 
	compares the bias of the three rating methods. Compared to the reference survey, FFPDA over-estimates CW and under-estimates CO. The bias of FFPDA compared to the reference survey is in the same direction as the manual windshield survey for CW but in the opposite direction for CO. Vision 3.1 has a bias in the opposite direction of the manual windshield survey results for both CW and CO. Since the bias of FFPDA is positive for CW and negative for CO, this means that the total amount of cracking identified by
	Figure 127 

	3.1 or the manual windshield survey results. 
	This means that compared to the reference survey, FDOT manual raters tend to overestimate cracking, while FFPDA tends to over-estimate cracking in the wheel path zones (CW) and under-estimate cracking outside of the wheel path zones (CO). Wheel path cracking is an indication of fatigue in the pavement structure, and it has a higher importance compared to non-wheel path cracking in overall pavement condition 
	-
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	evaluation. FFPDA and manual windshield methods show better agreement in terms of wheel path cracking compared to non-wheel path cracking. 
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	Figure 127. Comparison of Different Methods in terms of Bias 
	shows a comparison among the methods in terms of section-to-section consistency of the results. All three methods are comparable in this regard. 
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	Figure 128. Comparison of Different Methods in terms of Consistency 
	compares the reproducibility of the manual windshield method to the repeatability of the two automated software, independent of the reference survey. The automated methods are showing much higher repeatability among multiple runs when compared to the reproducibility among multiple raters in the manual rating method. 
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	Figure 129. Comparison of Different Methods in terms of Repeatability/Reproducibility 
	6.3.5 Comparison of FFPDA to Manual Windshield Survey 
	Since the ultimate objective of developing FFPDA is to replace the existing manual windshield surveys for the annual pavement condition survey (PCS), this section will compare the results of the two methods in terms of decision making. In this section, the rating results were converted to crack rating according to the FDOT Flexible Pavement Condition Survey Handbook (2017). In this evaluation, the raveling and patching areas were ignored, because the focus of the study was on cracking areas. 
	shows a comparison of FFPDA crack rating results to the results of the manual windshield survey. The box plots show the statistics for all runs on each of the 12 test sections. The X signs show the mean of the 3 runs/raters and the circles show the median of them. Except for section number 9, in all other test sections, the FFPDA shows no variation in crack rating values among the 3 runs. For the sections where the FFPDA shows no variation in crack rating values, the X sign for the mean, the circle for the 
	Figure 130 

	Figure
	Figure 130. Comparison of FFPDA to Manual Windshield Survey Crack Rating Statistics 
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	shows a comparison of the crack rating averaged among the 3 raters for the manual windshield survey and averaged among the 3 runs for the FFPDA results. On average, FFPDA and the manual windshield survey show acceptable agreement in terms of the overall crack rating. 
	Figure 131 
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	Figure 131. Comparison of FFPDA to Manual Windshield Survey Crack Rating Averages 
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	6.4 Summary and Recommendations for Implementation 
	Task 6 of this project involved development of the FFPDA to address the gaps that were discovered in Task 5, and validation of the FFPDA results according to the experiment design. The following conclusions can be made: 
	1. 
	1. 
	1. 
	FFPDA demonstrates higher repeatability compared to the manual windshield survey. This was expected due to the subjectivity of the manual windshield survey (i.e. visual rating with the naked eye from a moving vehicle). 

	2. 
	2. 
	FFPDA demonstrates higher accuracy compared to the manual windshield survey. Accuracy is measured according to the bias compared to the reference survey and is a relatively subjective metric in this case. 

	3. 
	3. 
	FFPDA and the manual windshield survey have similar section-to-section consistency in the rating results. 

	4. 
	4. 
	FFPDA results showed better agreement with the manual windshield survey results than the previously tested Vision 3.1 software. This is because the FFPDA addressed the issues with Branch cracking, Alligator cracking, and severity level assignment that were found with Vision 3.1. 

	5. 
	5. 
	FFPDA and manual windshield methods have more agreement in terms of wheel path cracking compared to non-wheel path cracking. 

	6. 
	6. 
	The manual raters are often documenting more cracking compared to the reference survey in both the wheel paths and outside the wheel paths. However, the FFPDA is finding more cracking compared to the reference survey in the wheel paths and less cracking compared to the reference survey in non-wheel path zones. 


	According to the observations in the software validation results, the following are the recommendations for implementation: 
	1. 
	1. 
	1. 
	Use FFPDA on a larger database of highway sections to determine if there are any systematic errors in software results. Use the semi-automated rating (manual rating of pavement images) to QC the results of FFPDA and potentially discover any remaining systematic errors. 

	2. 
	2. 
	Using the larger database of representative test sections, compare the results of FFPDA and the manual windshield ratings to determine a calibration equation between the two methodologies. This equation can be used to transform the FFPDA cracking results to a similar scale as the manual windshield results to ensure smooth pavement deterioration trends before and after implementation of an automated approach. In the long term, the deduct values for the combined condition index might need to be revisited as a


	The semi-automated rating method should also be used to determine pavement areas affected by raveling and patching. The developed software can automatically add these semi-automated rating results to the automated cracking results of FFPDA and provide the final combined condition index for every pavement section. 
	CHAPTER 7 – AUTOMATED APPLICATION IMPLEMENTATION 
	Task 7 of this research project involved technical support to implement the validated automated distress identification applications for both rigid and flexible pavements into the annual Pavement Condition Survey (PCS) process. This implementation was completed during two phases: 
	1. 
	1. 
	1. 
	Phase I: after completion of Task 3, Fugro provided support to implement the validated FDOT Rigid Pavement Distress Application (FRPDA) 

	2. 
	2. 
	Phase II: after completion of Task 6, Fugro provided support to implement the validated FDOT Flexible Pavement Distress Application (FFPDA) 


	This document is organized into five sections. Following this introduction, Section 7.1 summarizes the implementation activities for FRPDA. Section 7.2 describes the implementation activities conducted for FFPDA. Section 7.3 presents a suggested data quality management program. Finally, Section 7.4 summarizes the efforts and provides pertinent recommendations for future data collection and processing activities. 
	7.1 Implementation Activities for FDOT Rigid Pavement Distress Application (FRPDA) 
	This section of the report summarizes the activities conducted for implementation of the FRPDA into the annual PCS process. 
	7.1.1 Data Collection 
	The sample data for identification and quantification of distresses for rigid pavements was collected using the FDOT multi-purpose survey vehicle (MPSV), which is equipped with the Laser Road Imaging System (LRIS). In Task 2, Fugro staff conducted an investigation to determine whether the collected two-dimensional (2D) pavement images are of acceptable quality for crack detection and how FDOT can potentially measure various image quality indicators in future. As a result, Fugro developed a Hardware Maintena
	During Task 2 of this research project, a two-day distress raters’ class was organized for both existing FDOT raters and appropriate Fugro staff on August 25 to 26, 2015. The class included both classroom as well as field training exercises. The main objective of this workshop was for Fugro to understand how FDOT raters conduct rigid pavement condition surveys, and how some of the involved decisions on distress type, extent, and severity can be quantified for the automated algorithm to match FDOT raters' de
	7.1.2 Data Processing 
	Fugro developed a workflow to load the collected 2D LRIS images into the Vision software tool used for this research project. This workflow has two fundamental elements: 
	1. 
	1. 
	1. 
	Location and format of the collected data 

	2. 
	2. 
	Structured Query Language (SQL) code that fetches data from the stored location and puts it in the required database format to be used by Vision software 


	This workflow was first submitted as Appendix G of the Task 2 Report. The latest version of this workflow is documented in Appendix A of this report. If the fundamental elements of this workflow are followed, LRIS data following the same format and structure can be imported into Vision software using this workflow. 
	In addition, Fugro developed the FRPDA User’s Guide for image filtering, crack detection, joint detection, and crack classification and rating. This guide was delivered in Appendix A of the Task 3 Report. Appendix C of the Task 3 Report was a software installation guide. 
	At the conclusion of Phase I, Fugro held a meeting on February 22, 2017 at FDOT State Materials Office (SMO), during which the developed software (FRPDA version 1.0) and corresponding recommendations were demonstrated to FDOT staff. In addition, the software was installed and tested on several desktop computers for FDOT staff to use and test. On June 8, 2017, a hands-on FRPDA training class was held in a computer instruction room at the FDOT SMO. 
	7.1.3 Data Analysis and Reporting 
	In Appendix B of the Task 3 Report, Fugro provided a guide to use basic Vision functions for viewing images and manual rating of the pavement images. This semi-automated distress survey was recommended for quality control of the automated results and for adding other non-cracking pavement surface distress types such as spalling, surface deterioration, and patching. 
	After running the FRPDA, the results of joint detection and cracking identification are stored in comma-separated values (csv) files. The contents of these files can easily be used to develop reports in a meaningful format to be used for pavement management and treatment design purposes. 
	7.1.4 Data Quality Management 
	Chapter 4 of this document provides a suggested framework for data quality management. 
	7.2 Implementation Activates for FDOT Flexible Pavement Distress Application (FFPDA) 
	This section of the report summarizes the activities conducted for implementation of the FFPDA into the annual PCS process. 
	7.2.1 Data Collection 
	The sample data for identification and quantification of distresses for flexible pavements was collected using a Fugro Automatic Roadway Analyzer (ARAN) vehicle equipped with the three-dimensional (3D) Laser Crack Measurement System (LCMS). At the time of the conclusion of this research project, FDOT had not purchased a 3D data collection system. However, FDOT had contracted the collection of the pavement condition data on Florida Interstate Highways to a Data Collection Contractor who operated an LCMS vehi
	On June 7 to 8, 2017, a two-day distress raters’ class was organized for both existing FDOT raters and appropriate Fugro staff. The class included both classroom as well as field training exercises. The main objective of this workshop was for Fugro to understand how FDOT raters conduct flexible pavement condition surveys, and how some of the involved decisions on distress type, extent, and severity can be quantified for the automated algorithm to match FDOT raters' decisions. 
	7.2.2 Data Processing 
	Fugro developed a workflow to load the 3D LCMS images and data collected by the Data Collection Contractor into the Vision software tool used for this research project. This workflow has two fundamental elements: 
	1. 
	1. 
	1. 
	Location and format of the collected data 

	2. 
	2. 
	Structured Query Language (SQL) code that fetches data from the stored location and puts it in the required database format to be used by Vision software 


	This workflow is documented in Appendix B of this report. If the fundamental elements of this workflow are followed, LCMS data following the same format and structure can be imported into Vision software using this workflow. In addition, a user interface was created for facilitating the application of this SQL code for data transfer (see details in Appendix B). 
	In addition, Fugro developed the FFPDA Reference Manual for crack detection, and crack classification and rating. This guide was delivered as Appendix B of the Task 6 Report. This Reference Manual included a software installation guide and a Quick Start Guide. 
	At the conclusion of Task 6, Fugro held a meeting on June 25 to 26, 2018 at FDOT SMO during which the developed software and corresponding recommendations were demonstrated to FDOT staff. In addition, the software was installed and tested on several desktop computers for FDOT staff to use and test. The testing by FDOT staff revealed some issues in Vision 3.4 that compromised the performance of FFPDA. Therefore, the FFPDA was revised to match Vision 3.1, the most recent reliable version of the platform. 
	7.2.3 Data Analysis and Reporting 
	In the Reference Manual submitted as an appendix to the Task 6 Report, Fugro provided instructions to use a semi-automated distress survey for quality control of the automated results and for adding other non-cracking pavement surface distress types such as raveling and patching. 
	After running the FFPDA, the results of cracking identification and section crack rating are stored in csv files. The contents of these files can easily be used to develop reports in a meaningful format to be used for pavement management and treatment design purposes. 
	7.2.4 Data Quality Management 
	Chapter 4 of this document provides a suggested framework for data quality management. 
	7.3 Data Quality Management Program 
	This chapter presents a suggested data quality management program. FDOT staff may choose to adopt this program within their existing processes for quality management. 
	7.3.1 Definitions 
	The following are definitions of terms, abbreviations, and acronyms used in this quality management program. 
	Table 60. Definition of Quality Terms 
	Term 
	Term 
	Term 
	Definition 

	Quality 
	Quality 
	The degree to which a set of inherent characteristics of a product or service fulfill requirements. 

	Quality Standards 
	Quality Standards 
	Quantitative and qualitative characteristics of product or service that are used to determine the quality of each deliverable. Examples include accuracy, precision, resolution, etc. 

	Accuracy 
	Accuracy 
	Accuracy is a qualitative term referring to whether there is agreement between a measurement made on an object and its true (target or reference) value, indicating measurement effectiveness. Bias is a quantitative term describing the difference (or error) between the average of measurements made on the same object and its true value. 

	Precision 
	Precision 
	Precision is a qualitative term describing the degree of repeatability of a measurement value, indicating measurement reliability. Variance and standard deviation of error are quantitative estimates of precision. 

	Resolution 
	Resolution 
	Data reporting format corresponding to measurement methodology and specific application by the user. 

	Quality Management 
	Quality Management 
	The overarching system of policies and procedures that govern the performance of quality control and acceptance activities. 

	Quality Control 
	Quality Control 
	A series of measurements and corresponding corrective actions to ensure that a desired level of quality is obtained for the developed product or service. 

	Quality Acceptance 
	Quality Acceptance 
	The criteria to confirm that the quality of the developed product or service is indeed acceptable for application by the user. 

	Quality Assurance 
	Quality Assurance 
	Reporting, training, and process improvement activities to increase the ability of the development process to fulfill quality requirements for the product or service being provided. 


	7.3.2 Quality Management Approach 
	A pavement performance Data Quality Management Program (DQMP) is recommended with the following objectives: 
	▪
	▪
	▪
	▪

	Evaluation and updates of data collection, processing, and reporting standards and protocols considering agency goals and objectives 

	▪
	▪
	▪

	Better compliance with data standards and protocols 

	▪
	▪
	▪

	Improved completeness, accuracy, and consistency of data 

	▪
	▪
	▪

	Increased data credibility within the organization 

	▪
	▪
	▪

	Cost savings from more appropriate data-driven treatment recommendations 

	▪
	▪
	▪

	Increased accuracy of budget need determinations 

	▪
	▪
	▪

	Better integration with other internal agency data 

	▪
	▪
	▪

	Compliance with FHWA MAP-21/FAST Act requirements 


	The FHWA Practical Guide for Quality Management of Pavement Condition Data Collection (Pierce et al. 2013) was consulted in the development of this DQMP. At a minimum, every quality management system shall include: 
	▪
	▪
	▪
	▪

	Quality standards, including data collection, processing, and reporting methodology 

	▪
	▪
	▪

	Routine data quality control (QC) measures, checklists, and criteria 

	▪
	▪
	▪

	Error tracking and resolution system 

	▪
	▪
	▪

	Periodic quality assurance (QA) procedures to ensure the data collection and processing system is producing data conforming to the quality standards 

	▪
	▪
	▪

	Quality acceptance and reporting 

	▪
	▪
	▪

	Identification of roles and responsibilities 


	FDOT collects highway inventory and condition data using internal resources to the furthest extent possible. In addition, FDOT procures services from qualified Data Collection Contractors when the need arises. Regardless of the in-house or contracted data collection approach, quality management is administered by the FDOT staff. FDOT may require the Data Collection Contractors to submit a Quality Control Plan which complies with and complements this DQMP. 
	The flow chart in demonstrates the various aspects of the quality management approach. The quality standards, roles, and responsibilities should be set in the DQMP. For in-house collection, quality control shall be conducted by FDOT staff. For contracted collection, the 
	The flow chart in demonstrates the various aspects of the quality management approach. The quality standards, roles, and responsibilities should be set in the DQMP. For in-house collection, quality control shall be conducted by FDOT staff. For contracted collection, the 
	Figure 132 

	Data Collection Contractor should conduct quality control activities according to the submitted Quality Control Plan. FDOT staff shall review the QC results and conduct quality acceptance audits. The whole quality management process and findings should be documented through the quality reporting plan. All of the involved processes shall be reviewed according to the findings and any relevant process improvements shall be identified and implemented through continuous quality assurance. 

	Quality Management Quality Standards Quality Roles & Responsibilities Quality Control Quality Acceptance Quality Reporting Quality Assurance 
	Figure 132. Quality Management Approach 
	The key activities, processes, and procedures for quality management of the pavement performance data are briefly described in with more in-depth information provided in the sections that follow. 
	Table 61, 

	Table 61. Contents of the Data Quality Management Program 
	Data Collection Protocols and Quality Standards 
	Data Collection Protocols and Quality Standards 
	Data Collection Protocols and Quality Standards 
	The data collection deliverables subject to quality review, protocols used to collect, and quality standards that are the measures used to determine a successful outcome for a deliverable. Deliverables are evaluated against these criteria before they are formally approved. 

	Data Quality Control (QC) Measures 
	Data Quality Control (QC) Measures 
	The QC activities conducted by either FDOT staff (for in-house collection) or the Data Collection Contractor that monitor, provide feedback, and verify that the data collection deliverables meet the defined quality standards. 

	Data Quality Acceptance Criteria 
	Data Quality Acceptance Criteria 
	The acceptance testing that will be used to determine if quality criteria are met and corrective actions that will be taken for any deliverables not meeting criteria. 

	Quality Assurance (QA) Plan 
	Quality Assurance (QA) Plan 
	The plan for training of the involved staff, and using the QC results for the improvement of corresponding data collection and QC processes. 

	Quality Reporting Plan 
	Quality Reporting Plan 
	The documentation of key quality management activities, including QC log and acceptance log, and the format of the final quality management report. 

	Roles and Responsibilities 
	Roles and Responsibilities 
	The quality-related responsibilities of the data collection team. 


	7.3.3 Data Collection Protocols and Quality Standards 
	The latest version of the FHWA Highway Performance Monitoring System (HPMS) Field Manual (December 2016) is to be used for the collection and processing of data that will be submitted to the FHWA. The HPMS Field Manual references various AASHTO protocols for calibration of equipment and collection of data. For non-HPMS data, the latest version of the FDOT Rigid Pavement Condition Survey Handbook (September 2017) and Flexible Pavement Condition Survey Handbook (October 2017) will be used for distress data. H
	Deliverables, Protocols, and Quality Standards 
	The data elements that need to be submitted to the FHWA HPMS for 0.1-mile segments are included in 
	This list includes the corresponding protocol for data collection and processing. The list also includes recommended quality standards for accuracy, precision, and resolution that need to be reviewed by FDOT staff to determine whether they are acceptable. 
	Table 62. 

	The data elements beyond what is submitted to the HPMS and need to be collected for FDOT’s pavement management purposes are listed in This list includes the corresponding protocol for data collection and processing, and the recommended quality standards for accuracy, precision, and resolution that need to be reviewed by FDOT staff to determine whether they are acceptable. 
	Table 63. 

	In these tables, accuracy can be measured as the average error compared to reference values (normalized errors in percentage and absolute errors in corresponding measurement units), and precision can be estimated as the run-to-run repeatability out of 3 repeated runs (variation from mean of 3 repeated runs). Both accuracy and precision shall be evaluated on control sites, where reference values are documented according to a methodology approved by FDOT (see section on Reference Measurements). Precision shal
	In this case, the reference values used for evaluating accuracy can be the previous measurements on that test section. 
	The recommended quality standards of accuracy and precision in 
	and are based on the measurement resolution, and past experience in capabilities of current measurement technology. For example, the current automated survey technology has a higher rate of success in estimating the amount of cracking as opposed to non-cracking surface defects; as a result, the quality standards set for cracking distress types are tighter than that set for non-cracking surface defects. In majority of the data elements, the quality standard set for precision is tighter than that set for accu
	Table 62 
	Table 63 

	Table 62. Recommended Protocols and Quality Standards for HPMS Data 
	Table 62. Recommended Protocols and Quality Standards for HPMS Data 
	Table 62. Recommended Protocols and Quality Standards for HPMS Data 

	Deliverable 
	Deliverable 
	Protocol 
	Resolution & Reporting 
	Accuracy (compared to reference) 
	Repeatability (out of 3 runs) 

	International Roughness Index (IRI) 
	International Roughness Index (IRI) 
	Collection of Longitudinal Profile: AASHTO R57-14 Quantification of IRI: AASHTO R43-13 
	Nearest 1 inch per mile Report MRI (average of left and right IRI) a 
	± 10% 
	± 5% 

	Rut Depth 
	Rut Depth 
	Collection of Transverse Profile: AASHTO R88-18 Rut Depth: AASHTO R87-18 
	Nearest 0.01 inch Report average rut depth of two wheel paths a 
	± 0.1 inches 
	± 0.05 inches 

	Faulting 
	Faulting 
	Measurement and Quantification: AASHTO R36-17 
	Nearest 0.01 inch Report average absolute faulting of all joints in the right wheel path, including zero values a 
	± 0.1 inches 
	± 0.05 inches 

	Percent Cracking 
	Percent Cracking 
	Image Collection: AASHTO R86-18 Cracking Estimation: AASHTO R85-18 
	Nearest 1% Report Percent Cracking b,a 
	The higher of ± 25% or ± 5 points in Percent Cracking 
	The higher of ± 15% or ± 3 points in Percent Cracking 

	Present Serviceability Rating (PSR) 
	Present Serviceability Rating (PSR) 
	HPMS Field Manual, Agreement with FHWA Division Office on approach 
	Nearest 0.1 point Report PSR from 0.1 to 5.0 a 
	± 0.5 points 
	± 0.5 points 


	Deliverable 
	Deliverable 
	Deliverable 
	Protocol 
	Resolution & Reporting 
	Accuracy (compared to reference) 
	Repeatability (out of 3 runs) 

	Horizontal Curvature 
	Horizontal Curvature 
	HPMS Field Manual 
	Horizontal curvature category 
	Matching degree of curve from construction plans ± 0.3 
	± 0.1 degree 

	Grade 
	Grade 
	HPMS Field Manual 
	Vertical curvature category 
	Matching grade from construction plans ± 0.3 
	± 0.1 percent 


	a Report one number for 0.1-mile segments, full extent, one lane, one direction. 
	b AC: Total area of cracked wheel path divided by total section area; JPCP: Percentage of slabs with at least one transverse crack > 1/2 lane width; CRCP: Cracking (exclude transverse) area divided by total section area. 
	Table 63. Recommended Protocols and Quality Standards for FDOT Pavement Management Data 
	Deliverable 
	Deliverable 
	Deliverable 
	Protocol 
	Resolution & Reporting 
	Accuracy (compared to reference) 
	Repeatability (out of 3 runs) 

	Pavement Condition Data: Flexible Pavements 
	Pavement Condition Data: Flexible Pavements 

	Cracking Confined to Wheel Paths 
	Cracking Confined to Wheel Paths 
	FDOT Flexible Pavement Condition Survey Handbook (October 2017) 
	Percent of wheel path area affected at 3 severity levels: Class 1B, Class II, Class III 
	± 10% 
	± 10% 

	Cracking Outside of Wheel Paths 
	Cracking Outside of Wheel Paths 
	Percent of non-wheel path area affected at 3 severity levels: Class 1B, Class II, Class III 
	± 10% 
	± 10% 

	Dominant Crack Type 
	Dominant Crack Type 
	Alligator (A), Block (B), and Combination (C) 
	N/A 
	N/A 

	Patching Confined to Wheel Paths b 
	Patching Confined to Wheel Paths b 
	Percent of wheel path area affected 
	± 25% 
	± 15% 

	Patching Outside of Wheel Paths b 
	Patching Outside of Wheel Paths b 
	Percent of non-wheel path area affected 
	± 25% 
	± 15% 

	Raveling Confined to Wheel Paths b 
	Raveling Confined to Wheel Paths b 
	Percent of wheel path area affected at 3 severity levels: Light, Moderate, Severe 
	± 25% 
	± 15% 

	Raveling Outside of Wheel Paths b 
	Raveling Outside of Wheel Paths b 
	Percent of non-wheel path area affected at 3 severity levels: Light, Moderate, Severe 
	± 25% 
	± 15% 

	Crack Rating 
	Crack Rating 
	Between 0 and 10 with a resolution of 0.5 
	± 0.5 points 
	± 0.5 points 

	Ride Rating 
	Ride Rating 
	Between 1 and 10 with a resolution of 0.1 
	± 0.3 points 
	± 0.1 points 

	Rut Depth 
	Rut Depth 
	Nearest 0.125 inches 
	± 0.125 inches 
	± 0.125 inches 

	Rut Rating 
	Rut Rating 
	Between 0 and 10 with a resolution of 1 
	± 1 point 
	± 1 point 

	International Roughness Index (IRI) 
	International Roughness Index (IRI) 
	ASTM E1926 
	Nearest 1 inch per mile, average of the left and right wheel paths 
	± 10% 
	± 5% 

	Ride Number (RN) 
	Ride Number (RN) 
	ASTM E1489 
	Between 0 and 5, Nearest 0.01, average of the left and right wheel paths 
	± 10% 
	± 5% 


	270 
	Deliverable 
	Deliverable 
	Deliverable 
	Protocol 
	Resolution & Reporting 
	Accuracy (compared to reference) 
	Repeatability (out of 3 runs) 

	Pavement Condition Data: Rigid Pavements 
	Pavement Condition Data: Rigid Pavements 

	Transverse Cracking 
	Transverse Cracking 
	FDOT Rigid Pavement Condition Survey Handbook (September 2017) 
	Count occurrence at 3 severity levels 
	± 10% 
	± 5% 

	Longitudinal Cracking 
	Longitudinal Cracking 
	Count occurrence at 3 severity levels 
	± 10% 
	± 5% 

	Corner Cracking 
	Corner Cracking 
	Count occurrence at 3 severity levels 
	± 15% 
	± 10% 

	Joint Condition b 
	Joint Condition b 
	Partially Sealed or Not Sealed, representative severity within the rated section 
	N/A 
	N/A 

	Surface Deterioration b 
	Surface Deterioration b 
	Area extent at 2 severity levels 
	± 25% 
	± 15% 

	Spalling b 
	Spalling b 
	Length extent at 2 severity levels 
	± 25% 
	± 15% 

	Patching b 
	Patching b 
	Area extent at 2 severity levels 
	± 25% 
	± 15% 

	Pumping b 
	Pumping b 
	percent within the rated section at 3 severity levels 
	± 25% 
	± 15% 

	Shattered Slab b 
	Shattered Slab b 
	Number of affected slabs at 2 severity levels 
	N/A 
	N/A 

	Fault Index (FI) 
	Fault Index (FI) 
	Nearest 1 
	± 2 
	± 1 

	Faulting 
	Faulting 
	AASHTO R36-17 
	Nearest 0.03 (1/32) inch, report average absolute faulting of all joints in the right wheel path, including zero values 
	± 0.1 inches 
	± 0.05 inches 

	Slab Length 
	Slab Length 
	N/A 
	Approximate slab length in feet 
	± 5% 
	± 5% 

	Slab Count 
	Slab Count 
	N/A 
	Count slabs 
	± 5% 
	± 5% 

	Cracked Slab Count 
	Cracked Slab Count 
	HPMS Field Manual 
	Number of affected slabs 
	± 10% 
	± 5% 

	Deliverable 
	Deliverable 
	Protocol 
	Resolution & Reporting 
	Accuracy (compared to reference) 
	Repeatability (out of 3 runs) 

	General, Location, and Geometric Data 
	General, Location, and Geometric Data 

	Pavement Images 
	Pavement Images 
	AASHTO R86-18 
	4096 pixels across 12 feet lane width; able to collect 2 mm wide cracks at highway speeds 
	Uniform illumination; color balanced and clear; proper image stitching 

	Right of Way (ROW) Images 
	Right of Way (ROW) Images 
	N/A 
	1920 x 1080 pixels; covering 120 degree viewing angle 
	Free of distortion and overexposure; color balanced and clear; synchronized with other image/data; allow length and width measurements of assets 
	-


	GPS Coordinates 
	GPS Coordinates 
	N/A 
	Nearest 0.0000001 degree 
	± 15 feet 
	± 0.00001 degrees 

	GPS Elevation 
	GPS Elevation 
	N/A 
	Nearest 0.1 meter 
	± 0.1 meter 
	± 0.1 meter 

	Chainage (LRS) 
	Chainage (LRS) 
	N/A 
	Nearest 0.001 mile 
	± 15% compared to walking wheel 
	± 5% 

	PAVE_TYPE b 
	PAVE_TYPE b 
	HPMS Field Manual 
	Asphalt, PCC, CRC, or Composite 
	Matching FDOT Inventory data 
	N/A 

	Macrotexture 
	Macrotexture 
	ASTM E1845 
	Nearest 0.001 inch Mean Texture Depth (MTD), RMS, and Error for each wheel path 
	N/A 
	± 15% 

	Friction Number 
	Friction Number 
	ASTM E274 ASTM E501 ASTM E524 
	Nearest 0.1 for each wheel path 
	N/A 
	N/A 

	Cross Fall 
	Cross Fall 
	N/A 
	Nearest 0.1 percent 
	N/A 
	± 15% 

	Horizontal Radius of Curvature 
	Horizontal Radius of Curvature 
	N/A 
	Nearest 1 meter 
	N/A 
	± 15% 

	Grade 
	Grade 
	N/A 
	Nearest 0.1 percent 
	N/A 
	± 0.1 percent 

	Edge Drop-off 
	Edge Drop-off 
	N/A 
	Count occurrence and height to nearest 1 mm 
	N/A 
	± 15% 


	b Currently, these data elements can only be estimated by manual rating of the collected pavement images. 
	Reference or “Ground Truth” Measurement 
	It is recommended to establish control sites (see Section on Control and Verification Sites) and collect reference data on them. The reference data should be collected on the control sites at least once every 2 years. 
	For collecting reference sensor data (roughness, rut depth, faulting, grade, cross slope), the reference data can be collected with a certified equipment that matches the description of a reference profiler in AASHTO R56-14 Standard. Several commercial versions of these reference profilers are available through ICC, ARRB, and SSI companies. Fugro owns and operates an ICC version. 
	The AASHTO R56-14 Standard was developed for certification of inertial profiling systems, and it contains guidelines for establishing a reference longitudinal profile using a reference profiler. This reference longitudinal profile can be used to quantify the reference values for IRI, RN, faulting, and grade data. 
	The AASHTO R88-18 Standard for collecting transverse profile data also includes guidelines for collecting reference transverse profile data using a reference profiler with similar descriptions to that noted in the AASHTO R56-14 Standard. This reference transverse profile can be used to quantify the reference values for rut depth and cross slope data. 
	The sensor data shall be collected with the reference profiler multiple times until 3 repeatable runs (the correlation of all data among the 3 runs is equal to or higher than 0.98) are achieved. Then one of those 3 repeatable runs would be used as reference. 
	For horizontal curvature data, a sample of the HPMS sections that are categorized as D, E, or F can be used as control sections, on which construction plans are used as reference values. After this verification of curvature data in the base year, this sample data can be used as historical reference for the following years. 
	For establishing reference distress data, it is recommended that at least 3 certified distress raters would first review the distress type, severity, and extent guidelines in the FDOT Rigid Pavement Condition Survey Handbook (September 2017) and Flexible Pavement Condition Survey Handbook (October 2017), and review example historical data. The raters would then conduct a semi-automated survey to identify distresses on pavement images. Following the semiautomated survey, the raters will compare notes and arr
	-

	On any site other than the control sites, the most recent accepted data should be used as reference measurements. 
	Control and Verification Sites 
	The recommended number and length of control and verification sites are listed in The control sites are used for vehicle calibration checks and certification and shall be visited once every month (during data collection season), including the entry and exit controls. Additionally, in the event data collection vehicles or data collection components undergo repair or replacement, the affected system(s) will need to be recalibrated and then verified using the control sites. The 
	The recommended number and length of control and verification sites are listed in The control sites are used for vehicle calibration checks and certification and shall be visited once every month (during data collection season), including the entry and exit controls. Additionally, in the event data collection vehicles or data collection components undergo repair or replacement, the affected system(s) will need to be recalibrated and then verified using the control sites. The 
	Table 64. 

	verification sites are used for weekly calibration checks during data collection and are planned to be scattered across the state to the extent possible to avoid traveling back and forth between a data collection district and the central office. The control sites can also be used for verification. 

	The control and verification site data shall be shipped to the office to be compared against the reference data to evaluate accuracy. The reference data on the control sections should be collected at a 2-year frequency (see Section on Reference Measurement) and for the verification sites, the last cycle of data collection can be used as reference data. The repeatability among 3 repeated runs on these sites will be used to evaluate precision. If multiple data collection vehicles are used, the verification si
	There are sites already established for Distance Measuring Instrument (DMI) calibration, which can be used as control and verification sections for sensor data. Ideally, these sites should have minimal surface distress to avoid complications in establishing reference sensor data. For flexible pavements, it is recommended to have two control sites, one smooth and one relatively rough to evaluate the accuracy and repeatability of the equipment on different ride quality situations. Due to the limited length of
	The control sections for distress data need to have an adequate amount of each distress type to the extent feasible. That is why the control sites for distress data and those for sensor data need to be separate. If the data collection crew (FDOT or Contractor) conduct daily quality control of the collected pavement images, there is no need for weekly verification of distress data and the monthly evaluation of accuracy and precision on the control sites will suffice. Therefore, no verification sites are reco
	Table 64. Planned Control and Verification Sites 
	Site Purpose 
	Site Purpose 
	Site Purpose 
	Pavement Type 
	District 
	Route 
	Direction 
	Length b 

	Control and Verification Sites for Sensor Data 
	Control and Verification Sites for Sensor Data 

	Control/Verification 
	Control/Verification 
	AC 
	District 2 
	TBD 
	TBD 
	500 ft 

	Control/Verification 
	Control/Verification 
	AC 
	District 2 
	TBD 
	TBD 
	500 ft 

	Control/Verification 
	Control/Verification 
	PCC 
	District 2 
	TBD 
	TBD 
	500 ft 

	Verification 
	Verification 
	AC 
	District 1 
	TBD 
	TBD 
	500 ft 

	Verification 
	Verification 
	AC 
	District 3 
	TBD 
	TBD 
	500 ft 

	Verification 
	Verification 
	AC 
	District 4 
	TBD 
	TBD 
	500 ft 

	Verification 
	Verification 
	AC 
	District 5 
	TBD 
	TBD 
	500 ft 

	Verification 
	Verification 
	AC 
	District 6 
	TBD 
	TBD 
	500 ft 

	Control Sites for Distress Data 
	Control Sites for Distress Data 

	Control 
	Control 
	AC 
	District 2 
	TBD 
	TBD 
	500 ft 

	Control 
	Control 
	PCC 
	District 2 
	TBD 
	TBD 
	1000 ft 


	b 0.1-mile segments are typically adequate for both control and verification sections. The recommended length for the rigid distress control section is longer due to the limited density of observed distress on concrete pavements. 
	Equipment Calibration and Certification Protocols 
	lists the available national standards for calibration and certification of data collection equipment. National standards are under development for calibration and certification of some of the equipment. 
	Table 65 

	Table 65. Available Equipment Calibration and Certification Protocols 
	Data Element 
	Data Element 
	Data Element 
	Data Collection Equipment 
	Equipment Calibration Protocol 
	Comments 

	Longitudinal profile 
	Longitudinal profile 
	Inertial profilers 
	Collection System: AASHTO M328-14 Equipment Certification: AASHTO R56-14 
	National Standard Available 

	Transverse profile 
	Transverse profile 
	Laser sensors 
	AASHTO R48-10 or AASHTO R88-18 
	National Standard Under Development 

	Faulting of concrete joints 
	Faulting of concrete joints 
	Profilers or 3D images 
	AASHTO R36-17 
	National Standard Under Development 

	Pavement distress 
	Pavement distress 
	2D or 3D imaging technology 
	AASHTO R86-18 
	National Standard Under Development 


	For FDOT in-house data collection, the Data Collection Vehicle Provider is responsible for annual preventive maintenance, calibration, and certification of the equipment installed and integrated on the vehicle. The following is a general overview of the tasks conducted during annual vehicle certification, depending on the specific equipment integrated on the vehicle: 
	• 
	• 
	• 
	Central Data Acquisition Computer (CDAC) checkup and updates 

	• 
	• 
	Smart Video Controller (SVC) checkup and updates 

	• 
	• 
	AC BOX and DC BOX checkup and maintenance 

	• 
	• 
	Distribution Enclosure checkup and maintenance 

	• 
	• 
	Cables / Racks / Dog House / Miscellaneous checkup and maintenance 

	• 
	• 
	DMI checkup and calibration 

	• 
	• 
	Chassis / Generator / Inverter / Charger checkup and maintenance 

	• 
	• 
	Laser South Dakota Profiler (LSDP) and Texture sensor checkup, maintenance, and calibration (including static test, bounce test, and repeat runs for verification) 

	• 
	• 
	Laser Rut Measurement System (LRMS) checkup, maintenance, and calibration (including static test, cross-fall rolling test, dynamic repeat runs for verification) 

	• 
	• 
	Grade and pitch sensors checkup, maintenance, and calibration (including static and bounce tests and repeat runs for verification) 

	• 
	• 
	POSLV PCS (Position and Orientation System) checkup and software updates 

	• 
	• 
	Right-Of-Way (ROW) forward and backward cameras checkup and maintenance 

	• 
	• 
	Pavement Laser Road Imaging System (LRIS) or Laser Crack Measurement System (LCMS) checkup, maintenance, and calibration 


	For contracted data collection, the Data Collection Contractor shall be required to submit equipment calibration and certification information including a regular maintenance and testing program as part of their Quality Control Plan. 
	Certification of Equipment Operators and Persons Performing Manual Data Collection 
	Typically, the reference distress survey on the control sites would be conducted manually or semiautomated (manual rating of collected images). FDOT shall hold workshops for the distress raters to collectively review the definitions and sample images and potentially conduct an exam rating to certify the distress raters. 
	-

	For FDOT in-house data collection, the equipment operators shall receive annual training and certification, a record of which shall be documented. This training shall include the following topics regarding vehicle operation: 
	• 
	• 
	• 
	Driver safety and proactive driving practice 

	• 
	• 
	Mechanical checkup and maintenance (refer to Data Collection Vehicle Provider) 

	• 
	• 
	Overall equipment operation (refer to Data Collection Vehicle Provider) 

	• 
	• 
	Daily/weekly/monthly equipment/sensor checks and preventive maintenance 

	• 
	• 
	DMI calibration and verification 

	• 
	• 
	Repeat runs and verification testing for sensor data 


	For contracted data collection, the Data Collection Contractor should be required to submit current documentation indicating training and certification of equipment operators as part of their Quality Control Plan. Some of the pavement surface distress types may be manually identified on the collected images using desktop software (semi-automated survey). The Data Collection Contractor is responsible for training and certification of corresponding staff. 
	7.3.4 Data Quality Control Measures 
	For in-house data collection, FDOT staff are responsible for quality control (QC) activities before, during, and after data collection. For contracted data collection, the conduct of QC procedures and measurements are the responsibility of the Data Collection Contractor. The QC steps are conducted according to the Quality Control Plan submitted by the Data Collection Contractor and approved by FDOT. Regardless of in-house or contracted data collection, the following includes the key procedures and correspon
	Quality Control Activities Conducted Before Data Collection 
	These QC activities include calibration and periodic checks of data collection equipment and the first visit to the control sites. includes an overview of these activities. In addition to the recommendations provided in QC activities should be performed in accordance with equipment manufacturer recommendations. 
	Table 66 
	Table 66, 

	Table 66. Quality Control Activities Conducted Before Data Collection 
	Deliverable 
	Deliverable 
	Deliverable 
	Quality Expectations 
	QC Activity 
	Frequency 

	TR
	Plan collection route 
	Once, prior to data collection. 

	TR
	Routing QC to match FDOT supplied info b 
	Once, prior to data collection. 

	TR
	Completeness 
	Define equipment configuration b 
	Once, prior to data collection. 

	All 
	All 
	Verify equipment configuration b 
	Once, prior to collection. Also conducted after any equipment changes. 

	Pavement Data 
	Pavement Data 
	Equipment calibration 
	Once, prior to collection. Also conducted after any equipment changes. 

	TR
	Accuracy and Repeatability 
	DMI calibration 
	Once, prior to data collection. Also conducted during and after data collection. 

	TR
	Data collection and data processing personnel certification 
	Once, prior to data collection. 

	Distress and Sensor Data 
	Distress and Sensor Data 
	Accuracy and Repeatability 
	Control sites measurements 
	Once, prior to data collection. Also conducted during and after data collection. 


	b These activities are only conducted for contracted data collection. 
	Quality Control Activities Conducted During Data Collection 
	lists the QC activities during data collection used to continuously monitor the data being collected and a schedule of daily/monthly checks. It also includes the monitoring of ambient conditions and corresponding actions to address issues. In addition to the recommendations provided in QC activities should be performed in accordance with equipment manufacturer recommendations. 
	Table 67 
	Table 67, 

	Table 67. Quality Control Activities Conducted During Data Collection 
	Deliverable 
	Deliverable 
	Deliverable 
	Quality Expectations 
	QC Activity 
	Frequency 

	TR
	Mechanical inspection 
	Daily 

	TR
	Safety/Efficiency 
	Preventative maintenance program 
	Annual 

	TR
	Completeness 
	Field activity report including the collection location info 
	Daily for contracted and Weekly for in-house 

	All Pavement Data 
	All Pavement Data 
	Subsystem checks (sensors, computers, software) 
	Daily 

	TR
	Accuracy 
	Real-time quality monitoring (monitor images and data streams during collection) 
	Daily 

	TR
	End of day verification (review sample of data and images from day's collection) 
	Daily 

	TR
	DMI calibration 
	Monthly 

	Distress 
	Distress 
	Control sites 
	Monthly 

	and Sensor Data 
	and Sensor Data 
	Accuracy and Repeatability 
	Verifications sites 
	Weekly 


	Quality Control Activities Conducted After Data Collection 
	A list of QC activities after data collection is included in including review and checking of data for completeness, reasonableness, logic, acceptable range, accuracy and precision. In addition to the recommendations provided in QC activities should be performed in accordance with equipment manufacturer recommendations. 
	Table 68, 
	Table 68, 

	Table 68. Quality Control Activities Conducted After Data Collection 
	Table 68. Quality Control Activities Conducted After Data Collection 
	Table 68. Quality Control Activities Conducted After Data Collection 

	Deliverable 
	Deliverable 
	Quality Expectations 
	QC Activity 
	Frequency 

	All Pavement Data 
	All Pavement Data 
	Accuracy and Repeatability 
	DMI calibration 
	Once, after data collection is complete 

	Accuracy 
	Accuracy 
	Field collection comment review 
	Each batch 

	Location/GPS checks 
	Location/GPS checks 
	Each batch 

	Data within acceptable range 
	Data within acceptable range 
	Range checks 
	Each processing batch 

	Completeness And reasonableness 
	Completeness And reasonableness 
	Completeness checks 
	Each processing batch 

	Pilot test delivery b 
	Pilot test delivery b 
	Once, first 100 miles 

	Segmenting chainage checks b 
	Segmenting chainage checks b 
	Each batch 

	Data analysis inventory/ locator checks (inventory information matches DOT specified information) b 
	Data analysis inventory/ locator checks (inventory information matches DOT specified information) b 
	Each processing batch 

	Database hierarchical relationship checks 
	Database hierarchical relationship checks 
	Each processing batch 

	Pavement/ ROW Images 
	Pavement/ ROW Images 
	Quality 
	Image quality checks (brightness, contrast, clarity) 
	Each weekly data import 

	Logic 
	Logic 
	Image sequence checks 
	Each weekly data import 

	Sensor Data 
	Sensor Data 
	Accuracy and Repeatability 
	Control sites measurements 
	After data collection is complete 

	Distress Data 
	Distress Data 
	Accuracy and Repeatability 
	Control sites measurements 
	Prior to distress rating 

	Accuracy and Data within acceptable range 
	Accuracy and Data within acceptable range 
	Distress rating personnel certification 
	Once, prior to data processing 

	Distress year to year comparison 
	Distress year to year comparison 
	Each distress batch 

	Logic 
	Logic 
	Data analysis pavement type check (pavement specific distresses are only rated on appropriate pavement types) 
	Each processing batch 


	b These activities are only conducted for contracted data collection. 
	Note: A batch is a group of collected sections or miles that flows through a process at the same time. Rather than performing a complete process on each section individually, processes are performed on batches of many sections to improve efficiency. Each data batch should typically be delivered on a monthly basis or from each collection District. 
	Error Tracking and Resolution Procedure 
	All identified issues and errors need to be documented in a QC Log (see Section 7.3.7), including the corresponding resolution. Tracking errors and resolutions using the QC Log will help identify resolution techniques for known frequently occurring errors. Errors could be systematic or random. This procedure is primarily concerned with systematic errors, which should mostly be identified through the QC measurements before, during, and after data collection. The QC Log needs to be submitted along with every 
	7.3.5 Data Quality Acceptance Criteria 
	This chapter recommends procedures and criteria for FDOT acceptance of the data delivered either by FDOT staff or by the Data Collection Contractor for both HPMS and PCS purposes. FDOT staff shall conduct quality acceptance procedures which include data completeness, range, type, consistency, logic, and reasonableness checks. An overview of typical quality acceptance activities is provided in which includes initial automated data checks, in-depth review of flagged data, and review of data distributions for 
	Table 69, 

	Furthermore, it is recommended that FDOT staff conduct a 5% sampling and review of the pavement performance data in each delivery. A stratified random sampling approach is recommended, in which an equal number of samples would be randomly selected from different areas of the probability distribution curve for each data element. In this manner, pavement sections in poor, fair, and good conditions would be sampled at a uniform rate. The performance measures on these samples would be reviewed to be within an a
	The data deliverables shall be submitted on a monthly basis, along with the results of the QC measurements for each delivery (QC Log). The SQL database of each delivery batch should not be larger than 4 terabytes (TB) to avoid slower data processing speeds caused by larger databases. FDOT staff shall review each delivery and report any inconsistencies in a preliminary Acceptance Log to the FDOT data collection staff or the Data Collection Contractor’s Project Manager for relevant action (correction, re-proc
	Table 69. 

	Table 69. Recommended Quality Acceptance Procedures and Criteria 
	Table 69. Recommended Quality Acceptance Procedures and Criteria 
	Table 69. Recommended Quality Acceptance Procedures and Criteria 

	Quality Expectation 
	Quality Expectation 
	Acceptance (Percent within the Limits) 
	Acceptance Testing 
	Action if Criteria Not Met 

	Initial Automated Data Checks 
	Initial Automated Data Checks 

	No blanks 
	No blanks 
	100% 
	Check for critical cells to not be blank 
	Correction or Re-Collection 

	Correct data type and format 
	Correct data type and format 
	100% 
	Data type (integer, string, etc.) and format check according to data dictionary 
	Correction 

	Data completeness 
	Data completeness 
	98% 
	Matching FDOT supplied routing package to ensure all identified routes have been collected if possible 
	Correction or Re-Collection 

	Image completeness 
	Image completeness 
	98% 
	Check every data record to have corresponding ROW and pavement images 
	Re-Collection 

	Accurate location information 
	Accurate location information 
	98% 
	GPS coordinates within acceptable accuracy compared to FDOT values for each section; unique GPS coordinates for each data record (no duplicates); data alignment check 
	Re-Collection 

	Correct data according to surface type 
	Correct data according to surface type 
	98% 
	Collected data matching pavement type (e.g. no faulting on flexible pavements, etc.) 
	Correction or Re-Process 

	Individual data fields within acceptable range 
	Individual data fields within acceptable range 
	98% 
	Check individual data values to be within acceptable range established by FDOT based on data measurement method and other logic checks 
	Re-Collection Re-Process 

	Combination of data fields within acceptable range 
	Combination of data fields within acceptable range 
	95% 
	Logic check of related data fields (e.g. sum of distresses to match section length or area 
	Correction or Re-Process 

	Review Flagged Data 
	Review Flagged Data 

	Reasonable IRI Data 
	Reasonable IRI Data 
	98% 
	Flag data with the following Collection Speed < 40 mph IRI zero or null values IRI value difference > 30% from left to right wheel path 
	➢
	➢
	➢

	Review and if not justified, send for Re-Collection or Re-Process 


	Quality Expectation 
	Quality Expectation 
	Quality Expectation 
	Acceptance (Percent within the Limits) 
	Acceptance Testing 
	Action if Criteria Not Met 

	Reasonable Rut Depth Data 
	Reasonable Rut Depth Data 
	98% 
	Flag data with Rut value difference > 30% from left to right wheel path 
	Review and if not justified, send for Re-Collection or Re-Process 

	Reasonable Faulting Data 
	Reasonable Faulting Data 
	98% 
	Flag data with Fault value > 1 inch for any wheel path 
	Review and if not justified, send for Re-Collection or Re-Process 

	Reasonable Curve Data 
	Reasonable Curve Data 
	98% 
	Check curve data classified in categories D, E and F against construction plans 
	Review and if not justified, send for Re-Collection or Re-Process 

	Review of Data Distribution for HPMS Delivery 
	Review of Data Distribution for HPMS Delivery 

	Reasonable Distribution of IRI Data 
	Reasonable Distribution of IRI Data 
	98% 
	Check distribution of IRI data according to historical network distributions. 
	Review and if not justified, send for Re-Collection or Re-Process 

	Reasonable Distribution of Rut Depth Data 
	Reasonable Distribution of Rut Depth Data 
	98% 
	Check distribution of rut depth data according to historical network distributions. Flag for verification if more than 40% of sections have zero rutting. Flag for verification if more than 0.00% of sections have rutting > 1in. 
	Review and if not justified, send for Re-Collection or Re-Process 

	Reasonable Distribution of Faulting Data 
	Reasonable Distribution of Faulting Data 
	98% 
	Check distribution of faulting data according to historical network distributions. Flag for verification if more than 90% of sections have zero faulting. Flag for verification if more than 0.00% of sections have faulting > 1 in. 
	Review and if not justified, send for Re-Collection or Re-Process 

	Quality Expectation 
	Quality Expectation 
	Acceptance (Percent within the Limits) 
	Acceptance Testing 
	Action if Criteria Not Met 

	Reasonable Distribution of Percent Cracking Data 
	Reasonable Distribution of Percent Cracking Data 
	98% 
	Check distribution of percent cracking data according to historical network distributions. Flag for verification if more than 90% of sections have zero percent cracking. Flag for verification if more than 30% of sections have percent cracking between 0 and 1%. Flag for verification if more than 0.00% of sections have percent cracking more than 54%. 
	Review and if not justified, send for Re-Collection or Re-Process 

	5% Random Sampling and Review Checks 
	5% Random Sampling and Review Checks 

	IRI data within 10% of historical values 
	IRI data within 10% of historical values 
	95% 
	IRI sample data audits 
	Re-Collection Re-Process 

	Rut depth within 0.1 inch of historical values 
	Rut depth within 0.1 inch of historical values 
	95% 
	Rut depth sample data audits 
	Re-Collection Re-Process 

	Faulting data within 0.1 inch of historical values 
	Faulting data within 0.1 inch of historical values 
	95% 
	Faulting sample data audits 
	Re-Collection Re-Process 

	Correct Lane Marking 
	Correct Lane Marking 
	100% 
	Lane marking sample data review 
	Correction or Re-Process 

	Correct Joint Location 
	Correct Joint Location 
	100% 
	Joint location sample data review 
	Correction or Re-Process 

	Correct Crack Detection 
	Correct Crack Detection 
	98% 
	Flag sections when more than 20% cracking misdetection 
	Re-Process 

	Cracking Distress Types within 15% of historical values 
	Cracking Distress Types within 15% of historical values 
	95% 
	Distress sample data audits 
	Re-Collection Re-Process 

	Non-Cracking Distress Types within 25% of historical values 
	Non-Cracking Distress Types within 25% of historical values 
	95% 
	Distress sample data audits 
	Re-Collection Re-Process 

	Geometric Properties within 15% of historical values 
	Geometric Properties within 15% of historical values 
	95% 
	Geometric properties sample data audits 
	Re-Collection Re-Process 

	Quality ROW and Pavement Images 
	Quality ROW and Pavement Images 
	98% 
	ROW and pavement sample images visual checks 
	Re-Collection 


	7.3.6 Quality Assurance Plan 
	This chapter covers the periodic quality assurance (QA) procedures to ensure the data collection and processing system is producing data conforming to the quality standards and protocols. The results of the routine QC measurements and FDOT quality acceptance audits on the produced data are fed into the QA procedures. 
	Training 
	As part of their Quality Control Plan, the Data Collection Contractor validates that the corresponding staff are properly trained and certified in maintenance and operation of data collection equipment, and operation of the data processing software. In addition, corresponding staff need to be trained on the relevant FDOT guidelines. 
	Moreover, any FDOT staff who are collecting data or conducting the review and audit of the submitted data should also be trained and certified in maintenance and operation of data collection equipment, as well as the operation of the data processing software. 
	Standard Operating Procedures (SOPs) are key documents that should be frequently updated and made available to all relevant staff for training purposes. 
	Process Improvement 
	As a result of all quality management activities, areas for improvement should be identified in the data collection, processing, and quality control procedures. These process improvements should be designed to enhance data quality and should be reflected in the updated SOPs. 
	The existing agency protocols for collection, processing, and reporting of pavement performance data should be updated in line with the corresponding advances in data collection technologies. The FDOT staff shall review all the existing protocols, considering their specific objectives, and recommend any changes or updates in concert with newer data collection technologies. 
	7.3.7 Quality Reporting Plan 
	This chapter covers the documentation of all quality management activities with the objective of staff training, identification of gaps, and process improvement. 
	QC Log 
	A QC Log should be submitted with every data delivery batch either by FDOT staff or the Data Collection Contractor. shows an example format of this QC Log, which should include any exceptions found as a result of the QC activities and a corresponding resolution. 
	Table 70 

	Table 70. Example QC Log Format 
	QC Log 
	QC Log 
	QC Log 

	ID 
	ID 
	Review 
	Deliverable 
	Location 
	Resolution 

	Number 
	Number 
	Date 
	Reviewed 
	Information 
	Findings 
	Resolution 
	Date 

	12500 
	12500 
	7/20/18 
	ROW Imagery 
	US-27 
	ROW images exhibit water spots 
	Cleaned camera windshield 
	7/21/18 


	Acceptance Log 
	The results of the quality review and audit by FDOT staff of each data delivery are documented in the Acceptance Log, an example format of which is presented in 
	Table 71. 

	Table 71. Example Acceptance Log Format 
	Acceptance Log 
	Acceptance Log 
	Acceptance Log 

	ID Number 
	ID Number 
	Review Date 
	Deliverable Reviewed 
	Findings 
	Resolution 
	Resolution Date 

	302 
	302 
	8/05/18 
	July 18 Pavement Data 
	Section 302681 missing pavement images 
	Recollect section 302681 
	8/20/18 


	QA Log 
	shows an example format for documenting the process improvements identified through various quality management activities. 
	Table 72 

	Table 72. Example QA Log Format 
	Table 72. Example QA Log Format 
	Table 72. Example QA Log Format 

	QA Log 
	QA Log 

	ID Number 
	ID Number 
	Corresponding QC Log Number 
	Process 
	Identified Improvement 
	Implementation Approach 
	Implementation Date 

	802 
	802 
	12500 
	ROW Image Collection 
	Clean camera windshield after 
	Update collection protocol 
	7/27/18 


	QA Log 
	QA Log 
	QA Log 

	ID Number 
	ID Number 
	Corresponding QC Log Number 
	Process 
	Identified Improvement 
	Implementation Approach 
	Implementation Date 

	TR
	inclement weather 


	7.3.8 Roles and Responsibilities 
	identifies the recommended staff categories that should be involved in quality management activities and their corresponding responsibilities. In addition, a contingency plan needs to be identified to ensure continuous conduct of quality management and process improvement. 
	Table 73 

	Table 73. Recommended Quality Team Roles and Responsibilities 
	Table 73. Recommended Quality Team Roles and Responsibilities 
	Table 73. Recommended Quality Team Roles and Responsibilities 

	Team Role 
	Team Role 
	Quality Management Responsibilities 

	FDOT Project Manager 
	FDOT Project Manager 
	Set quality standards, acceptance criteria, and corrective actions Review and approve Contractor’s Quality Control Plan Review Contractor’s equipment and training certifications Review weekly updates from Contractor’s PM Review Contractor’s QC Log and approve resolution of quality issues Supervise acceptance checks and finalize Acceptance Log Submit Acceptance Log with feedback to Contractor’s PM Monitor resolution of quality exceptions and submit the re-delivery Acceptance Log to Contractor’s PM Prepare qu
	➢
	➢
	➢
	➢
	➢
	➢
	➢
	➢
	➢
	➢


	FDOT Quality Management Engineer 
	FDOT Quality Management Engineer 
	Supervise manual measurements of control sites, establish reference values, and maintain its records Review Contractor’s QC Plan Learn Contractor’s data viewing software Approve the entry control site report Review monthly control site reports Approve the exit control site report Conduct data QC for in-house collection 
	➢
	➢
	➢
	➢
	➢
	➢
	➢



	Team Role 
	Team Role 
	Team Role 
	Quality Management Responsibilities 

	TR
	Review data delivery report and issue resolution method in the QC Log Conduct quality acceptance checks on each data delivery batch Summarize acceptance check results and initiate Acceptance Log Review Contractor response and conduct corresponding acceptance checks on re-delivery Update Acceptance Log Recommend improvements to quality processes 
	➢
	➢
	➢
	➢
	➢
	➢


	FDOT In-House Data Collection Supervisor 
	FDOT In-House Data Collection Supervisor 
	Establish control and verification sites Maintain and calibrate in-house equipment Train and certify in-house equipment operators Conduct QC activities before and during in-house collection Recommend improvements to quality processes 
	➢
	➢
	➢
	➢
	➢


	Data Collection Contractor Project Manager 
	Data Collection Contractor Project Manager 
	Submit Quality Control Plan Ensure staff training and certification Review vehicle configuration and calibration reports Coordinate and submit vehicle certification at third party location Coordinate first control site visit (entry) and report results Review routing plan and resolve discrepancy with FDOT inventory Review daily/weekly/monthly equipment checks Submit weekly verification site checks along with a summary of daily checks Communicate weekly with FDOT PM to provide status and schedule update Submi
	➢
	➢
	➢
	➢
	➢
	➢
	➢
	➢
	➢
	➢
	➢
	➢
	➢
	➢
	➢


	Team Role 
	Team Role 
	Quality Management Responsibilities 

	TR
	Diagnose and address issues with each delivery and resubmit along with QC and Acceptance Logs Coordinate last control site visit (exit) and report results Conduct lessons learned meeting and identify process improvements to be documented in QA Log 
	➢
	➢
	➢



	Vendor Dispute Resolution 
	The FDOT PM and Data Collection Contractor’s PM shall work to minimize any conflicts on the front end by clearly defining the project goals, deliverables (contract, scope, schedule, and budget), quality standards, roles, and responsibilities during project initiation. However, if any issues or discrepancies should arise during the project, the following are the recommended steps to be undertaken: 
	1. The issue or disagreement shall be clearly identified by both the FDOT PM and Data 
	Collection Contractor’s PM. 
	2. 
	2. 
	2. 
	A review of the project contract and initial project plan shall be conducted by the Data Collection Contractor’s PM and reviewed by the FDOT PM. If the contract or project plan clearly addresses the issue, the Data Collection Contractor’s PM and the FDOT PM will both be required to acknowledge the fact before proceeding to the next step. 

	3. 
	3. 
	The first tier of resolution options to be explored are those that do not negatively impact the project contract, budget, or schedule. The second tier of resolution options to be explored are those that may impact schedule, contract and/or budgets. All resolution 


	options will be reviewed and discussed to ensure all parties are clear on each option’s 
	impact on the project deliverables, timelines, and budget. 
	4. After all resolution options have been presented and all FDOT questions have been answered to their satisfaction, the FDOT PM shall commit to an option that resolves the issue with minimal impact. Upon identification of an acceptable resolution option, the Data Collection Contractor’s PM should adjust the project plan to reflect the changes. 
	7.4 Recommendations for Further Implementation 
	Task 7 of this research project involved technical support to implement the validated automated distress identification applications for both rigid and flexible pavements into the annual Pavement Condition Survey (PCS) process. At the time of completion of this research project, FDOT was yet to purchase a new vehicle for data collection. However, FDOT commissioned collection of LCMS data on the Florida Interstate Highway System. According to the observations during software implementation, the following are
	1. 
	1. 
	1. 
	For the historical LRIS data from the FDOT MPSV, the workflow in Appendix A can be used to transfer the data to Vision. For FDOT contracted data, Fugro staff have developed and tested the workflow in Appendix B, which can be used to transfer the LCMS data into Vision. The workflow in Appendix B includes a user interface that facilitates the execution of the SQL code to transfer the data. 

	2. 
	2. 
	It is recommended to use FRPDA and FFPDA on a larger database of highway sections to determine if there are any systematic errors in software results. It is also recommended to use the semi-automated rating (manual rating of pavement images) to QC the results of FRPDA and FFPDA and potentially discover any remaining systematic errors. 

	3. 
	3. 
	The semi-automated rating method should also be used to determine rigid and flexible pavement areas affected by non-cracking distress types. The developed software can automatically add these semi-automated rating results to the automated cracking results of FFPDA and provide the final combined condition index for every pavement section. The process of combing semi-automated rating results with automated cracking results should be validated before implementation. 

	4. 
	4. 
	Using a larger database of representative test sections, compare the results of FRPDA and FFPDA to the manual windshield Crack Ratings to determine a calibration equation between the two methodologies. This equation can be used to transform the FFPDA cracking results to a similar scale as the manual windshield results to ensure smooth pavement deterioration trends before and after implementation of an automated approach. In the long term, the deduct values for the calculation of Crack Rating might need to b

	5. 
	5. 
	It is recommended that the FDOT Rigid Pavement Condition Survey Handbook and Flexible Pavement Condition Survey Handbook be reviewed considering the capabilities of the automated software. These guidelines were developed for visual windshield surveys and need to be evaluated and updated as necessary. It is recommended that the distress types, their definitions, and measurement method be reviewed in meetings with the data stakeholders such as the pavement management staff. 

	6. 
	6. 
	The recommended quality management program should be reviewed and evaluated by FDOT staff to be eventually implemented within the annual PCS process. 


	CHAPTER 8 – TECHNOLOGY NEEDS AND GAPS ASSESSMENT 
	In Task 8 of this research project, the project team reviewed the results and findings from the tasks completed under Phase I and Phase II to identify gaps in functionality of the FDOT data collection hardware and the automated computer applications for automated crack identification and quantification on flexible and rigid pavements to meet FDOT’s short-and long-term needs. The team also identified the necessary support resources (staffing, hardware and software) to support these needs. The team developed 
	This document is organized into five sections. Following this introduction, Section summarizes the identified gaps in functionality of the FDOT data collection hardware and the recommended features for the new FDOT data collection vehicle. Section describes the remaining gaps in the FDOT Rigid Pavement Distress Application (FRPDA) to meet the FDOT needs and the corresponding recommended remedies. Section lists the remaining gaps in the FDOT Flexible Pavement Distress Application (FFPDA) and the pertinent so
	8.1 
	8.2 
	8.3 
	8.4 

	8.1 Remaining Gaps in the Data Collection Equipment 
	This section of the report describes the remaining gaps in the FDOT data collection equipment and some recommended solutions to bridge those gaps. Some of these gaps were identified during the application of collected data and images in Phase I of this research project to detect and quantify surface cracking on rigid pavements. During Task 4 of Phase II, several important limitations of the existing equipment in detection and quantification of cracking on flexible pavements were also identified. 
	8.1.1 Hardware Gaps Identified in Phase I 
	The sample data for identification and quantification of cracking on rigid pavements was collected using FDOT multi-purpose survey vehicle (MPSV), which is equipped with the Laser Road Imaging System (LRIS). In Task 2, Fugro staff conducted an investigation to determine whether the collected two-dimensional (2D) pavement images are of acceptable quality for crack detection and how FDOT can potentially measure various image quality indicators in future. This investigation concluded that the LRIS data met the
	It was found that the LRIS images and data were of acceptable quality for crack detection on rigid pavements if certain quality control procedures were followed. As a result, Fugro developed a Hardware Maintenance Protocol to be used by FDOT staff to ensure long term image quality and consistency. This protocol was submitted as an appendix to the Task 2 Report. 
	When considering other non-cracking types of rigid pavement distress such as surface deterioration, patching, and spalling, having access to the 3D depth data can provide useful information. 
	8.1.2 Hardware Gaps Identified in Phase II 
	In Task 4 of Phase II, the research team analyzed the viability of using 2D LRIS images to detect, quantify and classify cracks on flexible pavements. The 2D LRIS technology was found to have the following potentials: 
	3. 
	3. 
	3. 
	The LRIS equipment is more affordable than the three-dimensional (3D) equipment. 

	4. 
	4. 
	The run-to-run repeatability of crack detection from 2D images is acceptable. 


	However, there are several important limitations of the 2D LRIS technology: 
	5. 
	5. 
	5. 
	The section-to-section consistency of crack detection from 2D images was 39% which is very low. 

	6. 
	6. 
	The accuracy of crack detection from 2D images was very low, as evidenced by the crack detection algorithm only detecting 18 percent of the cracks that were in the reference survey. Also, only 25 percent of the cracks detected from the 2D images were actually present in the reference survey. 


	When the flexible pavement surface is damp, the area around the crack edges become darker in the 2D images and as a result, the crack detection algorithms result in exaggerated crack width measurements based on pixel intensities. This issue negatively impacts severity rating of cracking distress types. 
	Since FDOT did not own 3D imaging equipment, the sample data for identification and quantification of distresses for flexible pavements was collected using a Fugro Automatic Roadway Analyzer (ARAN) vehicle equipped with the 3D Laser Crack Measurement System (LCMS). At the time of the conclusion of this research project, FDOT had not yet purchased a 3D data collection vehicle. However, FDOT had contracted the collection of the pavement condition data on Florida Interstate Highways to a Data Collection Contra
	Based on a systematic evaluation framework and pertinent success metrics, it was found that the 3D technology is superior to the 2D technology in the following areas: 
	1. 
	1. 
	1. 
	67% increase in the crack detection accuracy, which translates into 71% more in percentage of detected crack length from the ground truth, and 50% more in percentage of the correctly detected cracks. 

	2. 
	2. 
	83% increase in accuracy in identifying wheel path cracking (CW) and 56% more accuracy in identifying cracking outside the wheel paths (CO). 

	3. 
	3. 
	6% more run-to-run repeatability in identifying wheel path cracking (CW) and 10% more repeatability in identifying cracking outside the wheel paths (CO). 

	4. 
	4. 
	83% more section-to-section consistency in identifying wheel path cracking (CW) and 51% more consistency in identifying cracks outside the wheel paths (CO). 

	5. 
	5. 
	6 seconds faster in crack detection per image frame. 


	The following advantages are based on thousands of miles collected with 2D LRIS and 3D LCMS technologies: 
	1. 
	1. 
	1. 
	The 3D technology is less prone to crack width exaggeration on damp pavement surfaces and thereby produces more robust severity rating. 

	2. 
	2. 
	The 3D technology provides an area-based surface macro-texture measurement which can potentially be used for identifying raveling. Since these measurements are area-based, they have shown a significantly higher run-to-run repeatability compared to the macro-texture measurements with point laser sensors, which are line based and sensitive to vehicle wander. 


	The 3D technology was used for automated identification and quantification of flexible pavement distresses in Phase II of this research project. Detecting pavement surface cracks and identifying the corresponding distress with superior accuracy, consistency, repeatability, and efficiency of the 3D technology. 
	8.1.3 Recommended Data Collection Hardware Specifications 
	This section presents an overview of key components the research team recommend for the next FDOT data collection vehicle. These specifications are according to the experience of Fugro in data collection and processing, and in line with the latest available and proven technology at the time of this research project. 
	Requirements for the Data Collection Vehicle Integrator 
	The integrated data collection system shall be a new, currently advertised production model. This model or line of equipment and post-processing software shall specifically have at least five years or more of prior assembly, operational, service support, and maintenance experience in North America. A reference list, with complete names, addresses, and telephone numbers of at least five (5) different active State agencies in the United States who purchased directly from the manufacturer and who own the same 
	The provider company shall offer a multi-year support service agreement with the following components: 
	1. 
	1. 
	1. 
	Frequent training and certification of FDOT staff designated for vehicle operation and equipment maintenance 

	2. 
	2. 
	Support of FDOT in setup of equipment calibration and control sites 

	3. 
	3. 
	Annual visit to FDOT offices for equipment maintenance and calibration certification 

	4. 
	4. 
	On-demand customer support services, including online remote access and diagnostics for resolution of any potential issues 


	Requirements for the Vehicle 
	A Mercedes made Sprinter model, or a Ford made Transit 350 model are the recommended chassis that would allow for the required equipment to be seamlessly integrated. Advantages of using a Mercedes Sprinter are the superior line of sight via windows for the driver, better suspension system, longer lasting chassis. After including the preferred options, the two models are similar in pricing. However, dependent on the location, Mercedes maintenance costs might be higher than that of Ford. 
	It is recommended to upgrade the alternator so that the invertor can be used for generating additional power. It is important in the mechanical drawings to ensure the weight and center of gravity is in adherence with corresponding DOT design requirements. Auto Start and Stop capability is also recommended. 
	Requirements for the Data Collection Equipment on the Vehicle 
	The System shall meet or exceed the specifications set forth by the following industry standards: 
	• 
	• 
	• 
	• 
	The Inertial Profiling System for measuring the longitudinal profile: 

	o 
	o 
	o 
	The minimum precision and bias requirements for Equipment Classification 1 in accordance with ASTM E950M, Standard Test Method for Measuring the Longitudinal Profile of Traveled Surfaces with an Accelerometer Established Inertial Profiling Reference 

	o 
	o 
	ASTM E2560, Standard Specification for Data Format for pavement Profile. 

	o 
	o 
	AASHTO M328-10, Standard Specification for Inertial Profiler. 

	o 
	o 
	AASHTO R56-10, Certification of Inertial Profiling Systems. 

	o 
	o 
	AASHTO R36-17, Standard Practice for Evaluating Faulting of Concrete Pavements. 



	• 
	• 
	• 
	Pavement Imaging System for crack detection and measuring the transverse profile: 

	o 
	o 
	o 
	A 3D system such as the Pavemetrics LCMS is required. 

	o 
	o 
	AASHTO R86-18, Standard Practice for Collecting Images of Pavement Surfaces for Distress Detection. 

	o 
	o 
	AASHTO R88-18, Standard Practice for Collecting the Transverse Pavement Profile. 



	• 
	• 
	• 
	High Definition (HD) cameras for right-of-way (ROW) images: 

	o 
	o 
	o 
	HD resolution. 

	o 
	o 
	Adequate shutter speed for crisp images. 

	o 
	o 
	Automated adjustment to abrupt changes in lighting condition, e.g. under tunnels and bridges. 




	Requirements for the Integration System 
	The integration system needs to be designed with state-of-the-practice features: Tight and shock resistant computer rack enclosures, easy access to electronics and connections, detailed wiring and electronics schematics and on-board labeling for ease in troubleshooting by FDOT technicians, all cabling and connections hidden in flooring and paneling providing a clean and safe internal operational environment, redundant solid state hard drive storage for extended data collection length before having to change
	The system needs to be designed so that the maintenance is available to be completed by State Staff. Each wire and connection must be properly labeled, and schematics provided to ensure that cabling and connections as well as other components are easily identifiable and swappable. The system requires heat sinking and shock mounting enclosures. Fully independent air conditioning for the computer system is recommended. 
	Requirements for Data Collection and Processing Software 
	The following are the recommended features for the data collection software onboard the vehicle: 
	• 
	• 
	• 
	Real Time vehicle route planning and mapping. 

	• 
	• 
	Auto-sectioning of data collected in the vehicle with an on-board GIS base map. 

	• 
	• 
	Data verification tools for in-field operator use, e.g. missing element finder, duplicate element, GPS gap with data checks, image count and resolution detection based on preset storage parameters. 

	• 
	• 
	On-line help menus and error detection help. 

	• 
	• 
	Remote Wi-Fi access for troubleshooting. 

	• 
	• 
	Verbal and keyboard “event” marking for operator selection of events, e.g. speed limit 


	low/high thresholds, etc. 
	• All data sets are stored in an SQL database that allows for easy export to user defined reporting and uploading into PMS or other software programs. Utilizing this SQL database avoids challenges associated with using multiple data files for each road segment (e.g. one for DMI, one for GPS, one for IRI, one for rutting, etc.). 
	The following are the recommended features for the data processing software in the office: 
	• 
	• 
	• 
	All data should be uploaded by batch and into a SQL database. 

	• 
	• 
	Upload control into single synchronized software, which then allows for segmenting, processing, analysis, and reporting all from one location. 

	• 
	• 
	Modular design and scalable product. 

	• 
	• 
	Designate road zones to meet HPMS and FDOT requirements. 

	• 
	• 
	Automated lane detection from pavement striping. 

	• 
	• 
	Automated joint detection and slab assignment. 

	• 
	• 
	Automated crack detection. 

	• 
	• 
	Automated crack classification and rating according to HPMS and FDOT requirements. 

	• 
	• 
	User defined roughness and rutting processing and reporting tools: all raw data is stored for every road segment allowing for processing of ride and rut statistics using multiple processing and reporting parameters. So, the single set of data can be used for network level, project level, and research level analysis. 

	• 
	• 
	Stitched together panoramic view of multiple distinct camera feeds. 

	• 
	• 
	Fully synchronized view of the collection route map, raw and processed data tables, charts, graphs, filterable by any field in the data set 

	• 
	• 
	Batch data processing allows the user to reprocess each data element separately, e.g. reprocess for longitudinal profile and not have to reprocess for distress. Batch processing should be available to process one or multiple sections. 

	• 
	• 
	Built-in reports for specific standard requirements such as the FHWA HPMS reporting and customizable reports as required by the end user. 

	• 
	• 
	Ability to share data through email links, or location reference for review by others. 


	Requirements for Data Cloud Storage and Online Sharing 
	The following are the recommended requirements for data cloud storage and online sharing: 
	• 
	• 
	• 
	Cloud storage and web access of data, reports, mapping, etc. A professional provider with established data safety (multiple backups) and security (following standard protocols) background should be used. An example is the Amazon Web Services (AWS). 

	• 
	• 
	Access can be given to any user via a web browser, without the need to local software installation or local PC minimum hardware/software specifications. 

	• 
	• 
	Simultaneous and linked data viewing from plots, tables, and map presentations of the data allowing the user to view data streamed from any given one point of a roadway to 


	any other given point on the roadway. This feature also allows the user to perform a “one click” view on a map of a PMS section and automatically view the tabled data, plot of the 
	data, along with synchronized photo-logging images collected for the point selected. 
	• 
	• 
	• 
	Ability to filter on locators – e.g. District, route, route number, intersection description, milepost, etc. 

	• 
	• 
	Ability to share data via web links, ability to share location of specific events or details with other users. 

	• 
	• 
	Year over year data review and synchronization of images and data using precise GPS data. Side by side review for engineers and analysts to explain trend dynamics, e.g. does the improvement in pavement condition from one year to the other correspond with a treatment. 

	• 
	• 
	Use image thumbnails to increase playback speed over slower connections. Full resolution image should appear when playback is stopped. 

	• 
	• 
	Offset the distress categories and marking so users can see the pavement defects for quality control. 

	• 
	• 
	Reporting functions and data export capabilities. 


	Estimated Budget 
	Based on latest similar vehicles, the team estimates that FDOT should budget for approximately $to $a data collection vehicle with the aforementioned requirements to be purchased in 2019. This includes the cost of purchasing the vehicle, the equipment that is integrated on the vehicle, the corresponding data collection and processing software, cloud data storage and online sharing platform, and a 5-year support service agreement. Of course, prices are dependent on a variety of factors such as availability o
	900,000.00 
	1,250,000.00 for 

	8.2 Remaining Gaps in the FDOT Rigid Pavement Distress Application (FRPDA) 
	There are several gaps that were identified after the development and evaluation of the FRPDA in Task 3, which are listed in along with a corresponding recommended solution. 
	Table 74 

	Table 74. Remaining Gaps in FRPDA and Recommended Solutions 
	Gap No. 
	Gap No. 
	Gap No. 
	Remaining Gap Description 
	Recommended Solution 

	1 
	1 
	Very straight longitudinal cracks might be rated as longitudinal joints 
	Implement a data collection protocol to avoid lane stripes in the middle of images; Manual QC and intervention; these situations are not frequent 

	2 
	2 
	Partially faded, or non-straight and jagged longitudinal lane stripes in the middle of the lane might be rated as longitudinal cracks 

	3 
	3 
	Skewed joints cannot be detected (even though they are not the predominant design anymore) 
	Manual QC and intervention; these situations are not frequent 

	4 
	4 
	Some run to run variation (on different images of same section) 
	Implement a data collection protocol to avoid significant wander and variation between images 

	5 
	5 
	Shattered slabs are not identified successfully 
	Manual rating of images in the short term to build training database; use machine learning in the long-term 

	6 
	6 
	Not identifying spalling of crack and joint edges but has low deduct values 
	Manual rating of images in the short term to build training database; 


	7 
	7 
	7 
	Not identifying patching but has low deduct values 
	collect 3D data and use machine learning in the long-term 

	8 
	8 
	Not identifying surface deterioration but has low deduct values 

	9 
	9 
	Not identifying pumping but it is an infrequent distress 

	10 
	10 
	Not identifying joint condition 


	The identified gaps can be classified into the following categories: 
	1. 
	1. 
	1. 
	Gaps that are infrequent issues; these gaps can be addressed via proper quality control after data collection or quality assurance precautions before and during collection. Gaps number 1 through 4, and number 9 in are of this category. 
	Table 74 


	2. 
	2. 
	Gaps that are frequent issues but not significantly impacting the survey results; these gaps can be addressed with proper quality control in the short term; machine learning can be used in the long term, but it might not be worth the effort. Gaps number 6 through 8 in are of this category. 
	Table 74 


	3. 
	3. 
	Gaps that are frequent and have significant impacts on the survey results; for these gaps, manual rating of pavement images is strongly recommended to build a training database for machine learning algorithms. Gaps number 5 and 10 in are of this category. 
	Table 74 



	8.2.1 Recommended Development Initiatives and Level of Effort 
	In this section of the report, some recommendations are listed for the gaps that were categorized as being frequent issues (categories 2 and 3 above). These development initiatives and their estimated crude level of effort are listed in 
	Table 75. 

	Table 75. Recommended Development Initiatives for FRPDA and the Level of Effort 
	Gap No. 
	Gap No. 
	Gap No. 
	Remaining Gap Description 
	Development Initiative 
	Level of Effort 

	5 
	5 
	Shattered slabs 
	Identify representative test sections that have an adequate number of shattered slabs and cracked slabs that are not shattered 
	40 staff-hours 

	Manual rating of images to build training database 
	Manual rating of images to build training database 
	960 staff-hours 

	TR
	Train and test machine learning algorithm 
	320 staff-hours 

	TR
	Identify representative test sections that have an adequate number of spalled cracks/joints 
	40 staff-hours 

	6 
	6 
	Spalling of cracks and joints 
	Manual rating of images to build training database; 3D spalling depth data required for identification and severity levels 
	960 staff-hours 

	Train and test machine learning algorithm 
	Train and test machine learning algorithm 
	320 staff-hours 

	7 
	7 
	Patching 
	Identify representative test sections that have an adequate amount of patching 
	40 staff-hours 

	Manual rating of images to build training database; 3D texture data required 
	Manual rating of images to build training database; 3D texture data required 
	960 staff-hours 

	Train and test machine learning algorithm 
	Train and test machine learning algorithm 
	320 staff-hours 

	8 
	8 
	Surface deterioration 
	Identify representative test sections that have an adequate amount of surface deterioration 
	40 staff-hours 

	Manual rating of images to build training database; 3D texture data required 
	Manual rating of images to build training database; 3D texture data required 
	960 staff-hours 

	Train and test machine learning algorithm 
	Train and test machine learning algorithm 
	320 staff-hours 

	9 
	9 
	Pumping 
	Identify representative test sections that have an adequate amount of pumping (challenging) 
	40 staff-hours 

	Manual rating of images to build training database 
	Manual rating of images to build training database 
	960 staff-hours 

	Train and test machine learning algorithm 
	Train and test machine learning algorithm 
	320 staff-hours 

	10 
	10 
	Joint condition 
	Identify representative test sections that have an adequate number of sealed, non-sealed, and partially sealed joints 
	40 staff-hours 

	Manual rating of images to build training database; 3D depth data required 
	Manual rating of images to build training database; 3D depth data required 
	960 staff-hours 

	Train and test machine learning algorithm 
	Train and test machine learning algorithm 
	320 staff-hours 


	Using a 3D imaging technology can significantly improve the results of crack detection and crack classification. In the absence of 3D data, some distress types such as patching and spalling cannot easily be detected. Spalling of cracks and joints are more pronounced in 3D images, because the technology darkens the areas that are lower than the nominal pavement surface. In addition, the 3D texture data can assist in recognizing the changes in pavement surface type, which can potentially automate identificati
	For most of these remaining gaps, it is challenging for the computer software to identify these distress types based on logical algorithms. Therefore, it is recommended to build a database of manually rated images to be used in training of machine learning algorithms. The first step is to identify representative test sections that have an adequate amount of the specific distress, and instances that can be false positives (e.g. slabs broken into three pieces can be falsely identified as shattered slabs). Thi
	The second step is to develop the training database. One component is the automatically collected data such as the pixel intensities and 3D depth and texture data. The other component is the human identification of distress types, extent, and severity levels corresponding to the automatically collected data in specific locations. This requires the most significant level of effort in the recommended solutions, because the machine learning results can only be as good as the 
	The second step is to develop the training database. One component is the automatically collected data such as the pixel intensities and 3D depth and texture data. The other component is the human identification of distress types, extent, and severity levels corresponding to the automatically collected data in specific locations. This requires the most significant level of effort in the recommended solutions, because the machine learning results can only be as good as the 
	quality of the training data. It is very important that multiple raters be trained on the distress classification and rating guidelines, so that they would be able to cross-check each other’s work for the best quality. An independent quality auditor is recommended to check random blind samples of data for adherence to the corresponding guidelines. 

	The provided level of effort is a ball park estimate for each development effort in terms of staff hours. The assumption is that one staff would be assigned to look for representative test sections for a week (40 hours). Three staff members would be assigned for the manual rating of the images (two manual raters and one quality auditor) for two months (960 hours). Finally, two software developers (one for development and another for continuous testing) would be working on the training and test initiatives f
	8.3 Remaining Gaps in the FDOT Flexible Pavement Distress Application (FFPDA) 
	Several gaps were identified after the development and evaluation of the FFPDA in Task 6, which are listed in along with a corresponding recommended solution. 
	Table 76 

	Table 76. Remaining Gaps in FFPDA and Recommended Solutions 
	Gap No. 
	Gap No. 
	Gap No. 
	Remaining Gap Description 
	Recommended Solution 

	1 
	1 
	Partially faded, or non-straight and jagged longitudinal lane stripes might be rated as longitudinal cracks 
	Manual QC and intervention; these situations are not frequent 

	2 
	2 
	Block cracks are not differentiated from other crack types 
	Manual QC and intervention; these situations are not frequent, and it does not impact the Crack Rating 

	3 
	3 
	Not identifying raveling 
	Manual rating of images in the short term to build training database; collect 3D data and relate macrotexture to raveling in the long-term 

	4 
	4 
	Not identifying patching 
	Manual rating of images in the short term to build training database, collect 3D data and use machine learning in the long-term 


	The identified gaps can be classified into the following categories: 
	1. 
	1. 
	1. 
	Gaps that are infrequent issues; these gaps can be addressed via proper quality control after data collection or quality assurance precautions before and during collection. Gap number 1 in is of this category. 
	Table 76 


	2. 
	2. 
	Gaps that are frequent issues but not significantly impacting the survey results; these gaps can be addressed with proper quality control in the short term; machine learning can be used in the long term, but it might not be worth the effort. Gap number 2 in is of this category. 
	Table 76 


	3. 
	3. 
	Gaps that are frequent and have significant impacts on the survey results; for these gaps, manual rating of pavement images is strongly recommended to build a training database for machine learning algorithms. Gap numbers 3 and 4 in are of this category. 
	Table 76 



	8.3.1 Recommended Development Initiatives and Level of Effort 
	In this section of the report, some recommendations are listed for the gaps that were categorized as being frequent issues (categories 2 and 3 above). These development initiatives and their estimated crude level of effort are listed in 
	Table 77. 

	Table 77. Recommended Development Initiatives for FRPDA and the Level of Effort 
	Gap No. 
	Gap No. 
	Gap No. 
	Remaining Gap Description 
	Development Initiative 
	Level of Effort 

	TR
	Identify representative test sections that have an adequate amount of block cracking, and longitudinal/transverse cracks (challenging) 
	40 staff-hours 

	2 
	2 
	Block cracks 
	Manual rating of images to build training database 
	960 staff-hours 

	TR
	Train and test machine learning algorithm 
	320 staff-hours 

	TR
	Identify representative test sections that have an adequate amount of raveling, and open graded surfaces that could be false positives 
	40 staff-hours 

	3 
	3 
	Raveling 
	Manual rating of images to build training database; 3D texture data required for identification and severity levels 
	960 staff-hours 

	TR
	Train and test machine learning algorithm 
	320 staff-hours 

	TR
	Identify representative test sections that have an adequate amount of patching 
	40 staff-hours 

	4 
	4 
	Patching 
	Manual rating of images to build training database; 3D texture data required 
	960 staff-hours 

	Train and test machine learning algorithm 
	Train and test machine learning algorithm 
	320 staff-hours 


	The 3D technology provides an area-based surface macro-texture measurement which can potentially be used for identifying raveling. Since these measurements are area-based, they have shown a significantly higher run-to-run repeatability compared to macro-texture measurements with point laser sensors, which are line based and sensitive to vehicle wander. These robust 3D texture measurements can be used to identify changes in pavement surface type, areas of raveling, and quality control of open graded friction
	For most of these gaps, it is challenging for the computer software to identify these distress types based on logical algorithms. Therefore, it is recommended to build a database of manually rated images to be used in training of machine learning algorithms. The first step is to identify representative test sections that have an adequate amount of the specific distress, and instances that can be false positives (e.g. combinations of transverse and longitudinal cracks can be falsely identified as block crack
	The second step is to develop the training database. One component is the automatically collected data such as the pixel intensities and 3D depth and texture data. The other component is the human identification of distress types, extent, and severity levels corresponding to the automatically collected data in specific locations. This requires the most significant level of effort in the recommended solutions, because the machine learning results can only be as good as the quality of the training data. It is
	The provided level of effort is a ball park estimate for each development effort in terms of staff hours. The assumption is that one staff would be assigned to look for representative test sections for a week (40 hours). Three staff members would be assigned for the manual rating of the images (two manual raters and one quality auditor) for two months (960 hours). Finally, two software developers (one for development and another for continuous testing) would be working on the training and test initiatives f
	8.4 Summary of Key Remaining Gaps and Pertinent Solutions 
	Task 8 of this research project involved identification of the remaining gaps and pertinent solutions for the automated distress identification applications for both rigid and flexible pavements. The research team identified the following as the key software gaps that are both frequent issues and have a significant impact on the distress survey results: 
	1. FRPDA key gaps and recommended solutions 
	a. 
	a. 
	a. 
	Shattered slabs: use machine learning trained based on the manual ratings to differentiate cracked slabs that are broken into four or more pieces. 

	b. 
	b. 
	Patching: use machine learning to relate the manual rating of patching to the texture and possibly intensity of pavement areas. 

	c. 
	c. 
	Joint condition: use machine learning to relate the manual rating of joint conditions to the depth of joints measured with 3D technology. 


	2. FFPDA key gaps and recommended solutions 
	a. 
	a. 
	a. 
	Raveling: use machine learning to relate the manual rating of raveling to the difference in texture between wheel paths and areas outside the wheel paths. 

	b. 
	b. 
	Patching: use machine learning to relate the manual rating of patching to the texture and possibly intensity of pavement areas. 


	It is recommended that the FDOT Rigid Pavement Condition Survey Handbook and Flexible Pavement Condition Survey Handbook be reviewed considering the capabilities of the automated software and the requirements of data stakeholders. These guidelines were developed for visual windshield surveys and need to be evaluated and updated if necessary. It is recommended that the distress types, their definitions, and measurement method be reviewed in meetings with the data stakeholders such as the pavement management 
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	APPENDICES 
	A. RECOMMENDED PROTOCOL FOR FDOT LRIS HARDWARE MAINTENANCE 
	Fugro staff conducted an investigation to determine whether the collected pavement images are of acceptable quality for crack detection and how FDOT can potentially measure various image quality indicators in future. As a result of this study, Fugro developed a hardware maintenance protocol to be used by FDOT staff in order to ensure long term image quality and consistency. 
	The equipment integrator (International Cybernetics Corporation), the LRIS vendor (Pavemetrics Systems), and the LRIS manufacturer (INO) should provide corresponding guidelines for maintenance and calibration of the LRIS. According to Pavemetrics guidelines, the overall system maintenance and recalibration is recommended once a year. 
	Please carefully review all the safety precautions provided by the equipment vendor to avoid fire or personal injury. 
	NOTE: 

	Fugro is NOT responsible for providing such guidelines and their application. The following are general recommendations by Fugro staff based on their experience with the LRIS system. 
	A.1 General Image Properties 
	The typical state of the practice regarding these image properties is a subjective evaluation by an experienced human interpreter. 
	A.1.1 Resolution: no need for checks 
	The FDOT LRIS images have about 4,044 pixels, which is deemed as adequate for crack detection. The produced image resolution is NOT expected to change over time. Therefore, there is no need for frequent control. 
	A.1.2 Exposure: Check and Calibrate Annually 
	Adequate level of exposure is a very subjective matter and typically it is evaluated by an experienced engineer/technician. While executing the INO calibration procedure for LRIS (the application RoadCrack.exe displayed in the below screen capture), the calibration software will try to adjust pixel coefficients based on the non-uniformity found in the reference image, and when the expert is satisfied with the image displayed in the graphical interface, they should press Stop. 
	Figure
	Figure 133. Calibration dialog box. 
	The following steps should be conducted once every year: 
	1. 
	1. 
	1. 
	Start the application RoadCrack.exe and initialize both sensors (keep it simple, don't use the external trigger check box) 

	2. 
	2. 
	Set the operation mode to UnCalibrated 

	3. 
	3. 
	Start the acquisition and grab some images in Uncalibrated mode. Ideally, the calibration should be done using real road images, otherwise it is difficult to find a surface that has the same reflective properties as the pavement. The calibration uses the last uncalibrated image that has been grabbed and try to adjust the per pixel coefficients based on that image. The images used for calibration should not contain any defects like large cracks, shoulders, drop-off, marking, etc... They should also be acquir

	4. 
	4. 
	When you are ready to calibrate, that is when you are satisfied with the image displayed in the graphical interface, you press Stop. 

	5. 
	5. 
	Then, you choose Calibrate Left/Right camera from the camera menu. The average intensity profile will be computed, and another window will be called. The average intensity profile will then be displayed in the new window. 

	6. 
	6. 
	Before popping up the new window, the software will ask you to save the reference image. It is a good idea to save that image as a future reference. 

	7. 
	7. 
	Drag and drop the blue cursors so that most of the average intensity profile is within the two cursors (see the BlueCursor.jpg image). 

	8. 
	8. 
	Press on Filter Intensity vector, and then Calibrate Now. This process should take about two minutes. This is the time to download the coefficients into camera's memory. Once it is done, you will be asked to save the resulting coefficients. It could be a good idea to save them for future reference. (tip: before pushing Calibrate now, you can also try changing the size of the filtering kernel. Edit the kernel size and press Enter. This would result in a more or less smooth profile. We may want to try using a

	9. 
	9. 
	When it is done, close that window and return to the main interface. 


	10.At this step, you can check the result of the calibration by setting the Operation Mode to Calibrated and grab some images 
	When switching from calibrated to uncalibrated, the image may become almost totally black. Changing the gains will correct that problem (set new gains and press enter). The mouse wheel can also be used to adjust the gain. 
	NOTE: 

	11.Set back the Operation mode to Uncalibrated, grab some images and proceed with the calibration for right sensor. 
	Because the calibration process uses the last image that has been grabbed, it may happen that the image used for calibration is incomplete (there could a black section in the images). This is not critical for the calibration since it has no effect on the average intensity profile. However, if you want to fix that bug anyway, simply set BreakEffect = FINISH in the Piranha2FixedLineRate.cam file. 
	KNOWN BUG: 

	If you need assistance with the above procedure, please send INO Uncalibrated images used as reference as well as the resulting coefficients that have been uploaded to the cameras. You can also send us the resulting calibrated images grabbed with your application. 
	A.1.3 Dynamic Range: no need for checks 
	Dynamic range determines the level of detailed information contained in the image regarding the full spectrum of color or gray scale. The higher the dynamic range, the more levels of differences exist in the digital values of image pixels. In the 8-bit dynamic range of the FDOT LRIS images (which is currently widely used in the industry), there are 256 levels on the spectrum which translates into 256 shades of gray in a black and white image. The dynamic range is NOT expected to change over time. Therefore,
	A.1.4 White balance: Check and Calibrate Annually 
	It is recommended that a wide uniform standard 18% gray carpet be used for calibration of the white balance. The ICC software includes a routine for such calibration. 
	A.2 Image Issues 
	These are issues that could be caused by defective hardware and/or unsuitable hardware settings. These issues could impact crack detection by increasing the potential for false positives. 
	A.2.1 Alignment: Check and Calibrate Annually 
	There are settings parameter files that control the angle and overlap of stitching of the left and right images. These settings are adjusted according to a visual examination of the images of the target site. The images should show the diamond stripes as they appear on the actual site. It is recommended that the images of the target site be controlled at least once every year that the MPSV is in service. 
	A.2.2 Streaks: Clean Daily 
	A disadvantage to the LRIS system is that because it creates images line by line any dirt or dust on the camera lens can create streaks in the image. These streaks result in black lines appearing in the images and can cause difficulty with automated crack detection software that uses the light and dark contrast to identify cracks. 
	Figure
	Figure 134. Example LRIS pavement image (right) showing intensity streaks that cannot be seen on the ROW image (left) 
	Every morning before data collection, all windows on the LRIS units should be cleaned with a soft fabric using isopropanol or methanol. Avoid scratches that could damage the optical quality of windows and affect system performances. The controller and the 
	sensor’s body should be cleaned with a soft fabric using water only. Appropriate 
	precautions should be taken to make sure that the isopropanol or methanol is not used over the different labels that are affixed on the sensors and on the controller. It is recommended to protect the external windows with covers when the LRIS is not in use. 
	The LRIS sensors have not been designed to resist to powerful water jets. You should use a high-pressure hose or water gun to clean them. 
	NOTE: 
	not 

	A.3 Image Feature Capturing (optical distortion) 
	These properties are related to misrepresentation of actual pavement features due to inherent optical distortions in the camera and the wide-angle lens. These issues could impact crack detection by increasing the potential for detecting erroneous crack lengths and widths. 
	A.3.1 Crack Length: Check Annually 
	FDOT has set up an imaging target site with diamond shaped stripes as indicated in 
	Figure 135. 

	Figure
	depicts the target site setup and shows the reference measurement patches that are considered for this evaluation. 
	depicts the target site setup and shows the reference measurement patches that are considered for this evaluation. 
	Figure 136 
	Table 78 



	Figure 135. Pavement section with optical distortion study points. 
	Figure

	Figure 136. LRIS 2D image of FDOT target site. 
	Figure 136. LRIS 2D image of FDOT target site. 
	In the transverse direction, all the distances between consecutive diamond stripes are measured in each row. For the longitudinal and diagonal directions, a sample of the distances are measured in the field. 
	TRANSVERSE Row Patch Number Row Patch Number Row Patch Number Row Patch Number Row Patch Number Row Patch Number R2 1 -2 R3 1 -2 R4 1 -2 R5 1 -2 R6 1 -2 R7 1 -2 2 -3 2 -3 2 -3 2 -3 2 -3 2 -3 3 -4 3 -4 3 -4 3 -4 3 -4 3 -4 4 -5 4 -5 4 -5 4 -5 4 -5 4 -5 5 -6 5 -6 5 -6 5 -6 5 -6 5 -6 6 -7 6 -7 6 -7 6 -7 6 -7 6 -7 7 -8 7 -8 7 -8 7 -8 7 -8 8 -9 8 -9 8 -9 8 -9 8 -9 9 -10 9 -10 9 -10 10 -11 10 -11 10 -11 11 -12 11 -12 11 -12 12 -13 12 -13 12 -13 13 -14 14 -15 LONGITUDINAL DIAGONAL Patch Number Patch Number R1,1 -R2
	Table 78. Reference points for measurements 
	Table 78. Reference points for measurements 


	The optical distortion of a camera system is NOT expected to change over time; however, it could easily be checked annually to detect any other system issues that might change with time and impact the measured distortion. The following exercise is recommended to be conducted annually to ensure optical distortions are not increasing with time: 
	1. 
	1. 
	1. 
	FDOT staff should conduct 3 measurements per patch and the average of those measurements is considered as the field reference measurement (“ground truth”) to estimate the error in image measurements due to optical distortions. All field measurements are done to the nearest full millimetre. 

	2. 
	2. 
	The same distances should be measured on LRIS 2D images. The width of LRIS 2D images are typically 4044 pixels. This depends on the amount of overlap between the left and right camera images during stitching. Each pixel can be assumed as 1 mm (which might not always be true but is the best estimate). 

	3. 
	3. 
	The normalized error between field measurements and image measured distances on the FDOT imaging target site should be evaluated in the transverse, longitudinal and diagonal directions. 

	4. 
	4. 
	The average percentage of errors (normalized to field measurements) in longitudinal, transverse, and diagonal directions should be calculated and compared to the values listed in  These values were estimated during a research study in 2016 and it is expected that the optical distortion errors should fall within the recommended range in every annual estimation. 
	Table 79.



	Table 79. Recommended Range for Annual Error Estimation based on Previous Estimation of Average and Standard Deviation of Error Compared to Field Measurements 
	Direction 
	Direction 
	Direction 
	2016 Error Estimation 
	Recommended Normalized Error Range 

	Average Error (%) 
	Average Error (%) 
	Standard Deviation of Error (%) 

	Transverse 
	Transverse 
	3.12 
	2.92 
	0 to 6 % 

	Longitudinal 
	Longitudinal 
	-2.30 
	0.46 
	-3 to -2 % 

	Diagonal 
	Diagonal 
	-0.92 
	0.81 
	-2 to 0% 


	A.3.2 Crack Width: no need for checks 
	Unlike length measurements which are very objective, crack width measurements are subjective due to the gray areas in the images and subjectivity in visual field inspections. In addition, the small magnitudes of crack width make it a challenge (if not impossible) to measure the errors which are in sub millimeters, while the image resolution is at 1 mm. 
	A.3.3 Image Focus and Signal-to-Noise Ratio: Check Annually 
	This is a traditional quantitative measure representing the ratio of the amount of undistorted features captured in an image (signal) to the distortion errors (noise) in detecting features, expressed in decibels. Therefore, this measure and similar 
	measures such as mean squared error (MSE) require a reference “undistorted” image. 
	An estimate of the signal to noise ratio (SNR) can be approximated as the average value of the image pixels (0 to 255 for 8-bit images) divided by the standard deviation of the image intensity values. This approximation eliminates the need for a reference image, but an image with a high SNR value approximated through this method does not necessarily remain faithful to the reality. 
	The SNR of a camera system is NOT expected to change over time; however, it could easily be checked annually to detect any other system issues that might change with 
	The SNR of a camera system is NOT expected to change over time; however, it could easily be checked annually to detect any other system issues that might change with 
	time and impact the measured SNR. The following exercise is recommended to be conducted annually to ensure signal to noise ratio is not increasing with time: 

	1. 
	1. 
	1. 
	An SNR target should be synthetically manufactured. shows two sample target images used as a reference for evaluating the signal to noise ratio. They are composed of black and white areas. 
	Figure 137 


	2. 
	2. 
	An image of the synthetic target should be taken with the LRIS under proper lighting conditions (around noon on a clear sunny day so that there are no shades on the target) while the MPSV is stationary to serve as the reference undistorted image. The pixel intensity values (0 to 255 for 8-bit images) should be measured for the black and white areas of the image. These measurements can be done using open source software such as ImageJ. 

	3. 
	3. 
	A picture of the target taken by the LRIS camera while moving at collection speed should be used to evaluate the SNR of the captured image as compared to the reference. The pixel intensity values should be measured for the black and white areas of the image. It is recommended that at least 3 images be taken and the average of the 3 be used for comparison. 

	4. 
	4. 
	To evaluate camera focus, the contrast (difference) between the average pixel intensity values of the brighter (white) and darker (black) areas should be maximized. Therefore, this contrast should be measured for the reference stationary image and the images taken while the vehicle is moving. The average contrast for the collected images should be within 5% of the reference image. 
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	5. To evaluate signal to noise ratio, the relative metric of average intensity divided by the standard deviation of intensity should be calculated for the brighter and darker pixels. This calculation should be conducted for the reference stationary image and the images taken while the vehicle is moving. The average of this relative SNR measure for the collected images should be within 5% of the reference image for both brighter and darker pixels. 
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	Figure
	Figure 137. Sample Target Images used as a Reference for Evaluating Signal to Noise Ratio 
	Detailed investigation of SNR values was conducted in a previous FDOT study and it is documented in Report No. BD-544-11. It is recommended that a similar target image be used for annual control checks of the SNR values. 
	A.4 LRIS Hardware: Check Annually 
	The integrator company for the FDOT LRIS vehicle is the International Cybernetics Corporation (ICC) and they are responsible for resolving hardware issues, some of which could be addressed by routine maintenance. It is necessary that the hardware 
	and software setup and “calibration” standards recommended by the LRIS equipment 
	manufacturer (Pavemetrics) and the FDOT equipment integrator (ICC) be followed with regards to routine maintenance and calibration controls. The overall system maintenance and recalibration is recommended once a year. This includes checking the camera installed heights and the vehicle tire pressure to ensure the pavement surface is 
	manufacturer (Pavemetrics) and the FDOT equipment integrator (ICC) be followed with regards to routine maintenance and calibration controls. The overall system maintenance and recalibration is recommended once a year. This includes checking the camera installed heights and the vehicle tire pressure to ensure the pavement surface is 
	within the camera depth of field, where objects are in focus. As described in the previous section, the image is in focus if the contrast between the bright and dark areas are maximized. 

	a) 
	a) 
	a) 
	Distance measuring accuracy: the distance measuring instrument (DMI) needs to be inspected and calibrated on a routine basis as recommended by the manufacturer. A control section distance can be measured with the DOT reference device and the vehicle DMI measurements of the control section can be compared to the reference measurement. 

	b) 
	b) 
	Latitude-Longitude accuracy: the global positioning system (GPS) devices need to be inspected and calibrated on a routine basis as recommended by the manufacturer. The vehicle needs to be parked at specific locations on the control section for about 15 minutes to establish a stable measurement. Then the GPS coordinates of those locations should be surveyed using total station equipment in order to check the vehicle GPS measurements. Depending on the number and model of the IMU units in the vehicle, acceptab

	c) 
	c) 
	LRIS platform stability: If there are loose connections in the platform, they need to be addressed as recommended by the manufacturer. 


	Figure
	Figure 138. Schematic of image collection concept. 
	A.5 Environmental Effects: no need for checks 
	The effects of different lighting conditions (overcast, cloudy, or sunny) and vehicle speeds (25, 35, or 45 mph) have already been studied in a previous FDOT research project (documented in Report No. BD-544-11, chapter 2). It was found that the LRIS images are not significantly affected by different vehicle speeds and lighting conditions. The LRIS user manual indicates that the equipment should not be operated at temperatures above 40 degrees Celsius (104 degrees Fahrenheit). 
	a. 
	a. 
	a. 
	Performance at various lighting conditions 

	b. 
	b. 
	Temperature, humidity, and wind 

	c. 
	c. 
	Performance at varying speeds 


	B. DETERMINATION OF SUITABLE AUTOMATED SETTINGS FOR PROCESSING LRIS IMAGES FOR RIGID PAVEMENT DISTRESS IN THE EXISTING AUTOMATED SOFTWARE 
	Table 80. Settings for WiseCrax pre-set detection profiles 
	Table 80. Settings for WiseCrax pre-set detection profiles 
	Table 80. Settings for WiseCrax pre-set detection profiles 

	Detection 
	Detection 
	1 
	2 
	3 
	4 
	5 
	6 

	Profile Name 
	Profile Name 
	longitudinal and alligator cracks on lightly distressed pavement 
	longitudinal and alligator cracks on moderately distressed pavement 
	longitudinal and alligator cracks on heavily distressed pavement 
	Dark Asphalt with dark crack 
	Dark Asphalt with white crack or crack with salt 
	Light Asphalt with dark crack 

	Crack Types 
	Crack Types 
	longitudinal and alligator cracks 
	longitudinal and alligator cracks 
	longitudinal and alligator cracks 

	Crack Color 
	Crack Color 
	dark 
	white 
	dark 

	Pavement Color 
	Pavement Color 
	dark 
	dark 
	light 

	Pavement Material 
	Pavement Material 
	asphalt 

	Defection Degree 
	Defection Degree 
	lightly 
	moderate 
	heavily 

	Crack Options 
	Crack Options 

	TR
	Crack Simplification 
	1 
	1 
	1 
	1 
	2 
	1 

	TR
	Extraction 

	TR
	Transverse Cracking 
	15 
	12 
	25 
	50 
	30 
	80 

	TR
	Longitudinal Cracking 
	15 
	12 
	25 
	50 
	30 
	80 

	TR
	Crack Likelihood 
	2 
	1 
	1 
	2 
	1 
	3 

	TR
	Horizontal Bridging 
	3 
	3 
	3 
	3 
	2 
	3 

	TR
	Vertical Bridging 
	5 
	5 
	5 
	5 
	9 
	5 

	TR
	Pruning 

	TR
	Remove Short Distress 
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 

	TR
	Minimum Length (mm) 
	100 
	100 
	100 
	150 
	150 
	140 

	TR
	Remove Low Node-Count Distresses 
	TRUE 
	TRUE 
	TRUE 
	FALSE 
	TRUE 
	TRUE 


	Detection 
	Detection 
	Detection 
	1 
	2 
	3 
	4 
	5 
	6 

	TR
	Minimum Node Count 
	50 
	50 
	50 
	N/A 
	100 
	60 

	TR
	Remove Low-Cost Distresses 
	FALSE 
	FALSE 
	FALSE 
	TRUE 
	FALSE 
	FALSE 

	TR
	Minimum Cost Threshold 
	N/A 
	N/A 
	N/A 
	50 
	N/A 
	N/A 

	TR
	Remove ‘Bright’ Distresses 
	FALSE 
	FALSE 
	FALSE 
	TRUE 
	TRUE 
	FALSE 

	TR
	Maximum Intensity Threshold 
	N/A 
	N/A 
	N/A 
	110 
	115 
	N/A 

	TR
	Width 

	TR
	Intensity Threshold 
	60 
	60 
	60 
	60 
	60 
	60 

	Lane Options 
	Lane Options 

	TR
	Enabled 
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 

	TR
	Detect within lanes 
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 

	TR
	Scale 
	0.5 
	0.5 
	0.5 
	0.5 
	0.5 
	0.5 

	TR
	Threshold 
	50 
	50 
	50 
	50 
	50 
	50 

	TR
	Slice height 
	200 
	200 
	200 
	200 
	200 
	200 

	TR
	Smooth width 
	10 
	10 
	10 
	10 
	10 
	10 

	TR
	Minimum marker width 
	50 
	50 
	50 
	50 
	50 
	50 

	TR
	Maximum marker width 
	250 
	250 
	250 
	250 
	250 
	250 

	TR
	Lane set method 

	Sealed Crack Options 
	Sealed Crack Options 

	Crack Simplification 
	Crack Simplification 
	1 
	1 
	1 
	1 
	1 
	1 

	TR
	Extraction 

	TR
	Transverse Cracking 
	0 
	17.5 
	0 
	0 
	0 
	0 

	TR
	Longitudinal Cracking 
	0 
	17.5 
	0 
	0 
	0 
	0 

	TR
	Crack Likelihood 
	3 
	3 
	3 
	3 
	3 
	3 


	Detection 
	Detection 
	Detection 
	1 
	2 
	3 
	4 
	5 
	6 

	TR
	Horizontal Bridging 
	2 
	2 
	2 
	2 
	2 
	2 

	TR
	Vertical Bridging 
	4 
	4 
	4 
	4 
	4 
	4 

	TR
	Pruning 

	TR
	Remove Short Distresses 
	FALSE 
	FALSE 
	FALSE 
	FALSE 
	FALSE 
	FALSE 

	TR
	Remove Low Node-Count 
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 

	TR
	Minimum Node Count 
	8 
	8 
	8 
	8 
	8 
	8 

	TR
	Remove Low-Cost 
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 

	TR
	Minimum Cost Threshold 
	10 
	10 
	10 
	10 
	10 
	10 

	TR
	Remove ‘Bright’ 
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 

	TR
	Maximum Intensity 
	80 
	80 
	80 
	80 
	80 
	80 

	TR
	Intensity Threshold 
	80 
	80 
	80 
	80 
	80 
	80 

	Table 81. Settings for WiseCrax pre-set detection profiles (continued) 
	Table 81. Settings for WiseCrax pre-set detection profiles (continued) 


	Detection 
	Detection 
	Detection 
	7 
	8 
	9 
	10 

	Profile Name 
	Profile Name 
	longitudinal and transverse cracks on light pavement 
	longitudinal crack 
	Transverse crack 
	Pavements with light number of white cracks 

	Crack Types 
	Crack Types 
	longitudinal and transverse cracks 
	longitudinal crack 
	Transverse crack 

	Crack Color 
	Crack Color 
	white (light amount) 

	Pavement Color 
	Pavement Color 
	light 

	Pavement Material 
	Pavement Material 

	Defection Degree 
	Defection Degree 

	Crack Options 
	Crack Options 

	TR
	2 
	2 
	1 
	2 
	1 

	TR
	10 
	0 
	10 
	30 
	25 
	50 

	10 
	10 
	37.5 
	5 
	10 
	25 
	50 

	2 
	2 
	2 
	2 
	1 
	1 
	2 

	3 
	3 
	3 
	3 
	2 
	3 
	3 

	Detection 
	Detection 
	7 
	8 
	9 
	10 

	TR
	5 
	5 
	5 
	9 
	5 
	5 

	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 

	125 
	125 
	125 
	150 
	150 
	100 
	150 

	FALSE 
	FALSE 
	FALSE 
	TRUE 
	TRUE 
	TRUE 
	FALSE 

	N/A 
	N/A 
	N/A 
	75 
	100 
	50 
	N/A 

	FALSE 
	FALSE 
	FALSE 
	FALSE 
	FALSE 
	FALSE 
	TRUE 

	N/A 
	N/A 
	N/A 
	N/A 
	N/A 
	N/A 
	50 

	FALSE 
	FALSE 
	FALSE 
	FALSE 
	TRUE 
	FALSE 
	TRUE 

	N/A 
	N/A 
	N/A 
	N/A 
	115 
	N/A 
	110 

	TR
	60 
	60 
	60 
	60 
	60 
	60 

	Lane Options 
	Lane Options 

	TR
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 

	TR
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 

	TR
	0.5 
	0.5 
	0.5 
	0.5 
	0.5 

	TR
	50 
	50 
	50 
	50 
	50 

	TR
	200 
	200 
	200 
	200 
	200 

	TR
	10 
	10 
	10 
	10 
	10 

	TR
	50 
	50 
	50 
	50 
	50 

	TR
	250 
	250 
	250 
	250 
	250 

	Sealed Crack Options 
	Sealed Crack Options 

	Crack Simplification 
	Crack Simplification 
	1 
	1 
	1 
	1 

	TR
	0 
	0 
	0 
	0 
	0 
	0 

	TR
	0 
	0 
	0 
	0 
	0 
	0 

	TR
	3 
	3 
	3 
	3 
	3 
	3 

	Detection 
	Detection 
	7 
	8 
	9 
	10 

	TR
	2 
	2 
	2 
	2 
	2 
	2 

	TR
	3 
	3 
	3 
	3 
	4 
	4 

	TR
	FALSE 
	FALSE 
	FALSE 
	FALSE 
	FALSE 
	FALSE 

	TR
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 

	TR
	10 
	10 
	10 
	10 
	8 
	8 

	TR
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 

	TR
	120 
	120 
	120 
	120 
	10 
	10 

	TR
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 
	TRUE 

	60 
	60 
	60 
	60 
	60 
	80 
	80 

	TR
	80 
	80 


	Table 82. Crack Detection Legend for through 
	Table 82. Crack Detection Legend for through 
	Figure 139 
	Figure 163 

	Figure 139. Crack Detection Sample Image Number 1 

	Range Name 
	Range Name 
	Range Name 
	Min Width 
	Max Width 
	Color 

	Small 
	Small 
	0.118 
	TD
	Figure


	Medium 
	Medium 
	0.118 
	0.236 
	TD
	Figure


	Large 
	Large 
	0.236 
	0.394 
	TD
	Figure


	Very Large 
	Very Large 
	0.394 
	TD
	Figure



	Figure
	Figure
	Figure 140. Crack Detection Sample Image Number 2 
	Figure
	Figure 141. Crack Detection Sample Image Number 3 
	Figure
	Figure 142. Crack Detection Sample Image Number 4 
	Figure
	Figure 143. Crack Detection Sample Image Number 5 
	Figure
	Figure 144. Crack Detection Sample Image Number 6 
	Figure
	Figure 145. Crack Detection Sample Image Number 7 
	Figure
	Figure 146. Crack Detection Sample Image Number 8 
	Figure
	Figure 147. Crack Detection Sample Image Number 9 
	Figure
	Figure 148. Crack Detection Sample Image Number 10 
	Figure
	Figure 149. Crack Detection Sample Image Number 11 
	Figure
	Figure 150. Crack Detection Sample Image Number 12 
	Figure
	Figure 151. Crack Detection Sample Image Number 13 
	Figure
	Figure 152. Crack Detection Sample Image Number 14 
	Figure
	Figure 153. Crack Detection Sample Image Number 15 
	Figure
	Figure 154. Crack Detection Sample Image Number 16 
	Figure
	Figure 155. Crack Detection Sample Image Number 17 
	Figure
	Figure 156. Crack Detection Sample Image Number 18 
	Figure
	Figure 157. Crack Detection Sample Image Number 19 
	Figure
	Figure 158. Crack Detection Sample Image Number 20 
	Figure
	Figure 159. Crack Detection Sample Image Number 21 
	Figure
	Figure 160. Crack Detection Sample Image Number 22 
	Figure
	Figure 161. Crack Detection Sample Image Number 23 
	Figure
	Figure 162. Crack Detection Sample Image Number 24 
	Figure
	Figure 163. Crack Detection Sample Image Number 25 Table 83. Distress Identification Legend for through 
	Figure 164 
	Figure 166 

	Transverse Distress 
	Transverse Distress 
	Transverse Distress 
	TH
	Figure


	Longitudinal Distress 
	Longitudinal Distress 
	TD
	Figure


	Transverse Joint 
	Transverse Joint 
	TD
	Figure


	Longitudinal Joint (8790) 
	Longitudinal Joint (8790) 
	-

	TD
	Figure


	Longitudinal Joint (-90-87) 
	Longitudinal Joint (-90-87) 
	-

	TD
	Figure



	Figure
	Figure 164. Crack Classification Sample Image Number 1 
	Figure
	Figure 165. Crack Classification Sample Image Number 2 
	Figure
	Figure 166. Crack Classification Sample Image Number 3 
	C. RESULTS FROM FIELD DISTRESS WORKSHOP ON RIGID PAVEMENTS 
	In the following tables, highlighted values indicate more than 50% variation or less than 50% agreement among the raters. 
	Table 84. Statistics of transverse cracking at different severity level 
	Figure
	Figure 167. Distance from average in standard deviation (transverse cracking). 
	Figure 167. Distance from average in standard deviation (transverse cracking). 
	Figure 168. Transverse cracking on rigid pavements. 
	Figure 169. Distance from average in standard deviation (longitudinal cracking). 

	Figure
	Figure
	Table 85. Statistics of longitudinal cracking at different severity level 
	Table 85. Statistics of longitudinal cracking at different severity level 


	Figure
	Figure
	Figure 170. Longitudinal cracking on rigid pavement. 
	Figure 170. Longitudinal cracking on rigid pavement. 
	Figure 171. Distance from average in standard deviation (spalling). 
	Figure 172. Spalling on rigid pavements. 
	Figure 173. Distance from average in standard deviation (corner cracking). 

	Figure
	Table 86. Statistics of spalling at different severity level 
	Table 86. Statistics of spalling at different severity level 


	Figure
	Figure
	Figure
	Table 87. Statistics of corner cracking at different severity level 
	Table 87. Statistics of corner cracking at different severity level 


	Figure
	Figure
	Figure 174. Corner cracking on rigid pavement. 
	Figure
	Table 88. Statistics of patching at different severity level 
	Table 88. Statistics of patching at different severity level 


	Figure
	Table 89. Statistics of shattered slabs 
	Table 89. Statistics of shattered slabs 


	Figure
	Figure 175. Shattered slab of rigid pavement. 
	Table 90. Statistics of surface deterioration 
	Figure
	Table 91. Statistics of pumping 
	Figure
	D. MANUAL WINDSHIELD SURVEY RESULTS ON RIGID PAVEMENTS 
	Table 92. Transverse cracking (count): light, moderate, and severe 
	Figure
	Figure
	Figure 176. Distance from average in standard deviation (transverse cracking). 
	Figure
	Table 93. Longitudinal cracking (count): light, moderate, and severe 
	Table 93. Longitudinal cracking (count): light, moderate, and severe 


	Figure
	Figure 177. Distance from average in standard deviation (longitudinal cracking). 
	Figure
	Table 94. Spalling (linear feet): moderate and severe 
	Table 94. Spalling (linear feet): moderate and severe 


	Figure
	Figure 178. Distance from average in standard deviation (spalling). 
	Figure
	Table 95. Corner cracking (count): light, moderate, and severe 
	Table 95. Corner cracking (count): light, moderate, and severe 


	Figure
	Figure 179. Distance from average in standard deviation (corner cracking). 
	Figure
	Table 96. Patching (sq. yards): fair and poor 
	Table 96. Patching (sq. yards): fair and poor 


	Figure
	Figure 180. Distance from average in standard deviation (patching). 
	Figure
	Table 97. Shattered slab (count): moderate and severe 
	Table 97. Shattered slab (count): moderate and severe 


	Figure
	Figure 181. Distance from average in standard deviation (shattered slab). 
	Figure
	Table 98. Surface deterioration (sq. feet): moderate and severe 
	Table 98. Surface deterioration (sq. feet): moderate and severe 


	Figure
	Figure 182. Distance from average in standard deviation (surface deterioration). 
	E. SEMI-AUTOMATED SURVEY RESULTS ON RIGID PAVEMENTS 
	Table 99. Transverse cracking (count): light, moderate, and severe 
	Figure
	Figure
	Figure 183. Distance from average in standard deviation (transverse cracking). 
	Figure 183. Distance from average in standard deviation (transverse cracking). 
	Table 100. Longitudinal cracking (count): light, moderate, and severe 
	Figure 184. Distance from average in standard deviation (longitudinal cracking). 
	Table 101. Spalling (linear feet): moderate and severe 
	Figure 185. Distance from average in standard deviation (spalling). 
	Table 102. Corner cracking (count): light, moderate, and severe 
	Figure 186. Distance from average in standard deviation (corner cracking). 
	Table 103. Patching (sq. yard): fair and poor 
	Figure 187. Distance from average in standard deviation (patching). 
	Table 104. Shattered slab (count): moderate and severe 
	Figure 188. Distance from average in standard deviation (shattered slab). 
	Table 105. Surface deterioration (sq. feet): moderate and severe 
	Figure 189. Distance from average in standard deviation (surface deterioration). 

	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	F. AUTOMATED SURVEY RESULTS ON RIGID PAVEMENTS USING THE EXISTING SOFTWARE 
	Table 106. Transverse and longitudinal cracking (count) 
	Figure
	Figure
	Figure 190. Distance from average in standard deviation (transverse cracking count) 
	Figure
	Figure 191. Distance from average in standard deviation (longitudinal cracking count) 
	Figure 191. Distance from average in standard deviation (longitudinal cracking count) 
	Table 107. Transverse and longitudinal cracking (linear feet) 
	Figure 192. Distance from average in standard deviation (transverse cracking length). 

	Figure
	Figure
	Figure
	Figure 193. Distance from average in standard deviation (longitudinal cracking length). 
	G. FDOT RIGID PAVEMENT DISTRESS APPLICATION (FRPDA) 
	USER’S GUIDE 
	The developed application (FRPDA) is executed by running a batch processor from the Fugro Vision platform, which is used for data monitoring, processing, and reporting. Previously, FDOT raters used the same platform to conduct the semi-automated surveys. It is recommended that the new users review the guide on Using Basic Vision Functions, which has been included at the end of this Appendix to become familiar with the Vision platform before conducting distress surveys. Fugro also maintains more detailed Use
	The outline of the recommended procedure for automated identification and quantification of pavement distress is as follows: 
	1. 
	1. 
	1. 
	Run the automated lane assignment based on lane edge offset from image edge and specified lane width. Review and correct lane edges as needed to address any significant vehicle wander during data collection. 

	2. 
	2. 
	Run the automated batch processor for crack detection (based on WiseCrax), which filters the images and detects the surface defects for all sections in a project database. This processor is mainly based on the existing Fugro software and not the development efforts in this project. Therefore, it has been organized in a separate processor to protect the pertinent intellectual property (IP). 

	3. 
	3. 
	3. 
	Run the automated batch processor called “FDOT Rigid Pavement Distress Application” to: 

	a. Detect the joints for all sections in a project database; 

	4. 
	4. 
	Perform quality control (QC) of the joints, modify, add, or delete as appropriate for each section using the Vision platform; 

	5. 
	5. 
	5. 
	Run the automated batch processor called “FDOT Rigid Pavement Distress Application” to: 

	b. 
	b. 
	b. 
	Conduct classification, which groups adjacent lines, assigns lines to slabs, and classifies lines into longitudinal and transverse based on their angle for all sections in a project database; 

	c. 
	c. 
	Rate the classified lines into corresponding crack types and severities for all sections in a project database; 



	6. 
	6. 
	Perform QC of the automated cracks, modify, add, or delete as appropriate for each section using the Vision platform. Other non-cracking distress types can also be manually identified during this QC. 


	The following sections explain each of the above steps in more detail. 
	G.1. Preliminary Adjustments 
	The pavement sections are organized in ‘sessions’, where images are stored. The user will need to double click on a session in the ‘Section Explorer’ to highlight it. Only one 
	session can be highlighted at a time. After highlighting a session, lock the session so you can work on it manually. This will stop other users from accessing and processing data from that section. The section on Using Basic Vision Functions includes details on how to lock or unlock a session. Even if you start from locking one section, you can still run the batch processor for an automated survey of multiple sections at the same time. As a general rule, automated processes can be executed without locking s
	Figure
	The correct ‘Distress Schema’ needs to be loaded before running the application. The schema specifies the included distress types and their severities. Fugro engineers create project specific schema that can be saved, emailed, and loaded. If you do not have a distress schema, or if you would like to create one for a specific different project, 
	then you need to use the process for ‘Setting Up a Schema,’ which is explained at the 
	end of this Appendix. It is recommended that the new users would refrain from creating 
	end of this Appendix. It is recommended that the new users would refrain from creating 
	or modifying distress schema, unless approved by a more professional user. Different profiles will impact the detection results a lot, because each profile contains different parameter settings for the detection process. It is very important that you use the detection profile specifically created for you by a professional user. Once a schema is loaded for a project, other users can access it. Therefore, it is recommended that a professional user loads the schema. 

	The following screen captures show where the professional user can load a previously saved schema. Go to the ‘Schema’ drop-down menu and select ‘Edit’. 
	Figure
	Then go to the ‘Profiles’ tab, and load the schema file from the saved location on your 
	hard drive or server. 
	Figure
	G.2. Lane Edge Adjustments 
	Before the user can conduct automated distress surveys, they need to setup lane edges. Lane edges can be drawn separately for each image, which is approximately 20 feet long. The Vision platform allows you to automatically setup all the lane edges for all the images in each session by specifying the offset of one lane edge and the lane width. Select "Lane" then select "Adjust Lane Edges": 
	Before the user can conduct automated distress surveys, they need to setup lane edges. Lane edges can be drawn separately for each image, which is approximately 20 feet long. The Vision platform allows you to automatically setup all the lane edges for all the images in each session by specifying the offset of one lane edge and the lane width. Select "Lane" then select "Adjust Lane Edges": 
	The following window will show up, where you can automatically setup all the lane edges for all the images in each session, by specifying the offset of one lane edge and the lane width (note: only Metric units are available at this time). You can either select one or multiple images in each session to setup their lane edges. 

	Figure
	Figure
	Note that due to vehicle wander and lane departures, this automated lane edge assignment might not be very accurate. It is recommended that the results of this automated lane edge assignment be reviewed and adjusted manually. To manually adjust the lane edges after you have locked the session, click on the lane icon (see screen below) to adjust lane edge on pavement images. 
	Figure
	Click on left/right half of the image, left click your mouse and select ‘Adjust Lane Edge (left/right)’: 
	Figure
	The following is an example of adjusted lane edge: 
	Figure
	G.3. Automated Pre-Filtering and Crack Detection 
	The existing batch processor for detection of pavement surface defects (based on WiseCrax algorithm) has been slightly adjusted to include pre-filtering with a Gaussian filter using the ImageJ open-sourec code. Select the ‘Process’ tab, and click on the ‘New Batch Processor’ from the drop-down menu: 
	Figure
	Select the ‘Cracks Processing’ group of processors from the left hand side folders, and then select the ‘JPEG Cracks Detection Processor’ from the list: 
	Figure
	After selecting this processor from the ‘Tasks’ menu, go to the ‘Options’ menu on top, and choose the ‘Detection Profile’ called “FDOT_2D_RIGID” (Fugro engineers will 
	provide the correct profile for you.). You must select the detection profile, or the 
	processor won’t run. 
	Figure
	Go to the ‘Data’ menu on top to select the session(s) that you would like to process. Note that in this menu, all of the available sessions will be loaded. The session numbers will be based on the ‘Collection’ data field in the list of sections (Section Explorer). In order to choose your desired session(s), you need to remove the unwanted sessions. First select the desired session to highlight it in blue. You can select multiple sessions by holding down the Ctrl key and left-clicking on multiple sessions (i
	down menu, select ‘Invert’. 
	Figure
	This will result in all the other unwanted sessions to be highlighted in blue. 
	Figure
	Now, you can click to ‘Remove’ the unwanted secssions. If you remove the incorrect 
	sessions by mistake, you can click on the undo icon on top left to reload all the available sessions in this project. 
	Figure
	In order to run the processor on the selected session(s), go to the ‘Process’ menu on top and select ‘Start’. The ‘Process’ menu will show you the progress of the processing on each and all of the selected sessions. You can select ‘Pause’ or ‘Stop’ at any time during the process: 
	Figure
	After the processing has been completed for all the selected sessions, a message box will let you know that the batch processing is complete. Click on OK button to continue. 
	Figure
	In order to see the detection results on any session that was already selected 
	(highlighted in the ‘Section Explorer’ menu) before the batch processing, you need to 
	double click to highlight another session and then come vback and double click the desired session. This process refreshes the view of the session and you can see the changes that took effect as a result of the batch processor. This screen capture shows an example image after the detection process has been executed and the surface defects have been detected: 
	Figure
	G.4. FDOT Rigid Pavement Distress Application: FRPDA 
	This application is developed specifically for FDOT, and it contains the following functions: 
	1. 
	1. 
	1. 
	Detection of joints from 2-D pavement surface images, 

	2. 
	2. 
	Classification of lines (that have been detected by the previous batch processor) into longitudinal and transverse orientations based on their angle; grouping of adjacent cracks based on their type and proximity to one another; and assigning the detected cracks to the correct slab, based on their locations relative to the joints of the slabs; 

	3. 
	3. 
	Rating of the cracks into longitudinal, transverse, or corner cracking, and shattered slabs; and assigning a severity level based on the width of cracks. 


	Select the ‘Process’ tab, and click on the ‘New Batch Processor’ from the drop-down menu: 
	Figure
	Select the ‘Cracks Processing’ group of processors from the left-hand side folders, and then select the ‘FDOT Rigid Pavement Distress App’ from the list: 
	Figure
	G.4.1. Joint Detection and QC 
	Go to the ‘Options’ menu on top. In the ‘Settings’ for the ‘FDOT Rigid Pavement Distress App’, you can specify which process you would like to run: joint detection, 
	classification, or rating. If you just want to detect the joints from pavement images, set 
	the ‘Detect Joint’ as True, and ‘Classification’ and ‘Rating’ as False: 
	Figure
	Select the ‘Data’ (sessions) you would like to process. The default data to be processed is pavement images from all sessions. Go to the ‘Data’ menu on top to select the 
	session(s) that you would like to process. Note that in this menu, all of the available sessions will be loaded. The session numbers will be based on the ‘Collection’ data field in the list of sections (Section Explorer). In order to choose your desired session(s), you need to remove the unwanted sessions. First select the desired session to highlight it in blue. You can select multiple sessions by holding down the Ctrl key and left-clicking on multiple sessions (in the following example, all the sessions w
	Figure
	This will result in all the other unwanted sessions to be highlighted in blue. 
	Figure
	Now, you can click to ‘Remove’ the unwanted secssions. If you remove the incorrect 
	sessions by mistake, you can click on the undo icon on top left to reload all the available sessions in this project. 
	Figure
	Process the selected data by clicking on the ‘Process’ menu on top, and choose ‘Start’: 
	Figure
	The ‘Process’ menu will show you the progress of the processing on each and all of the selected sessions. You can select ‘Pause’ or ‘Stop’ at any time during the process: 
	Figure
	Once the joint detection is complete, you will be notified that ‘Batch processing has completed’: 
	Figure
	You have to click on ‘OK’ so you can go back to the section to check the detection results. The detected joints have been written to the ‘distress.Joints’ table in the Vision 
	You have to click on ‘OK’ so you can go back to the section to check the detection results. The detected joints have been written to the ‘distress.Joints’ table in the Vision 
	database corresponding to this specific project. The ‘distress.Joints’ table includes key 

	information for the joints location, length, direction, and the image frame id. The following is a screen capture of the table: 
	Figure
	The detected joints have also been displayed as green solid lines on the pavement images: 
	Figure
	Most of joint detection results are accurate. However, A small number of false detection results and missed joints are unavoidable, specifically when skewed transverse joints or diagonal longitudinal joints are present. The user can go back to the pavement images to control the quality of the results and correct the minor errors. 
	Select the desired session from the ‘Section Explorer’ menu. Lock that session under 
	your name to be able to conduct manual changes. To remove the unexpected joint detection results, select the joint using the arrow sign by left-clicking and dragging a 
	window on to the joint. Then, click on the ‘Delete’ icon: 
	window on to the joint. Then, click on the ‘Delete’ icon: 
	To insert a missed joint, click on the ‘Joints’ icon, and draw a joint in the corresponding location manually: 

	Figure
	Figure
	To save the drawn ‘Joints’, the user must save the results by clicking on the ‘save’ 
	(floppy disc cartoon) icon. Please remember to unlock the session so that others can also access this session for any required further modification. The database will be automatically updated with these manual interventions. And the classification, and rating would be conducted based on the updated joint data. 
	G.4.2. Classification, Grouping, Slab Assignment 
	Select the batch processor ‘FDOT Rigid Pavement Distress App’ again. If you only need to classify the lines, set the ‘Classification’ as True and the ‘Detect Joint’ and ‘Rating’ as 
	False. The user can also conduct both the Classification and Rating by setting them both as True. We recommend that the user would perform classification and rating at the same time. 
	During the classification, the line(s) will be classified as ‘transverse’ or ‘longitudinal’ according to their angle, and the slabs would be identified. If you would like to check the 
	results of identified slabs, you can save the results as a csv file in your chosen output folder: 
	Figure
	The classification results would be displayed in the Vision software and written into the distress.CrackSets table in the Vision database. 
	Figure
	Figure
	The app would also create a directory named ‘Slab Coordinate’ in the chosen output 
	folder, the slab coordinates information would be saved in a .csv file with the same name as the session number. This file also includes other slab dimensional information: 
	Figure
	G.4.3. Distress Rating and QC 
	If you already rated the cracks, skip this step. If not, select the batch processor ‘FDOT Rigid Pavement Distress App’ again, and set the ‘Rating’ as True, and others as False. 
	Note that you must perform the Classification before Rating. 
	Figure
	Here is an example image after processing is complete: 
	Figure
	After the distress rating has been completed, the rating results would be displayed on both pavement images in the Vision software and tables in the Vision database. 
	Figure
	The rating results have been also written to the distress.DistressRecords table in Vision database: 
	Figure
	The app would also create a directory named ‘Distress in Slab’ in the chosen output folder, the identified distress information would be saved in a .csv file with the same name as the session number. 
	Figure
	The user can go back to the session by double clicking on the session number to check the final distress rating results. The user can select each one of the identified distresses from the list on the right or the images on the left using the cursor button: 
	Figure
	And the blue horizontal line will be centered on the selected distress, which is highlighted in the list of distresses displayed on the right hand side: 
	Figure
	During the QC review of the distress identification results, the user can modify the type and severity of the selected distress by clicking on the modify button, which will open the corresponding edit window: 
	Figure
	G.5. Setting Up a Schema 
	Create Distress Types (Distress Name and category listed as following):  
	Figure
	Note: you don’t need to set up distress type for ‘Joints’. It is an internal distress type in Vision. 
	Create severity level list by using severity editor (the rated crack would be displayed according to severity level): 
	Figure
	Modify: 
	Figure
	New: 
	Figure
	G.6. Using Basic Vision Functions 
	The following show some instructions on using basic Vision functions after starting up the software. 
	G.6.1. Connecting to a Project 
	Click on "Connect" (top left-hand side), and recent databases that you have accessed will be listed. To connect to a new project, click on "New" and a window will allow you to enter the server name where the data is stored, username and password to access the server, and the name of the database which you would like to connect to. 
	• 
	• 
	• 
	Database Server Name: dotssmsql02 

	• 
	• 
	Database Name: (example) FugroPavementsTest 


	• Select: Windows NT Authentication 
	Figure
	When connected, a list of the sections in the database will appear on the screen. You can click on "Show" to filter out the sections which do not have corresponding data. By double clicking on one of the Routes, you will select that route file and a blue arrow will appear to indicate that selection. 
	Figure
	G.6.2. Connecting to the Images for the Project 
	If this is the first time you or any of your colleagues are accessing this database, then you need to make sure that the project contains the correct links to the directory where the corresponding images are stored. Go to the File System Mapper under the Tools menu. Select the image type(s) for which you would like to specify a directory and then click on Remap: 
	Figure
	Then you will be able to enter a new directory address for those images and click OK. then you will see a list of all the images found. Click on Check >> Destination. If the images exist, the destination addresses will turn bold: 
	Then you will be able to enter a new directory address for those images and click OK. then you will see a list of all the images found. Click on Check >> Destination. If the images exist, the destination addresses will turn bold: 
	Now you can click on Map and the correct image paths will be restored. Please note that this will update the image paths for this project for all users. Therefore, this needs to be done once, preferably by the administrator of that project and then everyone will be able to see the images. In order for Vision to run faster, it is recommended that the images be stored on the FDOT server. 

	Figure
	G.6.3. Opening ROW and Pavement Images 
	From the menu bar, select "Images" and then select "ROW" or "Pavement" images. 
	Existing database does not yet contain ROW Images. 
	Figure
	You can move any of the opened tabs ("Sections" and "ROW" in this example) around your screen to arrange the windows according to your preferences. If you have multiple monitors, you can right-click on any tab, select "undock" and then move the new window to another monitor screen. 
	The play-stop-forward-backward buttons can be used to see images along the length of the roadway. The play speed can be adjusted. The slider bar on the right-hand side shows the location in milli-miles from the beginning of the roadway section. 
	G.6.4. Pavement Distress Rating 
	From the "Rate" menu, select "Pavement Distress" and you will see the module for 1) detecting lines, 2) classifying cracks by type (longitudinal, transverse, etc.), and 3) rating the detected cracks (assigned as specific distresses). The pavement surface distresses can be either rated manually on the collected digital images (a process referred to as semi-automated distress survey) or rated automatically using crack detection software. In the case of automated distress surveys, a post-survey manual QC is re
	The available distress types and the corresponding severity levels are preset using the 
	distress schema: 
	Figure
	Figure
	You can again use the media buttons at the bottom to see pavement images along the test section. Alternatively, you can use the blue arrows on the left side of the pavement image to move forward or backward in the pavement distress rating module. You can also adjust the speed of scrolling by moving your mouse up and down the arrows. The BLUE horizontal line on the pavement image shows the exact location of the mileage indicated at the bottom of the screen. 
	Before one can start a distress survey on any pavement section, that specific section needs to be "locked" under their name. This ensures that only one person at a time can have access to add/edit pavement distresses on that section. Click on the lock icon on the top left side, from the menu select "Assignments" and you can see a list of assignments for each user and the status of the assignments. Here you can select a user and lock or unlock the section. You should lock it under your user name to be able t
	Figure
	After you have "locked" a pavement section under your name, you can also edit the appearance of pavement imagery to facilitate manual rating of the pavement images. 
	Using the button from the top of the pavement image, you will be provided with an image adjustment window as in the following screen to edit properties such as sharpness, brightness, and contrast. Please note that these modifications will only affect the image appearance for manual rating and will not affect the automated distress identification process. 
	Figure

	Figure
	G.6.5. Manual Distress Rating 
	There are a variety of tools for drawing cracks and distresses on pavement surface. 
	Figure
	At the first step, you will need to identify the edges of the lane that you would like to 
	rate. Using this button you can drag and adjust the lane edges on the left and right. The lane edge adjustment will need to happen at specified intervals or whenever you deem necessary. 
	Figure

	You can use this button on the top left to draw distresses. If you would like to identify linear distresses such as spalling, you should left-click the beginning and the end points for the crack and depending of the angle of the created line (less than or more than 45 degrees), the software will give you options to select from the available distresses. You can also select from the defined list of severity levels. For example, you can see a longitudinal crack in the following example: 
	Figure

	Figure
	If you would like to identify an area type distress (fatigue cracking, patching, etc.), then you should left-click and drag to draw a box, and the software will give you the available distress options and severity levels for each. If you would like to identify a point type distress (counting the number of joints with defined condition, or number of shattered 
	If you would like to identify an area type distress (fatigue cracking, patching, etc.), then you should left-click and drag to draw a box, and the software will give you the available distress options and severity levels for each. If you would like to identify a point type distress (counting the number of joints with defined condition, or number of shattered 
	slabs), then you should double-click on the pavement image and the software will give you the available distress options and severity levels for each. 

	If you would like to erase a distress you can use the erase button and you can identify the distresses that you would like to erase. An alternative option would be to use 
	Figure

	the delete button. 
	Figure

	if you would like to modify a distress type or severity, you can use the modify button. If you need to measure distress dimensions to assign appropriate severity levels, you can use the measurement button. Also, if you need to zoom into a specific part on pavement surface to make sense of a defect, you can use the magnify tab at the bottom right of the pavement image: 
	Figure

	Figure
	Figure
	The following example shows low-severity longitudinal, moderate-severity transverse, and low-severity alligator cracking instances. The identified distresses are listed on the right-hand side according to the mile post. 
	Figure
	If you would like others to be able to see the results of your distress survey, you should 
	save your work with the save button. Be CAUTIOUS as the Undo button will undo all the distresses that you have drawn on the pavement image since the last time that you hit the save button. 
	Figure
	Figure

	G.7. Installation Instructions for Fugro Vision Platform and the FDOT Rigid Pavement Distress App 
	0) Uninstall the current Fugro Roadware Vision 
	1) Install Fugro Roadware Vision 3.1.1 using the provided msi file. 
	If there is an error regarding C++ (see below), install the vcredist_x64.exe file and then install Vision. 
	Figure
	Please note that for the Vision software, you will need to enter the licence key to extend the availability of the software from 30 days to 365 days. Please contact Fugro for a license key if you have nbot been provided one. 
	2) Copy the following .dll files into this folder (replace the files in the destination folder): 
	2) Copy the following .dll files into this folder (replace the files in the destination folder): 
	C:\Program Files\Fugro Roadware\Fugro Roadware Vision\LCMS\LcmsAnalyserLib_4_13_0_0_64bit\ 

	Figure
	3) Copy the following .dll file into this folder: 
	3) Copy the following .dll file into this folder: 
	C:\Program Files\Fugro Roadware\Fugro Roadware Vision\ 

	Figure
	4) Copy the following .dll file into this folder: C:\Program Files\Fugro Roadware\Fugro Roadware Vision\PlugIn\Processors\Cracks\ 
	Figure
	5) Now, run Vision and connect to the following test database to test if everything is working fine: 
	database name: FDOT_LRIS_TEST_Final 
	H. DOCUMENTATION OF 24 SELECTED PROCESSED IMAGES OF RIGID PAVEMENTS 
	All the processed images can be reviewed through the Fugro Vision platform to observe the performance of the crack detection and classification processes. In this appendix, screen captures of the processed images for 24 selected images (2 images from each of the 12 test sections) have been recorded from Vision. 
	Table 108. List of Sample Image Frames Processed for Rigid Pavements 
	Image Number 
	Image Number 
	Image Number 
	Test Section 
	Image Frame 

	1 
	1 
	Section 1 
	3P000019 

	2 
	2 
	Section 1 
	3P000020 

	3 
	3 
	Section 2 
	3P000115 

	4 
	4 
	Section 2 
	3P000116 

	5 
	5 
	Section 3 
	3P000029 

	6 
	6 
	Section 3 
	3P000022 

	7 
	7 
	Section 4 
	3P000014 

	8 
	8 
	Section 4 
	3P000024 

	9 
	9 
	Section 5 
	3P000767 

	10 
	10 
	Section 5 
	3P000768 

	11 
	11 
	Section 6 
	3P000022 

	12 
	12 
	Section 6 
	3P000023 

	13 
	13 
	Section 7 
	3P000062 

	14 
	14 
	Section 7 
	3P000061 

	15 
	15 
	Section 8 
	3P000006 

	16 
	16 
	Section 8 
	3P000010 

	17 
	17 
	Section 9 
	3P000031 

	18 
	18 
	Section 9 
	3P000038 

	19 
	19 
	Section 10 
	3P000052 

	20 
	20 
	Section 10 
	3P000053 

	21 
	21 
	Section 11 
	3P000044 

	22 
	22 
	Section 11 
	3P000045 

	23 
	23 
	Section 12 
	3P000087 

	24 
	24 
	Section 12 
	3P000088 


	Figure
	Figure 194. (Left) Image Number 1 (Frame 19); (Right) Image Number 2 (Frame 20) from Section 1 
	Figure
	Figure 195. (Left) Image Number 3 (Frame 115); (Right) Image Number 4 (Frame 116) from Section 2 
	Figure
	Figure 196. (Left) Image Number 5 (Frame 29); (Right) Image Number 6 (Frame 22) from Section 3 
	Figure 196. (Left) Image Number 5 (Frame 29); (Right) Image Number 6 (Frame 22) from Section 3 
	Figure 197. (Left) Image Number 7 (Frame 14); (Right) Image Number 8 (Frame 24) from Section 4 

	Figure
	Figure
	Figure 198. (Left) Image Number 9 (Frame 767); (Right) Image Number 10 (Frame 768) from Section 5 
	Figure
	Figure 199. (Left) Image Number 11 (Frame 22); (Right) Image Number 12 (Frame 23) from Section 6 
	Figure
	Figure 200. (Left) Image Number 13 (Frame 62); (Right) Image Number 14 (Frame 61) from Section 7 
	Figure
	Figure 201. (Left) Image Number 15 (Frame 6); (Right) Image Number 16 (Frame 10) from Section 8 
	Figure
	Figure 202. (Left) Image Number 17 (Frame 31); (Right) Image Number 18 (Frame 38) from Section 9 
	Figure
	Figure 203. (Left) Image Number 19 (Frame 52); (Right) Image Number 20 (Frame 53) from Section 10 
	Figure
	Figure 204. (Left) Image Number 21 (Frame 44); (Right) Image Number 22 (Frame 45) from Section 11 
	Figure
	Figure 205. (Left) Image Number 23 (Frame 87); (Right) Image Number 24 (Frame 88) from Section 12 
	I. PURCHASE ORDER NUMBER PR10026557: LCMS FEASIBILITY ON FLEXIBLE PAVEMENTS 
	Since the commencement of this research project, new advances in technology have turned three-dimensional (3D) data collection systems into the state of the practice in the industry. These 3D systems provide additional information regarding pavement surface condition that facilitates the reporting of Statewide data in accordance with the federal requirements for the Moving Ahead for Progress in the 21Century (MAP-21) and Fixing of America’s Surface Transportation (FAST) acts. As a result, there is a need to
	st 

	Since Florida Department of Transportation (FDOT) does not own 3D data collection equipment, FDOT staff requested that Fugro provides a scope and estimate of the required level of effort to collect the required 3D images and conduct analysis based on the 3D data. Fugro owns and operates several Automatic Road Analyzer (ARAN) vehicles equipped with 3D Laser Crack Measurement System (LCMS). Therefore, Fugro has the expertise and experience required to conduct the 3D data collection effectively and efficiently
	Under this purchase order, Fugro analyzed the viability of using 3D LCMS images to detect, quantify and classify cracks in flexible pavements. Fugro collected and processed 3D LCMS images and data to be used in software evaluation. It should be noted that the actual software development effort will be carried out during Task 6 of Phase II of this project, and therefore at this stage of the analysis, the existing Fugro Vision software was used due to its availability with the integrated images and data. Fugr
	The required activities for evaluating the software on 3D images included the following: 
	• 
	• 
	• 
	Activity 1: Collect 3D LCMS images and data on the representative flexible pavement test sections identified by FDOT staff. 

	• 
	• 
	Activity 2: Process the collected LCMS data to create a corresponding database for the automated software application. 

	• 
	• 
	Activity 3: Determine proper detection parameter settings for 3D LCMS images 

	• 
	• 
	Activity 4: Conduct classification and rating of detection results 

	• 
	• 
	Activity 5: Summarize the LCMS results and compare it to LRIS results obtained in Task 4 of Phase II; prepare documentation on comparison, potentials, limitations, and recommendations 


	This Appendix is organized in five sections. Following this introduction, Section I.1 provides a report on the 3D data collection conducted by Fugro staff. Section I.2 explains the data processing details including segmentation, crack detection, and distress identification. Section I.3 provides a comparison of automated crack detection and distress identification results between the 3D analyses conducted under the current Purchase Order and the 2D analyses conducted under Task 4 of Phase II. Section I.4 sum
	I.1. Data Collection 
	Data collection for this FDOT Purchase Order was completed in May 2017. This section describes the data collected, and the equipment used for the collection. 
	I.1.1. Collected Data Elements 
	Collection of 3D LCMS images and data was requested by FDOT and conducted by 
	Fugro. All collected data is referenced geographically and linearly to FDOT’s inventory 
	based on the provided Location Referencing System (LRS). The collected data include the following: 
	▪
	▪
	▪
	▪

	3D pavement images used for crack detection and distress identification 

	▪
	▪
	▪

	High definition forward viewing right-of-way (ROW) images 

	▪
	▪
	▪

	Pavement longitudinal profile using a Laser South Dakota Profiler (SDP) 

	▪
	▪
	▪

	Pavement transverse profile using the 3D LCMS data 

	▪
	▪
	▪

	Pavement surface texture using the 3D LCMS data 

	▪
	▪
	▪

	Differential Global Positioning System (GPS) data 

	▪
	▪
	▪

	Distance Measuring Instrument (DMI) data integrated with GPS data 

	▪
	▪
	▪

	Inertial position and orientation data from fiber optic gyros and accelerometers, integrated with the GPS and DMI data 


	I.1.2. Data Collection Equipment 
	The data was collected using an Automatic Road Analyzers (ARAN), equipped with the 
	Pave3D system, which uses INO/Pavemetrics’ Laser Crack Measurement System for 
	collecting 3D images of the pavement surface. Fugro Roadware developed the first ARAN in 1983, one of the very first multi-functional pavement data collection vehicles in the world. Now in its 6th generation, everything learned from then until now has been applied to create a robust, accurate and repeatable integrated pavement data collection system. The ARAN has a modular design which allows it to be configured to meet a large range of agency needs. An overview of the ARAN sensors and capabilities used for
	Figure 206 

	The Pave3D system compared to the Pave2D system has the benefits of fewer reruns due to damp collection, less ARAN downtime while waiting for roads to be 95% dry, faster collection due to the fewer down days, lower cost of collection, and faster data turnaround time, operation in all types of lighting conditions both during the day and at night without the need for artificial illumination of pavement, operation under the sun and shadows as well as various types of pavement types ranging from dark asphalt to
	Figure
	Figure 206. The ARAN Data Collection System Used for the FDOT Project 
	I.1.3. Testing Locations and Routing 
	Similar to Phase I of this project, 12 representative flexible pavement test sections  were selected by FDOT staff for Phase II evaluations. These representative test sections were selected in a manner that would include the key distress types and severity levels that are frequently encountered on Florida highways. All routes were identified, divided into segments, mapped, and measured for length. This information was assembled into tables and maps (“routing package”) for use on the ARAN. This “routing” pro
	(Table 109)

	and at which specific locations were to be tested and pick an optimal testing path to reduce testing time. 
	Table 109. 12 Representative Flexible Pavement Test Sections 
	Inde x 
	Inde x 
	Inde x 
	County ID 
	Road 
	City 
	Lan e 
	Directio n 
	BMP 
	EMP 
	Lengt h 

	1 
	1 
	02050000 
	SR 44 
	Crystal River 
	R2 
	East 
	0.000 
	0.604 
	0.604 

	2 
	2 
	02050000 
	SR 44 
	Crystal River 
	L2 
	West 
	0.000 
	0.604 
	0.604 

	3 
	3 
	11010000 
	SR 44 
	Leesburg 
	R2 
	East 
	0.000 
	1.592 
	1.592 

	4 
	4 
	11100000 
	SR 19 
	Umatilla 
	R2 
	North 
	3.816 
	4.906 
	1.090 

	5 
	5 
	11002000 
	SR 44 
	Leesburg 
	R2 
	East 
	1.183 
	2.276 
	1.093 

	6 
	6 
	11002000 
	SR 44 
	Leesburg 
	R2 
	East 
	3.184 
	4.514 
	1.330 

	7 
	7 
	11080000 
	SR 19 
	Howey in the Hills 
	R1 
	North 
	0.000 
	0.925 
	0.925 

	8 
	8 
	18020000 
	SR 50 
	Polk City 
	R1 
	East 
	5.356 
	6.421 
	1.065 

	9 
	9 
	26050000 
	SR 24 
	Gainesville 
	L2 
	South 
	3.367 
	6.095 
	2.728 

	10 
	10 
	26050000 
	SR 24 
	Gainesville 
	L2 
	South 
	6.095 
	7.670 
	1.575 

	11 
	11 
	10190000 
	SR 400 / I-4 
	Tampa 
	R3 
	East 
	11.09 8 
	12.33 2 
	1.234 

	12 
	12 
	10190000 
	SR 400 / I-4 
	Tampa 
	R3 
	East 
	20.40 7 
	21.47 6 
	1.069 


	I.2. Data Processing 
	Data processing for this FDOT Purchase Order consisted of three major processes: data import and quality control, data analysis, and data publishing. Software packages developed by Fugro are used to help manage the flow of data throughout all stages of a project. provides a high-level overview of the standard operating procedures (SOP) at every step of the data flow process in the Fugro ISO 9001 certified Quality Management System (QMS) for highway data collection. 
	Figure 207 

	Figure
	Figure 207. Fugro Data Process Flow 
	This section provides a brief overview of the methodology behind some of the key processing steps relevant to the topic of this research and any project specifications unique to this project. 
	I.2.1. Segmentation 
	Segmenting is the method of ensuring the data collected by the ARAN matches the geographic and linear references set up by FDOT. The segmenting process is completed to ensure that the true start and stop locations of the road can be best matched to ensure that the data represents the exact location expected by FDOT. The 
	matching of information was completed using Fugro’s Vision and utilizes a combination 
	of image streams (ROW and pavement images), electronic field sheets, as well as GIS / web-based maps. 
	Stationing for all routes was adjusted using a method called “rubber-banding”, to match stationing provided by FDOT. All data collected prior to the start of the route are removed and the chainage of the beginning of the route is set to the FDOT value for that landmark. Chainages for all other landmarks on the route are adjusted to match length and location information provided by FDOT. In the “rubber-banding” process, data between each set landmark may be stretched or compressed accordingly to ensure stati
	Figure 208. 

	Figure
	Figure 208. Vision Software for Segmenting 
	I.2.2. Distress Data Analysis Process 
	The actual software development effort for this project will be carried out during Task 6 of Phase II, and therefore at this stage of the analysis, the existing Fugro Vision software was used due to its availability with the integrated images and data. Therefore, the following software descriptions are the Vision software descriptions and not the descriptions for the FDOT customized application at this point of the project. Fugro Vision software includes an automated distress data analysis application, whic
	1. 
	1. 
	1. 
	: during this step, lane boundaries are automatically detected and marked as blue lines on the pavement images. 
	Lane Detection


	2. 
	2. 
	: also called “Crack Detection,” during which any linear defects on pavement surface is detected and marked with lines. 
	Defect Detection


	3. 
	3. 
	: during this step, all of the detected linear defects are classified into one of the three categories of longitudinal defects, transverse defects, and other (which will eventually be rated as alligator or block cracking) defects according to some criteria for defect angle and density, which can be changed by the user. 
	Defect Classification


	4. 
	4. 
	: during this final step, the software assigns a distress type and severity to each of the classified defects according to a distress schema defined by the user. The user needs to select one or more criteria from a series of criteria such as angle, longitudinal and transverse extent, density, width, and others for each distress type and severity. Once the schema is setup and saved, this schema can be applied for network-level data collection. 
	Distress Rating



	I.2.3. Distress Schema Specification 
	The performance of crack detection, classification and rating is highly dependent on a well-defined distress schema. The setting up of distress schema includes creation of Distress Type, Distress Severities, Crack Ranges, Detection Profile, Classification Profile, Road Zones and Rating Profile. In this project, the distress schema was setup according to the specified criteria for each distress type in the FDOT Flexible Pavement Condition Survey Handbook. Once the schema is setup and saved, this schema can b
	 (Figure 209)

	The Vision software provides two options for distinguishing distresses by zone location: 
	1. 
	1. 
	1. 
	In the distress schema, only one distress type would be setup for both wheel path (WP) and outside wheel path (OP), but then they could be separated using a SQL code on the database based on the location information. This option is more flexible as it does not require reprocessing if it is decided to change the width of wheel path zones in the future. Specifically, if the images are going to be rated manually or if the automated distress needs manual QC and correction, this option is recommended. It is extr
	 (Figure 
	209)


	2. 
	2. 
	In the distress schema, separate distress types could be setup for WP and OP. This option is recommended when no manual correction of the automated process is needed. In this stage of the project, option number 2 was used for the automated distress survey. 
	 areas (Figure 210)



	Figure
	Figure 209. Vision Distress Schema Editor Interface with One Distress Type for Both Wheel Path and Outside Wheel Path Zones (Option 1) 
	Figure
	Figure 210. Vision Distress Schema Editor Interface with Separate Distress Types Defined for Wheel Path and Outside Wheel Path Zones (Option 2) 
	Distress Type and Severity 
	Distress types are defined under the ‘Distresses’ tab and the severities under the ‘Severities’ tab. Then, each distress type is assigned the possible severity options. FDOT’s Flexible Pavement Condition Survey Handbook (August 2015) includes the following distress types and severities: 
	1. 
	1. 
	1. 
	Single Cracks (linear length, feet), Class 1B or Class II or Class III 

	2. 
	2. 
	Branch Cracks (linear length, feet), Class 1B or Class II or Class III 

	3. 
	3. 
	Block Cracks (area, sq. feet), Class 1B or Class II or Class III 

	4. 
	4. 
	Alligator or Fatigue Cracks (area, sq. feet), Class II or Class III 

	5. 
	5. 
	Patching (area, sq. feet), no severity levels 

	6. 
	6. 
	Raveling (area, sq. feet), Light or Moderate or Severe 


	During the distress rating process, these distress types are identified and quantified individually and then they are added up to generate the total amount of cracking in each one of the Class 1B, Class II, and Class III cracks. All linear distress types are recorded in two groups of longitudinal and transverse to differentiate their orientation and facilitate 
	During the distress rating process, these distress types are identified and quantified individually and then they are added up to generate the total amount of cracking in each one of the Class 1B, Class II, and Class III cracks. All linear distress types are recorded in two groups of longitudinal and transverse to differentiate their orientation and facilitate 
	quality control, but they are added up for each distress type (for example, branch cracks or single cracks) following the survey. 

	Following the distress survey, two (2) categories of distress will be recorded for each of these distress types: within the wheel paths (CW), and outside the wheel paths (CO). For automated survey results, this differentiation was made in the schema setup (option 2). For the reference survey, this differentiation was conducted using a SQL code (option 1). This is required for the final calculation of the amount of distress in each class within and outside the wheel paths, because the deduct values are highe
	The total area for patching and raveling is added to the total amount of Class III cracks. The details of each distress type and severity are recorded to keep a permanent record that facilitates quality control and quality assurance initiatives. All the summation happens on the recorded data in the SQL database. 
	Crack Range 
	Under the ‘Cracks’ tab in the Distress Schema Editor, a coloring scheme is defined for 
	identification of the detected cracks/defects on the pavement image according to crack . The following crack ranges were determined for this project as they correspond to the severity levels identified in the FDOT manual: 
	width (Figure 211)

	1. 
	1. 
	1. 
	Small cracks with crack width less than 3.18 mm are identified with green color lines (later assigned to Class 1B category in distress rating) 

	2. 
	2. 
	Medium cracks with crack width equal to or greater than 3.18 and less than 6.35 mm are identified with yellow color lines (later assigned to Class II category in distress rating) 

	3. 
	3. 
	Large cracks with crack width equal to or greater than 6.35 mm are identified with a red color lines (later assigned to Class III category in distress rating) 


	The “Max Width” in means “less than” and the “Min Width” indicates “equal to or greater than”. As previously noted, this is NOT the FDOT customized application. 
	Figure 211 

	At this stage, we are using the existing Vision software to compare 2D versus 3D data. The FDOT customized application will be developed during Task 6 (development). Also 
	patching and raveling are “distresses” and NOT “cracks”. This menu is ONLY showing cracks. After the distresses are identified in the “rating” process, patching and raveling can be added. 
	Following the crack detection process, the detected cracks are displayed on top of the pavement images with the colors corresponding to their width. As shown in the Cracks menu also allows selection of specific coloring scheme for the classification categories of Longitudinal, Transverse, Alligator, Block, and Unclassified categories. Following the classification process, each class of cracks are identified on top of pavement images using the corresponding colors. These colors help with quality control of t
	Figure 211, 

	Figure
	Figure 211. Cracks Menu in the Distress Schema Editor 
	Detection and Classification Profiles 
	Under the ‘Profiles’ tab in the Distress Schema Editor, the control parameters for the 
	crack detection and classification processes are determined. The software typically shows the default values for these control parameters that have been set based on empirical experience. In the Task 2 report for this project, various control parameters for the detection of cracks from 2D images and for the classification of detected cracks into transverse, longitudinal, alligator, and block categories were introduced and the impacts on software performance of changing each control parameter were explained 
	Figure 212 

	Figure
	Figure 212. Detection and Classification Profiles in the Distress Schema Editor 
	Vision provides two alternative automated crack detection algorithms to choose from when running this process on 3D images (using both image pixels and depth data): 
	1. 
	1. 
	1. 
	: This automated crack detection algorithm was developed by Pavemetrics Systems, Inc. Pavemetrics is the vendor company for the LCMS devices that have been manufactured by INO. 
	LCMS Global Processor


	2. 
	2. 
	: This machine learning automated crack detection algorithm was recently developed by Fugro engineers, based on a large database of semi-automated evaluation of 3D images. 
	Fugro Machine Learning Crack Detection



	Both the Pavemetrics LCMS Global Processor and the Fugro machine learning based 3D crack detection algorithms have been tested on numerous pavement surface images and their corresponding control parameters have been optimized in the latest version of Vision software. As a result, it is recommended that the detection parameters are not 
	Both the Pavemetrics LCMS Global Processor and the Fugro machine learning based 3D crack detection algorithms have been tested on numerous pavement surface images and their corresponding control parameters have been optimized in the latest version of Vision software. As a result, it is recommended that the detection parameters are not 
	changed. In this project, the Pavemetrics LCMS Global Processor algorithm was used to create crack maps that were manually fixed to establish the reference survey. The Fugro machine learning algorithm was used without manual intervention to evaluate the automated crack detection results on 3D images. There was no specific reason for the selection of one or the other. Either way, one algorithm needed manual correction to establish the reference crack map and a different algorithm was needed to show the autom

	In the classification step, there are several parameters that can be changed to improve the classification. For this phase of the project, eight classification profiles using eight different control parameter sets were used, and the final classification profile was selected based on the best results among these profiles on the selected representative test sections. It should be noted that the cracking analysis results are very sensitive to these settings and they are not one size fits all. 
	 results (Table 110)

	Table 110. Classification Parameter Settings 
	Parameter 
	Parameter 
	Parameter 
	Description 
	Value Used 

	Classification Enabled 
	Classification Enabled 
	Enables classification 
	TRUE 

	Separate Seal Classification 
	Separate Seal Classification 
	Classifies sealed cracks separately 
	FALSE 

	Degree Angle 
	Degree Angle 
	Angle threshold differentiating between longitudinal and transverse defects, this is the angle for the best fit line across the crack nodes 
	45 

	Density 
	Density 
	The density threshold beyond which there are enough cracks within a tile to count the tile area as alligator cracking area and not individual cracks. 
	1.5 

	Tile Height (pixels) 
	Tile Height (pixels) 
	Tile used for calculating the density of 
	400 

	Tile Width (pixels) 
	Tile Width (pixels) 
	the alligator or block categories 
	200 

	Group Tile Height (pixels) 
	Group Tile Height (pixels) 
	Tile used for grouping defects together (see Figure 213). Cracks that fall within these grouping tiles and are of the same 
	Tile used for grouping defects together (see Figure 213). Cracks that fall within these grouping tiles and are of the same 

	50 

	Group Tile Width (pixels) 
	Group Tile Width (pixels) 
	classification will be grouped together to make one crack set or group of cracks. 
	10 


	Figure
	Figure 213. Group Tile Height and Width 
	The tuning of the classification control parameters was conducted by changing the parameters one by one and comparing the one classification result against the other. shows a comparison of the classification results when changing the density threshold that defines when cracks become alligator cracks. To compute crack density, the bounding box of a crack is divided into grids of tiles of user input size. If the density threshold is increased, there will be less distresses classified as alligator cracking. sh
	Figure 214 
	Figure 215 

	Density threshold=1.5 Density threshold=2 
	Figure 214. Comparison of Classification Control Parameter Settings: Density 
	Tile Height= 400, Tile Width= 200 Tile Height= 400, Tile Width= 400 
	Figure 215. Comparison of Classification Control Parameter Settings: Tile Height and Width 
	During the classification, the detected cracks are grouped into crack sets based on their proximity to each other. The distances between each crack bounding box are checked; if the horizontal distance between two adjacent bounding boxes is smaller than the group tile width and the longitudinal distance between the boxes is smaller than group tile height, then the two cracks are merged into one crack set. Each crack set will be rated as one distress. shows a comparison of the classification results when chan
	Figure 216 
	Figure 213)

	Group Tile Height: 50 Group Tile Width: 10 Group Tile Height: 50 Group Tile Width: 50 
	Figure 216. Comparison of Classification Control Parameter Settings: Group Tile Height and Width 
	Road Zone 
	Road zone describes the portion of the road that is in the wheel paths and what is outside the wheel paths. The road zones were customized according to the Florida DOT specification of each wheel path being three feet wide (the FHWA HPMS Field Manual of December 2016 specifies 1 meter) and the center zone being three feet (0.91 meters) and : 
	wide (Figure 217 
	Figure 218)

	1. 
	1. 
	1. 
	Left Exterior: 0 meters offset from the Left Edge to -1.365 meters offset from the Center 

	2. 
	2. 
	Left Wheel Path: -1.365 to -0.455 meters offset from the Center 

	3. 
	3. 
	Center: -0.455 to 0.455 meters offset from the Center 

	4. 
	4. 
	Right Wheel Path: 0.455 to 1.365 meters offset from the Center 

	5. 
	5. 
	Right Exterior: 1.365 meters offset from the Center to 0 meters offset from the Right Edge 


	Figure
	Figure 217. Wheel Path Designation in FDOT Flexible Distress Handbook 
	Figure
	Figure 218. Road Zone Settings 
	Rating Profile 
	The Rating Profile is used for assigning a distress type and severity to each of the detected and classified surface defects. This profile contains several components including profile name, profile description and rating rules. The rating rules configuration include distress rule set up and severity rule set up. While the Distress Rules specify classification of crack, the road zone, and distress metrics to be calculated, the Severity Rules determine detailed constraints on distresses that will be rated in
	Distress Rules are setup based on the following: 
	1. : following detection and classification, all cracks are classified into Longitudinal, Transverse, Alligator, or Block. As previously noted, there are two options for distinguishing distresses by zone location. and show the distress types that were considered for this project and their corresponding crack classification for option 1 and option 2, respectively. As it was noted before, these distress types are used for documenting the distresses in a permanent record to facilitate quality control. 
	Crack Classification
	Table 111 
	Table 112 

	Table 111. Distress Types and Corresponding Crack Classification and Severity Levels (option 1 corresponding to used for the reference survey) 
	Figure 209 

	Distress Name 
	Distress Name 
	Distress Name 
	Crack Classification 
	Severity Levels 

	SingleCrack_L 
	SingleCrack_L 
	Longitudinal 
	1B, II, III 

	SingleCrack_T 
	SingleCrack_T 
	Transverse 
	1B, II, III 

	BranchCrack_L 
	BranchCrack_L 
	Longitudinal 
	1B, II, III 

	BranchCrack_T 
	BranchCrack_T 
	Transverse 
	1B, II, III 

	BlockCrack 
	BlockCrack 
	Block 
	1B, II, III 

	AlligatorCrack 
	AlligatorCrack 
	Alligator 
	II, III 

	Raveling 
	Raveling 
	NA 
	III 

	Patching 
	Patching 
	NA 
	III 


	Table 112. Distress Types and Corresponding Crack Classification and Severity Levels (option 2 corresponding to used for automated results) 
	Figure 210 

	Distress Name 
	Distress Name 
	Distress Name 
	Crack Classification 
	Severity Levels 

	SingleCrack_L_WP 
	SingleCrack_L_WP 
	Longitudinal 
	1B, II, III 

	SingleCrack_L_OP 
	SingleCrack_L_OP 
	Longitudinal 
	1B, II, III 

	SingleCrack_T_WP 
	SingleCrack_T_WP 
	Transverse 
	1B, II, III 

	SingleCrack_T_OP 
	SingleCrack_T_OP 
	Transverse 
	1B, II, III 

	BranchCrack_L_WP 
	BranchCrack_L_WP 
	Longitudinal 
	1B, II, III 

	BranchCrack_L_OP 
	BranchCrack_L_OP 
	Longitudinal 
	1B, II, III 

	BranchCrack_T_WP 
	BranchCrack_T_WP 
	Transverse 
	1B, II, III 

	BranchCrack_T_OP 
	BranchCrack_T_OP 
	Transverse 
	1B, II, III 

	BlockCrack_WP 
	BlockCrack_WP 
	Block 
	1B, II, III 

	BlockCrack_OP 
	BlockCrack_OP 
	Block 
	1B, II, III 

	Distress Name 
	Distress Name 
	Crack Classification 
	Severity Levels 

	AlligatorCrack_WP 
	AlligatorCrack_WP 
	Alligator 
	II, III 

	AlligatorCrack_OP 
	AlligatorCrack_OP 
	Alligator 
	II, III 

	Raveling_WP 
	Raveling_WP 
	NA 
	III 

	Raveling_OP 
	Raveling_OP 
	NA 
	III 

	Patching_WP 
	Patching_WP 
	NA 
	III 

	Patching_OP 
	Patching_OP 
	NA 
	III 


	2. : Used only with optionand , this refers to the road zones to be included in the process of identifying a selected Distress Type. For wheel path distresses, the ‘Left Wheel Path’ and ‘Right Wheel Path’ zones created in the ‘Road Zone’ menu of the Schema Editor can be selected. For non-wheel path distresses, the ‘Left Exterior’, ‘Center’, and ‘Right Exterior’ zones created in the ‘Road Zone’ menu of the Schema Editor are selected. For the reference survey in which manual correction of the automated result
	Lane Type
	 2 (Table 112 
	Figure 210)

	3. : These include metrics to be reported for a selected Distress Type after automated identification and quantification. The following metrics were selected in the created rating rules. They will be calculated and recorded in the Vision Database. 
	Metric

	a) 
	a) 
	a) 
	Crack Count -Number of Cracks that make up a Crack Group 

	b) 
	b) 
	Crack Area -Area that contains all Cracks (all cracks in Crack Group) 

	c) 
	c) 
	Crack Length -Actual length along all cracks in a Crack Group 

	d) 
	d) 
	Crack Extent -Longitudinal length of cracks in a Crack Group (Length in y-axis) 

	e) 
	e) 
	Transverse Extent -Horizontal length of cracks in a Crack Group (Length in x-axis) 

	f) 
	f) 
	Width -Width of Crack (Average width of cracks in Crack Group) 

	g) 
	g) 
	Diagonal -Length from bottom left to top right of every distress bounding box 


	Severity Rules are setup based on the following (In current version of Vision software, the unit used in parameter settings is meter): 
	4. : a crack width range is used as a constraint for selected severity levels in this project as demonstrated in 
	Crack Width
	Table 113. 

	Table 113. Crack Width Range 
	Severity Level 
	Severity Level 
	Severity Level 
	Crack Width Range (meter) 

	Class 1B 
	Class 1B 
	Less than 0.00318 

	Class II 
	Class II 
	Greater than or equal to 0.00318 and less than 0.00635 

	Class III 
	Class III 
	Greater than or equal to 0.00365 and less than 1 


	5. : a minimum extent of 0.3 meter (1.0 ft) is used as a constraint for identifying distresses (this was selected based on past experience): 
	Crack Length

	a) 
	a) 
	a) 
	Transverse Extent is used for transverse single and branch cracks 

	b) 
	b) 
	Longitudinal Extent is used for longitudinal single and branch cracks 

	c) 
	c) 
	No extent limitation was considered for alligator or block cracks 


	6. : Used only with option 2 and , this refers to the road zones to be included in the process of rating a selected Distress Severity. For wheel path distresses, the ‘Left Wheel Path’ and ‘Right Wheel Path’ zones created in the ‘Road Zone’ menu of the Schema Editor can be selected. For non-wheel path distresses, the ‘Left Exterior’, ‘Center’, and ‘Right Exterior’ zones created in the ‘Road Zone’ menu of the Schema Editor are selected. This results in only the portion of detected cracks within specified zone
	Road Zone
	(Table 112 
	Figure 210)
	Figure 219 

	Figure
	Figure 219. Automatically Separated Wheel Path and Non-Wheel Path Distress Rating 
	I.2.4. Automated Pavement Distress Identification 
	Fugro Vision software includes batch processors for automated lane detection, crack 
	detection, classification and rating as identified in These batch processors 
	Table 114. 

	can be executed individually or all together. The JPEG Crack Detection Processor is 
	Fugro’s solution for detecting surface defects using machine learning algorithms on 2D 
	or 3D pavement images. The LCMS Global Processor is the Pavemetrics solution for 
	detecting surface defects on 3D pavement images. As noted previously, the 
	Pavemetrics algorithm was used to create crack maps that were manually fixed to 
	establish the reference survey. The Fugro machine learning algorithm was used without 
	manual intervention to evaluate the automated crack detection results on both 2D and 
	3D images. There was no specific reason for the selection of one or the other. Either 
	way, one algorithm needed manual correction to establish the reference crack map and 
	a different algorithm was needed to show the automated crack detection results on 3D 
	images. 
	At this stage, the Vision software does NOT have an automated way of identifying patching. There is an automated raveling algorithm developed by Pavemetrics, but it needs to be calibrated according to FDOT raters’ subjective identification of the raveling severity levels (This will be done in Task 6). 
	Table 114. Vision Automated Batch Processors 
	Batch Processor 
	Batch Processor 
	Batch Processor 
	Function 

	JPEG Lane Detection Processor 
	JPEG Lane Detection Processor 
	Lane Detection 

	JPEG Crack Detection Processor 
	JPEG Crack Detection Processor 
	Crack Detection from 2D or 3D Images 

	LCMS Global Processor 
	LCMS Global Processor 
	Crack Detection from 3D Images 

	Classification Processor 
	Classification Processor 
	Classification 

	Rating Processor 
	Rating Processor 
	Rating 


	I.2.5. Semi-Automated Pavement Distress Identification 
	A Fugro rater conducted a manual rating on one run of the images for the 12 test sections using the LCMS images that were imported into the Vision software. Then another Fugro rater reviewed the results of the first rater to reach consensus on the 
	reference survey (“Ground Truth”). During this procedure, linear distresses and area 
	distresses (boxes) are manually drawn on top of the collected pavement images. The results of the crack detection process, including the color-coded cracks were used by raters as guidance to assign severity levels based on crack width. As shown in  the Vision Pavement rating module allows the analyst to simultaneously view both the ROW and pavement images while marking and rating pavement distresses. 
	Figure 
	220,

	Figure
	Figure 220. Vision Pavement Rating Module for Semi-Automated Distress Survey 
	I.3. Comparison of Automated Distress Survey Results on 2D versus 3D Images 
	In this chapter of the report, the results of crack detection and distress identification using the 2D and 3D images are contrasted. The 2D data collection was conducted by FDOT using their LRIS equipment and the data were analyzed by Fugro staff during Task 4 of this project. The 3D data collection was conducted by Fugro using the ARAN LCMS equipment and the data were analyzed by Fugro staff as part of the required activities for this Purchase Order. The following will describe the success metrics, the ref
	I.3.1. Success Metrics 
	The three principal success metrics of any process are effectiveness, efficiency, and reliability. In the context of automated distress identification, effectiveness can be expressed in terms of accuracy of the crack detection software when compared to a reference baseline. Accuracy is a qualitative term referring to whether there is agreement between a measurement made on an object and its true (target or reference) value. Bias is a quantitative term describing the difference (or error) between the average
	While systematic errors identified in the bias can be calibrated out, such evaluations must address the random errors as well. The average results may be quite comparable, but individual results can deviate significantly. Efforts must be made to control these deviations to produce results which can ultimately be classified as reliable. Reliability of automated distress surveys is often expressed in terms of precision. Precision is a qualitative term that can describe the degree of repeatability of a measure
	With respect to automated condition evaluations, the success metrics could be considered for two aspects of the process, first for the detection of individual surface defects (cracks), and second for the identification and quantification of the distresses in a distinct section. 
	The following are the success metrics used for evaluating the crack detection results: 
	• 
	• 
	• 
	: length of correctly detected cracking 
	True Positives


	• 
	• 
	: length of detected cracking that don’t exist in the reference survey 
	False Positives


	• 
	• 
	: length of missed cracking 
	False Negatives


	• 
	• 
	: an indicator to be calculated as the ratio of the correctly detected cracks (true positives) to the total detected cracks (true positives and false positives). This statistic indicates the percentage of the detected cracks that was 
	Crack Validity



	actually present in the reference survey, thereby expressing the validity of the cracks detected by algorithms. 
	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
	𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦 (%) = 100 × = 100 × 
	𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
	• : a parameter to be calculated as the ratio of the correctly detected cracks to the total actual cracks existing on the pavement surface (true positives and false negatives). This statistic represents the percentage of the cracks in the reference survey that was detected by the automated method, thereby expressing the sensitivity of the algorithms to existing cracks. 
	Crack Sensitivity (or Recall)

	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) = 100 × = 100 × 
	𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑎𝑐𝑘𝑠 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
	• 
	• 
	• 
	: based on average normalized error (bias) of automatically detected crack length compared to the reference. Accuracy (%) = 100 – Bias (%) 
	Crack Detection Accuracy


	• 
	• 
	: based on coefficient of variation (COV) of detected crack length among three runs (independent of the reference and averaged among the sections). Repeatability (%) = 100 – COV (%) 
	Crack Detection Repeatability


	• 
	• 
	: based on coefficient of variation (COV) of crack detection accuracy among 12 test sections. Consistency (%) = 100 – [Standard Deviation of Accuracy (%) / Average Accuracy (%)] 
	Crack Detection Consistency


	• 
	• 
	: based on the time required for the automated crack detection. Efficiency (second per foot) = time for cracking detection divided by the total length 
	Crack Detection Efficiency



	Based on the overall cumulative amount of each distress among different test sections and multiple runs, the success metrics used to compare 2D and 3D rating methods are: 
	1. 
	1. 
	1. 
	: based on average error (bias) with respect to the reference distress survey values for each distress type. Accuracy (%) = 100 – Bias (%) 
	Distress Identification Accuracy


	2. 
	2. 
	: based on coefficient of variation (COV) of automatically identified distresses among three runs for each distress type (independent of the reference and averaged among the sections). Repeatability (%) = 100 – COV (%) 
	Distress Identification Repeatability


	3. 
	3. 
	: based on coefficient of variation (COV) of distress identification accuracy among 12 sections for each distress type. Consistency (%) = 100 – [Standard Deviation of Accuracy (%) / Average Accuracy (%)] 
	Distress Identification Consistency


	4. 
	4. 
	: based on the time required for the automated distress survey. Efficiency (second per foot) = time for cracking detection, classification, and rating divided by the total length. 
	Distress Identification Efficiency



	I.3.2. Reference Rating or “Ground Truth” 
	Two reference ratings were created for this evaluation: 
	1. 
	1. 
	1. 
	Crack Detection Reference: the Pavemetrics LCMS crack detection routine was used to generate a baseline crack map and then a Fugro data technician reviewed all the images in one run of the 12 test sections and modified the crack maps. New cracks were added for missed cracks, false positives were deleted, and some cracks with wrong extent were modified to reflect the actual cracks that can be seen on the 3D intensity and range (depth) images and with assistance from the ROW images. 

	2. 
	2. 
	: a reference survey was created by one Fugro engineer and another Fugro technician reviewed the results to reach a consensus for the reference survey. This reference survey was created using the 3D images because they provide both intensity and range (depth) views, along with the ROW images. Therefore, comprehensive sources of data are available in the 3D database for creating this reference survey. 
	Distress Identification Reference



	I.3.3. Comparison Limitations 
	The current comparison was conducted considering the following limitations of this analysis: 
	1. 
	1. 
	1. 
	1. 
	The 12 test sections were selected as representative of the actual pavement surfaces found across Florida. With such a small sample, it is possible that not all of the actual pavement network is represented in this study. Every effort was made to select a representative sample. However, the budgetary and schedule 

	limitations of this project would not allow for collection and processing of data across a wider network. 

	2. 
	2. 
	The comparison of crack detection is conducted using different automated detection algorithms for 2D versus 3D images. This is because the 3D images provide additional depth information and the corresponding algorithm is inevitably different than the 2D algorithm. As noted previously, both employed algorithms are based on machine learning techniques. The 2D algorithm was trained on a large database of manually rated 2D images; similarly, the 3D algorithm was trained on a large database of manually rated 3D 

	3. 
	3. 
	The comparison of distress identification was conducted using the same automated distress identification algorithm. This algorithm as it stands does not exactly differentiate between the crack types as defined in the FDOT Flexible Pavement Condition Survey Handbook, because those definitions were originally intended for human raters and not for computers. The automated algorithm used crack angle to differentiate between longitudinal and transverse cracks, and crack density in a given area to differentiate b

	4. 
	4. 
	This study is mainly focused on cracking distresses and patching and raveling were not considered in this comparison. The 3D technology provides pavement surface macro-texture measurements which could potentially be used for identifying raveling. However, these texture measurements need to be calibrated to corresponding areas of raveling identified by experienced raters. This effort is planned to be conducted during Task 6 of this study. 

	5. 
	5. 
	The quality assurance practices such as equipment calibration and verification procedures, and the process for certification of the operators could affect the results. The FDOT QA practices for operating their 2D LRIS equipment differ from the Fugro QA practices for operating ARANs with 3D LCMS technology. While proper precautions and coordination were made to limit the impacts of these differences, some impact is inevitable. For example, the vehicle wander could impact the run-to-run repeatability results.


	I.3.4. Comparison of Automatically Detected Crack Quantities 
	False positives are cracks that have been reported by the automated crack detection software, while no crack has been recorded in the Crack Detection Reference (“ground truth”) at the same location. On the other hand, false negatives are existing cracks that have been reported in the “ground truth” but were not detected by the software (i.e. missed cracks). and show the true positives, false positives, false 
	Table 115 
	Table 116 

	negatives, validity, and sensitivity of the automated crack detection using Fugro’s 
	machine learning algorithms on 3D and 2D images, respectively. These tables include the crack detection results on run number 1 of the 3 runs. These tables indicate that about 75 percent of the automatically detected cracks from 3D images were actually present on the pavement surface (Validity), compared to only 25 percent of automatically detected cracks from 2D images being true positives. Also, about 89 percent of the cracks in the ground truth were automatically detected from 3D images (Sensitivity), wh
	In and the yellow highlighted cells indicate significant false positives (more than 50% of the reference) and the orange colored cells indicate significant amounts of false negatives (more than 50% of the reference). It is evident that in Sections number 3, 7, and 9, both the 2D and 3D methods have a significant amount of false positives. This is due to two reasons. First, some patching area boundaries  and Automated Vehicle Counter (AVC) loops and Weigh-In-Motion being falsely detected as cracks. Second, t
	Table 115 
	Table 116, 
	(Figure 221)
	 (WIM) devices (Figure 222)

	From  it is also evident that the 3D method does not result in a significant number of missed cracks, as it has detected about 89 percent of the existing cracks. However, shows that the 2D method has missed a significant amount of the cracks and only detected about 18 percent of the existing cracks in the reference. 
	Table 115,
	Table 116 

	Table 115. Verification of Crack Detection on 3D images Using Fugro Machine Learning Algorithm 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (ft) 
	Crack Detection Results 
	Crack Validity (%) 
	Crack Sensitivity (%) 

	True Positives (ft) 
	True Positives (ft) 
	False Positives (ft) 
	False Negatives (ft) 

	1 
	1 
	22,944.22 
	18,464.62 
	2,762.11 
	4,479.60 
	86.99 
	80.48 

	2 
	2 
	26,741.89 
	24,873.49 
	1,217.80 
	1,868.40 
	95.33 
	93.01 

	3 
	3 
	132.74 
	126.10 
	824.84 
	6.64 
	13.26 
	94.99 

	4 
	4 
	14,823.69 
	12,015.20 
	1,429.99 
	2,808.49 
	89.36 
	81.05 

	5 
	5 
	68,726.86 
	65,286.40 
	3,453.19 
	3,440.46 
	94.98 
	94.99 

	6 
	6 
	112,892.60 
	102,199.75 
	11,059.70 
	10,692.85 
	90.24 
	90.53 

	7 
	7 
	809.34 
	687.92 
	1,820.47 
	121.42 
	27.42 
	85.00 

	8 
	8 
	27,185.46 
	23,990.87 
	2,097.65 
	3,194.59 
	91.96 
	88.25 

	9 
	9 
	3,993.09 
	2,881.59 
	6,082.98 
	1,111.50 
	32.14 
	72.16 

	10 
	10 
	36,631.86 
	38,825.92 
	1,803.39 
	(2,194.06) 
	95.56 
	105.99 

	11 
	11 
	30,517.80 
	27,386.58 
	4,025.66 
	3,131.22 
	87.18 
	89.74 

	12 
	12 
	29,327.95 
	28,174.06 
	3,057.05 
	1,153.89 
	90.21 
	96.07 

	TR
	74.55 
	89.36 


	Table 116. Verification of Crack Detection on 2D images Using Fugro Machine Learning Algorithm 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (ft) 
	Crack Detection Results 
	Crack Validity (%) 
	Crack Sensitivity (%) 

	True Positives (ft) 
	True Positives (ft) 
	False Positives (ft) 
	False Negatives (ft) 

	1 
	1 
	22,944.22 
	1,162.61 
	3,337.93 
	21,781.61 
	25.83 
	5.07 

	2 
	2 
	26,741.89 
	824.98 
	3,727.55 
	25,916.91 
	18.12 
	3.08 

	3 
	3 
	132.74 
	42.55 
	16,471.86 
	90.19 
	0.26 
	32.06 

	4 
	4 
	14,823.69 
	3,659.58 
	4,199.93 
	11,164.11 
	46.56 
	24.69 

	5 
	5 
	68,726.86 
	6,226.68 
	10,005.31 
	62,500.18 
	38.36 
	9.06 

	6 
	6 
	112,892.60 
	7,139.73 
	10,005.56 
	105,752.87 
	41.64 
	6.32 

	7 
	7 
	809.34 
	523.47 
	13,969.35 
	285.87 
	3.61 
	64.68 

	8 
	8 
	27,185.46 
	5,184.47 
	13,606.25 
	22,000.99 
	27.59 
	19.07 

	9 
	9 
	3,993.09 
	807.72 
	19,550.12 
	3,185.37 
	3.97 
	20.23 

	10 
	10 
	36,631.86 
	1,718.52 
	12,621.25 
	34,913.34 
	11.98 
	4.69 

	11 
	11 
	30,517.80 
	3,507.70 
	6,274.08 
	27,010.10 
	35.86 
	11.49 

	12 
	12 
	29,327.95 
	3,003.47 
	3,539.88 
	26,324.48 
	45.90 
	10.24 

	TR
	24.97 
	17.56 


	Figure
	Figure 221. Patching Area Boundary Falsely Detected as Cracks 
	Figure
	Figure 222. AVC Loops and WIM Devices Falsely Detected as Cracks 
	In addition to the crack detection verification results in and other crack detection success metrics including normalized error, average error (bias), variation between multiple runs (repeatability), and variation among 12 test sections (consistency) of the automated crack detection algorithms from 3D and 2D images have been listed in and  respectively. The three test sections number 3, 7, and 9 have been highlighted in yellow to indicate the sections that have a significant 
	In addition to the crack detection verification results in and other crack detection success metrics including normalized error, average error (bias), variation between multiple runs (repeatability), and variation among 12 test sections (consistency) of the automated crack detection algorithms from 3D and 2D images have been listed in and  respectively. The three test sections number 3, 7, and 9 have been highlighted in yellow to indicate the sections that have a significant 
	Table 115 
	Table 116, 
	Table 117 
	Table 118,

	amount of false positives in both of the crack detection methods and . The bias has been provided as the average normalized crack detection error both on all the test sections and also excluding the 3 outliers. When excluding the outliers, and indicate that the accuracy (100 -Bias) of the automated crack detection from 3D images is about 99 percent, which is significantly superior to the accuracy from 2D images (about 31 percent). 
	(Figure 221 
	Figure 
	222)
	Table 117 
	Table 118 


	Table 117. Accuracy, Repeatability, and Consistency of Crack Detection based on 3D Images 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (ft) 
	Detected Crack Length 
	Normalized Error 
	100 -AVG ABS Error (%) 
	Repeatabilit y (%) 

	Run 1 (ft) 
	Run 1 (ft) 
	Run 2 (ft) 
	Run 3 (ft) 
	Run1 (%) 
	Run2 (%) 
	Run3 (%) 

	1 
	1 
	22,944.2 2 
	21,226.73 
	20,718.69 
	20,761.75 
	-7.49 
	-9.70 
	-9.51 
	91.10 
	98.65 

	2 
	2 
	26,741.8 9 
	26,091.29 
	26,564.27 
	26,905.88 
	-2.43 
	-0.66 
	0.61 
	99.17 
	98.46 

	3 
	3 
	132.74 
	950.94 
	658.74 
	1,020.48 
	616.39 
	396.2 6 
	668.78 
	-460.48 
	78.11 

	4 
	4 
	14,823.6 9 
	13,445.19 
	12,647.37 
	13,034.35 
	-9.30 
	-14.68 
	-12.07 
	87.98 
	96.94 

	5 
	5 
	68,726.8 6 
	68,739.59 
	67,648.23 
	68,637.83 
	0.02 
	-1.57 
	-0.13 
	99.44 
	99.12 

	6 
	6 
	112,892. 6 
	113,259.4 5 
	116,185.5 7 
	116,723.1 3 
	0.32 
	2.92 
	3.39 
	97.79 
	98.38 

	7 
	7 
	809.34 
	2,508.39 
	2,187.71 
	2,512.42 
	209.93 
	170.3 1 
	210.43 
	-96.89 
	92.25 

	8 
	8 
	27,185.4 6 
	26,088.52 
	24,746.74 
	24,978.47 
	-4.04 
	-8.97 
	-8.12 
	92.96 
	97.16 

	9 
	9 
	3,993.09 
	8,964.57 
	9,143.59 
	8,296.30 
	124.50 
	128.9 9 
	107.77 
	-20.42 
	94.93 

	10 
	10 
	36,631.8 6 
	40,629.31 
	45,240.06 
	38,560.87 
	10.91 
	23.50 
	5.27 
	86.77 
	91.76 

	11 
	11 
	30,517.8 0 
	31,412.24 
	29,347.11 
	30,317.56 
	2.93 
	-3.84 
	-0.66 
	99.48 
	96.60 

	12 
	12 
	29,327.9 5 
	31,231.11 
	30,760.06 
	29,860.88 
	6.49 
	4.88 
	1.82 
	95.60 
	97.73 

	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	72.31 
	97.20 

	-1.11 
	-1.11 

	98.89 
	98.89 

	94.95 
	94.95 


	Table 118. Accuracy, Repeatability, and Consistency of Crack Detection based on 2D Images 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (ft) 
	Detected Crack Length 
	Normalized Error 
	100 -AVG ABS Error (%) 
	Repeatabilit y (%) 

	Run 1 (ft) 
	Run 1 (ft) 
	Run 2 (ft) 
	Run 3 (ft) 
	Run1 (%) 
	Run2 (%) 
	Run3 (%) 

	1 
	1 
	22,944.22 
	4,500.54 
	4,564.01 
	4,090.53 
	-80.38 
	-80.11 
	-82.17 
	19.11 
	94.14 

	2 
	2 
	26,741.89 
	4,552.53 
	3,864.70 
	3,843.54 
	-82.98 
	-85.55 
	-85.63 
	15.28 
	90.13 

	3 
	3 
	132.74 
	16,514.4 1 
	14,055.8 3 
	15,632.52 
	12341.1 7 
	10488.9 9 
	11676.8 0 
	-11402.32 
	91.91 

	4 
	4 
	14,823.69 
	7,859.51 
	7,699.58 
	7,906.21 
	-46.98 
	-48.06 
	-46.67 
	52.77 
	98.61 

	5 
	5 
	68,726.86 
	16,231.9 9 
	13,279.2 3 
	10,427.46
	-76.38 
	-80.68 
	-84.83 
	19.37 
	78.20 

	6 
	6 
	112,892.6 0 
	17,145.2 9 
	18,010.4 5 
	17,739.17
	-84.81 
	-84.05 
	-84.29 
	15.62 
	97.49 

	7 
	7 
	809.34 
	14,492.8 2 
	13,748.7 5 
	14,703.70
	1690.70 
	1598.76 
	1716.75 
	-1568.74 
	96.50 

	8 
	8 
	27,185.46 
	18,790.7 2 
	19,884.3 7 
	19,572.17
	-30.88 
	-26.86 
	-28.01 
	71.42 
	97.10 

	9 
	9 
	3,993.09 
	20,357.8 4 
	19,751.2 0 
	20,089.79
	409.83 
	394.63 
	403.11 
	-302.53 
	98.49 

	10 
	10 
	36,631.86 
	14,339.7 7 
	14,077.3 6 
	11,809.28
	-60.85 
	-61.57 
	-67.76 
	36.60 
	89.62 

	11 
	11 
	30,517.80 
	9,781.78 
	9,506.47 
	9,133.08 
	-67.95 
	-68.85 
	-70.07 
	31.04 
	96.56 

	12 
	12 
	29,327.95 
	6,543.35 
	6,448.33 
	6,702.61 
	-77.69 
	-78.01 
	-77.15 
	22.38 
	98.04 

	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	1079.77 
	93.32 

	-68.49 
	-68.49 

	31.51 
	31.51 

	38.84 
	38.84 


	The automated detection from 3D and 2D images are comparable in terms of run-to-run repeatability with about 97 and 93 percent agreement among runs for 3D and 2D methods, respectively. The 3D method is showing better performance in terms of consistency of results on different sections as the 3D method has about 95 percent agreement in crack detection accuracy among 12 sections and the 2D method has only about 39 percent. 
	I.3.5. Comparison of Automatically Identified Distress Quantities 
	In this section, the results of automated distress identification from 2D and 3D images are compared to each other. It should be noted that the most significant difference between the results from the two methodologies is caused by the difference in the crack detection performance. As it was demonstrated in the previous section, the crack detection from 2D images is missing a significant amount of cracking and as a result, 
	In this section, the results of automated distress identification from 2D and 3D images are compared to each other. It should be noted that the most significant difference between the results from the two methodologies is caused by the difference in the crack detection performance. As it was demonstrated in the previous section, the crack detection from 2D images is missing a significant amount of cracking and as a result, 
	there is a significant negative bias in the distress identification results for the 2D methodology. 

	Comparison of Automatically Identified Longitudinal, Transverse, and Alligator Cracking from 2D Versus 3D Images 
	The available Vision software was used for this comparison. In this section, the comparison is conducted based on the amount of automatically identified Longitudinal, Transverse, and Alligator cracking. 
	It should be noted that the automated algorithm used crack angle to differentiate between longitudinal and transverse cracks, and crack density in a given area to differentiate between single linear cracks and an area of alligator cracking. Therefore, the normalized error compared to ground truth is estimated by comparing the total amount of automatically identified longitudinal and transverse cracks to the sum of single and branch cracks manually identified in the reference survey. Similarly, the total amo
	Table 119 
	Table 120 

	The 3D results show a positive bias indicating more automatically identified longitudinal cracks compared to the reference survey. However, the 2D results show a significantly high amount of missed longitudinal cracking compared to the reference survey, reflected in the high negative bias. 
	On average, there is about 97 percent run-to-run agreement in the length of automatically identified longitudinal cracks from 3D images. This run-to-run repeatability is about 89 percent for the 2D results. There is about 81 percent section-to-section agreement in the accuracy in automatically identifying the length of longitudinal cracks from 3D images. This section-to-section consistency is about 45 percent for 2D results. 
	Table 119. Accuracy, Repeatability, and Consistency of Longitudinal Cracks on 3D 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (ft) 
	Automatically Identified Longitudinal Cracks 
	Normalized Error 
	100 -AVG ABS Error (%) 
	Repeatability (%) 

	Run 1 (ft) 
	Run 1 (ft) 
	Run 2 (ft) 
	Run 3 (ft) 
	Run1 (%) 
	Run2 (%) 
	Run3 (%) 

	1 
	1 
	3,596.83 
	3,657.91 
	3,722.85 
	4,231.16 
	1.70 
	3.50 
	17.64 
	92.39 
	91.89 

	2 
	2 
	2,138.43 
	3,160.27 
	3,230.07 
	3,188.40 
	47.78 
	51.05 
	49.10 
	50.69 
	98.90 

	3 
	3 
	9.79 
	33.61 
	30.48 
	91.18 
	243.31 
	211.34 
	831.36 
	-328.67 
	33.97 

	4 
	4 
	2,744.90 
	2,911.72 
	2,917.34 
	2,871.70 
	6.08 
	6.28 
	4.62 
	94.34 
	99.14 

	5 
	5 
	8,468.56 
	10,649.42
	10,563.81 
	10,635.02 
	25.75 
	24.74 
	25.58 
	74.64 
	99.57 

	6 
	6 
	9,148.41 
	13,762.54
	14,608.56 
	14,050.04 
	50.44 
	59.68 
	53.58 
	45.43 
	96.96 

	7 
	7 
	481.76 
	201.21 
	164.96 
	188.44 
	-58.23 
	-65.76 
	-60.89 
	38.37 
	90.05 

	8 
	8 
	7,717.18 
	5,799.07 
	5,921.45 
	5,767.01 
	-24.86 
	-23.27 
	-25.27 
	75.54 
	98.60 

	9 
	9 
	807.48 
	989.11 
	980.57 
	1,184.31 
	22.49 
	21.44 
	46.67 
	69.80 
	89.04 

	10 
	10 
	6,599.33 
	4,630.23 
	4,755.88 
	4,113.87 
	-29.84 
	-27.93 
	-37.66 
	68.19 
	92.44 

	11 
	11 
	10,103.90
	10,780.99
	11,059.53 
	11,546.60 
	6.70 
	9.46 
	14.28 
	89.85 
	96.52 

	12 
	12 
	19,775.85
	13,550.58
	13,327.31 
	13,382.07 
	-31.48 
	-32.61 
	-32.33 
	67.86 
	99.13 

	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	38.46 
	97.02 

	7.14 
	7.14 

	92.86 
	92.86 

	81.23 
	81.23 


	Table 120. Accuracy, Repeatability, and Consistency of Longitudinal Cracks on 2D 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (ft) 
	Automatically Identified Longitudinal Cracks 
	Normalized Error 
	100 -AVG ABS Error (%) 
	Repeatabilit y (%) 

	Run 1 (ft) 
	Run 1 (ft) 
	Run 2 (ft) 
	Run 3 (ft) 
	Run1 (%) 
	Run2 (%) 
	Run3 (%) 

	1 
	1 
	3,596.83 
	1,310.26 
	1,260.20 
	1,126.84 
	-63.57 
	-64.96 
	-68.67 
	34.26 
	92.31 

	2 
	2 
	2,138.43 
	921.76 
	794.50 
	813.26 
	-56.90 
	-62.85 
	-61.97 
	39.43 
	91.85 

	3 
	3 
	9.79 
	5,845.47 
	3,380.38 
	3,255.96 
	59608.5 8 
	34428.9 1 
	33158.02 
	-42298.50 
	64.90 

	4 
	4 
	2,744.90 
	2,492.63 
	2,629.55 
	2,541.79 
	-9.19 
	-4.20 
	-7.40 
	93.07 
	97.28 

	5 
	5 
	8,468.56 
	5,782.13 
	4,822.60 
	3,558.99 
	-31.72 
	-43.05 
	-57.97 
	55.75 
	76.38 

	6 
	6 
	9,148.41 
	4,937.94 
	5,869.39 
	5,263.88 
	-46.02 
	-35.84 
	-42.46 
	58.56 
	91.18 

	7 
	7 
	481.76 
	1,812.05 
	1,629.81 
	1,967.13 
	276.13 
	238.30 
	308.32 
	-174.25 
	90.64 

	8 
	8 
	7,717.18 
	3,996.32 
	4,238.55 
	4,446.63 
	-48.22 
	-45.08 
	-42.38 
	54.78 
	94.67 

	9 
	9 
	807.48 
	1,454.53 
	1,181.45 
	1,254.07 
	80.13 
	46.31 
	55.31 
	39.42 
	89.09 

	10 
	10 
	6,599.33 
	3,914.45 
	3,497.79 
	2,383.00 
	-40.68 
	-47.00 
	-63.89 
	49.48 
	75.75 

	11 
	11 
	10,103.9 0 
	1,817.90 
	1,921.66 
	2,195.46 
	-82.01 
	-80.98 
	-78.27 
	19.58 
	90.14 

	12 
	12 
	19,775.8 5 
	1,030.80 
	979.37 
	1,151.56 
	-94.79 
	-95.05 
	-94.18 
	5.33 
	91.61 

	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	3520.30 
	89.02 

	-54.42 
	-54.42 

	45.58 
	45.58 

	44.67 
	44.67 


	and show the success metrics for automatically identifying Transverse cracks from 3D and 2D images, respectively. Test sections with minimal 
	Table 121 
	Table 122 

	486 
	amount of transverse cracking have been highlighted as outliers. Excluding the outliers, the automated transverse cracking identification from 3D and 2D images have demonstrated about 90 and 24 percent accuracy, respectively. Both the 3D and 2D results show a negative bias indicating less automatically identified transverse cracks compared to the reference survey. On average, there is about 90 percent run-to-run agreement in the length of automatically identified transverse cracks from 3D images. This run-t
	Table 121. Accuracy, Repeatability, and Consistency of Transverse Cracks based on 3D 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (ft) 
	Automatically Identified Transverse Cracks 
	Normalized Error 
	100 -AVG ABS Error (%) 
	Repeatability (%) 

	Run 1 (ft) 
	Run 1 (ft) 
	Run 2 (ft) 
	Run 3 (ft) 
	Run1 (%) 
	Run2 (%) 
	Run3 (%) 

	1 
	1 
	276.88 
	99.58 
	87.88 
	79.50 
	-64.03 
	-68.26 
	-71.29 
	32.14 
	88.67 

	2 
	2 
	273.01 
	37.33 
	46.74 
	47.47 
	-86.33 
	-82.88 
	-82.61 
	16.06 
	87.10 

	3 
	3 
	10.93 
	7.84 
	10.73 
	9.44 
	-28.27 
	-1.83 
	-13.63 
	85.42 
	100.00 

	4 
	4 
	256.67 
	452.80 
	391.54 
	462.75 
	76.41 
	52.55 
	80.29 
	30.25 
	91.15 

	5 
	5 
	109.35 
	185.70 
	174.61 
	160.16 
	69.82 
	59.68 
	46.47 
	41.34 
	92.62 

	6 
	6 
	157.20 
	198.29 
	189.94 
	187.33 
	26.14 
	20.83 
	19.17 
	77.96 
	97.02 

	7 
	7 
	16.51 
	15.91 
	15.14 
	28.93 
	-3.63 
	-8.30 
	75.23 
	78.90 
	61.24 

	8 
	8 
	965.30 
	767.31 
	726.02 
	834.96 
	-20.51 
	-24.79 
	-13.50 
	80.40 
	92.91 

	9 
	9 
	21.60 
	126.65 
	118.27 
	130.01 
	486.34 
	447.55 
	501.90 
	-378.60 
	95.16 

	10 
	10 
	2,306.42 
	854.82 
	836.38 
	1,009.24 
	-62.94 
	-63.74 
	-56.24 
	39.03 
	89.45 

	11 
	11 
	170.73 
	292.80 
	259.16 
	344.70 
	71.50 
	51.80 
	101.90 
	24.94 
	85.58 

	12 
	12 
	590.56 
	132.92 
	102.83 
	101.02 
	-77.49 
	-82.59 
	-82.89 
	19.01 
	84.04 

	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	33.11 
	89.84 

	-9.76 
	-9.76 

	90.24 
	90.24 

	73.80 
	73.80 


	Table 122. Accuracy, Repeatability, and Consistency of Transverse Cracks based on 2D 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (ft) 
	Automatically Identified Transverse Cracks 
	Normalized Error 
	Repeatability (%) 

	Run 1 (ft) 
	Run 1 (ft) 
	Run 2 (ft) 
	Run 3 (ft) 
	Run1 (%) 
	Run2 (%) 
	Run3 (%) 
	100 -AVG ABS Error (%) 

	1 
	1 
	276.88 
	30.55 
	29.06 
	30.52 
	-88.97 
	-89.50 
	-88.98 
	10.85 
	97.17 

	2 
	2 
	273.01 
	50.95 
	52.38 
	55.64 
	-81.34 
	-80.81 
	-79.62 
	19.41 
	95.46 

	3 
	3 
	10.93 
	0.00 
	0.00 
	0.00 
	-100.00 
	-100.00 
	-100.00 
	0.00 
	100.00 

	4 
	4 
	256.67 
	17.39 
	18.20 
	18.56 
	-93.22 
	-92.91 
	-92.77 
	7.03 
	96.68 

	5 
	5 
	109.35 
	65.53 
	66.41 
	63.08 
	-40.07 
	-39.27 
	-42.31 
	59.45 
	97.35 

	6 
	6 
	157.20 
	68.65 
	73.08 
	71.56 
	-56.33 
	-53.51 
	-54.48 
	45.23 
	96.83 

	7 
	7 
	16.51 
	4.69 
	1.04 
	2.29 
	-71.59 
	-93.70 
	-86.13 
	16.19 
	30.61 

	8 
	8 
	965.30 
	42.60 
	40.95 
	39.61 
	-95.59 
	-95.76 
	-95.90 
	4.25 
	96.35 

	9 
	9 
	21.60 
	115.14 
	124.41 
	123.30 
	433.06 
	475.97 
	470.83 
	-359.95 
	95.81 

	10 
	10 
	2,306.42 
	22.52 
	18.90 
	12.81 
	-99.02 
	-99.18 
	-99.44 
	0.78 
	72.85 

	11 
	11 
	170.73 
	99.33 
	90.25 
	93.03 
	-41.82 
	-47.14 
	-45.51 
	55.18 
	95.06 

	12 
	12 
	590.56 
	101.41 
	106.83 
	64.08 
	-82.83 
	-81.91 
	-89.15 
	15.37 
	74.36 

	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	-33.86 
	91.35 

	-75.83 
	-75.83 

	24.17 
	24.17 

	5.62 
	5.62 


	and show the success metrics for automatically identifying Alligator cracks from 3D and 2D images, respectively. Test sections free of alligator cracking have been highlighted as outliers. Excluding the outliers, the automated alligator cracking identification from 3D and 2D images have demonstrated about 95 and 0.01 percent accuracy, respectively. 
	Table 123 
	Table 124 

	Table 123. Accuracy, Repeatability, and Consistency of Alligator Cracks based on 3D Images 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (Sq Ft) 
	Automatically Identified Alligator Cracks 
	Normalized Error 
	100 -AVG ABS Error (%) 
	Repeatability (%) 

	Run 1 (Sq Ft) 
	Run 1 (Sq Ft) 
	Run 2 (Sq Ft) 
	Run 3 (Sq Ft) 
	Run1 (%) 
	Run2 (%) 
	Run3 (%) 

	1 
	1 
	5,846.75 
	5,338.05 
	5,424.37 
	5,093.62 
	-8.70 
	-7.22 
	-12.88 
	90.40 
	96.75 

	2 
	2 
	9,482.90 
	8,162.28 
	8,445.05 
	8,571.04 
	-13.93 
	-10.94 
	-9.62 
	88.50 
	97.51 

	3 
	3 
	0.00 
	0.00 
	0.00 
	0.00 

	4 
	4 
	3,100.22 
	721.79 
	549.74 
	575.11 
	-76.72 
	-82.27
	-81.45 
	19.85 
	84.91 

	5 
	5 
	18,795.12 
	16,437.95 
	17,019.01 
	16,729.03 
	-12.54 
	-9.45 
	-10.99 
	89.01 
	98.26 

	6 
	6 
	27,372.47 
	30,219.12 
	30,618.90 
	31,145.60 
	10.40 
	11.86 
	13.78 
	87.99 
	98.48 

	7 
	7 
	0.00 
	0.00 
	0.00 
	0.00 

	8 
	8 
	4,223.72 
	1,975.46 
	1,888.80 
	1,859.62 
	-53.23 
	-55.28
	-55.97 
	45.17 
	96.84 

	9 
	9 
	0.00 
	4.74 
	4.59 
	1.28 
	44.70 

	10 
	10 
	6,567.40 
	8,617.27 
	9,703.71 
	8,059.52 
	31.21 
	47.76 
	22.72 
	66.10 
	90.49 

	11 
	11 
	1,533.73 
	1,690.51 
	1,553.59 
	1,397.82 
	10.22 
	1.29 
	-8.86 
	99.11 
	90.54 

	12 
	12 
	900.06 
	1,769.73 
	1,538.15 
	1,316.48 
	96.62 
	70.89 
	46.27 
	28.74 
	85.30 

	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	-5.45 
	93.23 

	-5.45 
	-5.45 

	94.55 
	94.55 

	68.46 
	68.46 


	Table 124. Accuracy, Repeatability, and Consistency of Alligator Cracks based on 2D Images 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (Sq Ft) 
	Automatically Identified Alligator Cracks 
	Normalized Error 
	100 -AVG ABS Error (%) 
	Repeatability (%) 

	Run 1 (Sq Ft) 
	Run 1 (Sq Ft) 
	Run 2 (Sq Ft) 
	Run 3 (Sq Ft) 
	Run1 (%) 
	Run2 (%) 
	Run3 (%) 

	1 
	1 
	5,846.75 
	0.00 
	0.00 
	0.00 
	-100.00 
	-100.00 
	-100.00 
	0.00 
	100.00 

	2 
	2 
	9,482.90 
	14.21 
	0.00 
	0.00 
	-99.85 
	-100.00 
	-100.00 
	0.05 
	-73.21 

	3 
	3 
	0.00 
	0.00 
	0.00 
	0.00 
	100.00 

	4 
	4 
	3,100.22 
	0.18 
	0.00 
	0.00 
	-99.99 
	-100.00 
	-100.00 
	0.00 
	-73.21 

	5 
	5 
	18,795.12 
	0.05 
	0.00 
	0.00 
	-100.00 
	-100.00 
	-100.00 
	0.00 
	-73.21 

	6 
	6 
	27,372.47 
	0.00 
	0.00 
	0.00 
	-100.00 
	-100.00 
	-100.00 
	0.00 
	100.00 

	7 
	7 
	0.00 
	0.00 
	0.00 
	0.00 
	100.00 

	8 
	8 
	4,223.72 
	0.00 
	0.00 
	0.00 
	-100.00 
	-100.00 
	-100.00 
	0.00 
	100.00 

	9 
	9 
	0.00 
	0.00 
	0.00 
	0.00 
	100.00 

	10 
	10 
	6,567.40 
	0.00 
	0.01 
	0.00 
	-100.00 
	-100.00 
	-100.00 
	0.00 
	-73.21 

	11 
	11 
	1,533.73 
	0.18 
	0.23 
	0.04 
	-99.99 
	-99.99 
	-100.00 
	0.01 
	34.34 

	12 
	12 
	900.06 
	0.00 
	0.00 
	0.00 
	-100.00 
	-100.00 
	-100.00 
	0.00 
	100.00 

	TR
	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	-99.99 
	15.72 

	-99.99 
	-99.99 

	0.01 
	0.01 

	-139.83 
	-139.83 


	The 3D results show a negative bias indicating less automatically identified alligator cracks compared to the reference survey. The 2D results however show a significant 
	489 
	amount of negative bias, indicating that the 2D distress identification has failed in identifying areas with alligator cracking. This is mainly due to the large amount of missed cracking in 2D crack detection, which in turn results in cracking areas with such low density that cannot be identified by the computer as alligator cracking areas. 
	On average, there is about 93 percent run-to-run agreement in the automatically identified alligator cracking areas from 3D images. This run-to-run repeatability is about 16 percent for the 2D results. There is about 68 percent section-to-section agreement in the accuracy in automatically identifying the area of alligator cracks from 3D images. This section-to-section consistency is non-existent for 2D results. 
	The Vision software records the amount of time that each batch processor had spent on each test section to conduct an automated survey. The automated detection, classification, and rating took about 20 seconds per image frame for the 3D images and about 26 seconds per image frame for the 2D images. The main difference in this speed is the crack detection time. The classification and distress identification processes take only about 0.05 seconds per image frame in both technologies. 
	Comparison of Automatically Identified Wheel Path and Non-Wheel Path Cracking from 2D Versus 3D Images 
	In this section, the semi-automated reference rating results were converted to cracking within the wheel path (CW) and outside the wheel path (CO) using a SQL code (see option 1). The automated distress identification results were already available in CW and CO format, because the distress schema was setup accordingly (see option 2). The total amount of cracking within the wheel paths (CW) was calculated by adding the longitudinal, transverse, and alligator cracking areas. The longitudinal and transverse cr
	and show the automated distress identification results for CO distresses from 3D and 2D images, respectively. The accuracy in determining the CO distresses from 3D and 2D images is about 89 and 33 percent, respectively. The run-torun repeatability in determining the CO distresses from 3D and 2D images is about 96 and 86 percent, respectively. The section-to-section consistency in determining the CO distresses from 3D and 2D images is about 85 and 34 percent, respectively. 
	Table 125 
	Table 126 
	-

	and show the automated distress identification results for CW distresses from 3D and 2D images, respectively. The accuracy in determining the CW distresses from 3D and 2D images is about 92 and 9 percent, respectively. The run-torun repeatability in determining the CW distresses from 3D and 2D images is about 97 and 91 percent, respectively. The section-to-section consistency in determining the CW distresses from 3D and 2D images is about 84 and 0.4 percent, respectively. 
	Table 127 
	Table 128 
	-

	Table 125. Accuracy, Repeatability, and Consistency of CO Based on 3D Images 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (Sq Ft) 
	Automatically Identified Cracking 
	Normalized Error 
	100 -AVG ABS Error (%) 
	Repeatability (%) 

	Run 1 (Sq Ft) 
	Run 1 (Sq Ft) 
	Run 2 (Sq Ft) 
	Run 3 (Sq Ft) 
	Run1 (%) 
	Run2 (%) 
	Run3 (%) 

	1 
	1 
	2,269.16 
	2,055.22 
	2,155.45 
	2,337.45 
	-9.43 
	-5.01 
	3.01 
	96.19 
	93.45 

	2 
	2 
	2,929.56 
	2,917.19 
	2,947.83 
	3,024.51 
	-0.42 
	0.62 
	3.24 
	98.85 
	98.13 

	3 
	3 
	11.98 
	37.48 
	36.06 
	74.96 
	212.85 
	201.00 
	525.71 
	55.43 

	4 
	4 
	3,452.35 
	2,367.69 
	2,201.37 
	2,271.34 
	-31.42 
	-36.24 
	-34.21 
	66.05 
	96.34 

	5 
	5 
	13,550.71
	12,028.60
	12,097.83
	12,358.12 
	-11.23 
	-10.72 
	-8.80 
	89.75 
	98.57 

	6 
	6 
	15,456.96
	17,262.52
	17,701.37
	17,594.28 
	11.68 
	14.52 
	13.83 
	86.66 
	98.69 

	7 
	7 
	296.23 
	62.06 
	57.41 
	84.87 
	-79.05 
	-80.62 
	-71.35 
	78.42 

	8 
	8 
	4,232.96 
	2,679.95 
	2,452.73 
	2,549.57 
	-36.69 
	-42.06 
	-39.77 
	60.50 
	95.55 

	9 
	9 
	249.79 
	345.65 
	404.21 
	448.16 
	38.38 
	61.82 
	79.41 
	87.12 

	10 
	10 
	6,584.24 
	5,668.12 
	5,430.82 
	4,880.60 
	-13.91 
	-17.52 
	-25.87 
	80.90 
	92.42 

	11 
	11 
	4,653.28 
	5,627.19 
	6,086.35 
	6,154.74 
	20.93 
	30.80 
	32.27 
	72.00 
	95.18 

	12 
	12 
	11,403.25 
	8,294.84 
	8,021.22 
	7,885.04 
	-27.26 
	-29.66 
	-30.85 
	70.74 
	97.41 

	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	16.89 
	96.19 

	-10.38 
	-10.38 

	89.62 
	89.62 

	84.81 
	84.81 


	Table 126. Accuracy, Repeatability, and Consistency of CO Based on 2D Images 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (Sq Ft) 
	Automatically Identified Cracking 
	Normalized Error 
	100 -AVG ABS Error (%) 
	Repeatability (%) 

	Run 1 (Sq Ft) 
	Run 1 (Sq Ft) 
	Run 2 (Sq Ft) 
	Run 3 (Sq Ft) 
	Run1 (%) 
	Run2 (%) 
	Run3 (%) 

	1 
	1 
	2,269.16 
	413.16 
	332.64 
	276.57 
	-81.79 
	-85.34 
	-87.81 
	15.02 
	79.85 

	2 
	2 
	2,929.56 
	326.82 
	267.14 
	349.21 
	-88.84 
	-90.88 
	-88.08 
	10.73 
	86.51 

	3 
	3 
	11.98 
	5,845.47 
	3,380.38 
	3,255.96 
	48,693.57
	28,116.86
	27,078.30 
	-34529.58 
	100.00 

	4 
	4 
	3,452.35 
	1,675.19 
	1,837.38 
	1,755.16 
	-51.48 
	-46.78 
	-49.16 
	50.86 
	95.38 

	5 
	5 
	13,550.71
	4,981.47 
	3,890.31 
	2,891.53 
	-63.24 
	-71.29 
	-78.66 
	28.94 
	73.34 

	6 
	6 
	15,456.96
	3,289.52 
	3,959.84 
	3,622.93 
	-78.72 
	-74.38 
	-76.56 
	23.45 
	90.75 

	7 
	7 
	296.23 
	1,807.72 
	1,626.94 
	1,962.51 
	510.24 
	449.22 
	562.50 
	-407.32 
	90.66 

	8 
	8 
	4,232.96 
	2,919.43 
	3,178.08 
	3,411.57 
	-31.03 
	-24.92 
	-19.40 
	74.88 
	92.23 

	9 
	9 
	249.79 
	1,369.37 
	1,063.21 
	1,164.95 
	448.21 
	325.64 
	366.37 
	-280.07 
	87.00 

	10 
	10 
	6,584.24 
	3,900.46 
	3,461.47 
	2,344.54 
	-40.76 
	-47.43 
	-64.39 
	49.14 
	75.21 

	11 
	11 
	4,653.28 
	1,678.48 
	1,732.75 
	2,033.89 
	-63.93 
	-62.76 
	-56.29 
	39.01 
	89.45 

	12 
	12 
	11,403.25 
	990.18 
	940.88 
	1,061.73 
	-91.32 
	-91.75 
	-90.69 
	8.75 
	93.91 

	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	2909.81 
	86.29 

	-66.58 
	-66.58 

	33.42 
	33.42 

	34.07 
	34.07 


	Table 127. Accuracy, Repeatability, and Consistency of Cracking within Wheel Paths (CW) Based on 3D Images 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (Sq Ft) 
	Automatically Identified Cracking 
	Normalized Error 
	100 -AVG ABS Error (%) 
	Repeatability (%) 

	Run 1 (Sq Ft) 
	Run 1 (Sq Ft) 
	Run 2 (Sq Ft) 
	Run 3 (Sq Ft) 
	Run1 (%) 
	Run2 (%) 
	Run3 (%) 

	1 
	1 
	7,451.30 
	7,040.32 
	7,079.65 
	7,066.83 
	-5.52 
	-4.99 
	-5.16 
	94.78 
	99.72 

	2 
	2 
	8,964.78 
	8,442.69 
	8,774.02 
	8,782.40 
	-5.82 
	-2.13 
	-2.03 
	96.67 
	97.76 

	3 
	3 
	8.74 
	3.97 
	5.16 
	25.66 
	-54.58 
	-40.96 
	193.59 
	-5.15 

	4 
	4 
	2,649.44 
	1,718.61 
	1,657.26 
	1,638.22 
	-35.13 
	-37.45 
	-38.17 
	63.08 
	97.49 

	5 
	5 
	13,822.31 
	15,244.47 
	15,659.61 
	15,166.10 
	10.29 
	13.29 
	9.72 
	88.90 
	98.27 

	6 
	6 
	21,221.13 
	26,917.43 
	27,716.03 
	27,788.68 
	26.84 
	30.61 
	30.95 
	70.53 
	98.24 

	7 
	7 
	202.05 
	155.06 
	122.70 
	132.51 
	-23.26 
	-39.27 
	-34.42 
	87.87 

	8 
	8 
	8,673.24 
	5,861.90 
	6,083.54 
	5,912.02 
	-32.41 
	-29.86 
	-31.84 
	68.63 
	98.05 

	9 
	9 
	579.29 
	774.85 
	699.23 
	867.43 
	33.76 
	20.70 
	49.74 
	89.21 

	10 
	10 
	8,888.91 
	8,434.21 
	9,865.16 
	8,302.03 
	-5.12 
	10.98 
	-6.60 
	99.76 
	90.22 

	11 
	11 
	7,155.08 
	7,137.11 
	6,785.94 
	7,134.38 
	-0.25 
	-5.16 
	-0.29 
	98.10 
	97.12 

	12 
	12 
	9,863.21 
	7,158.39 
	6,947.06 
	6,914.53 
	-27.42 
	-29.57 
	-29.90 
	71.04 
	98.11 

	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	-2.69 
	97.22 

	-7.49 
	-7.49 

	92.51 
	92.51 

	83.93 
	83.93 


	Table 128. Accuracy, Repeatability, and Consistency of Cracking within Wheel Paths (CW) Based on 2D Images 
	Test Section 
	Test Section 
	Test Section 
	Ground Truth (Sq Ft) 
	Automatically Identified Cracking 
	Normalized Error 
	100 -AVG ABS Error (%) 
	Repeatability (%) 

	Run 1 (Sq Ft) 
	Run 1 (Sq Ft) 
	Run 2 (Sq Ft) 
	Run 3 (Sq Ft) 
	Run1 (%) 
	Run2 (%) 
	Run3 (%) 

	1 
	1 
	7,451.30 
	927.65 
	956.62 
	880.79 
	-87.55 
	-87.16 
	-88.18 
	12.37 
	95.85 

	2 
	2 
	8,964.78 
	660.09 
	579.74 
	519.69 
	-92.64 
	-93.53 
	-94.20 
	6.54 
	87.99 

	3 
	3 
	8.74 
	0.00 
	0.00 
	0.00 
	-100.00 
	-100.00 
	-100.00 
	0.00 
	100.00 

	4 
	4 
	2,649.44 
	835.01 
	810.36 
	805.19 
	-68.48 
	-69.41 
	-69.61 
	30.83 
	98.05 

	5 
	5 
	13,822.31 
	866.24 
	998.70 
	730.53 
	-93.73 
	-92.77 
	-94.71 
	6.26 
	84.50 

	6 
	6 
	21,221.13
	1,717.08 
	1,982.63 
	1,712.50 
	-91.91 
	-90.66 
	-91.93 
	8.50 
	91.43 

	7 
	7 
	202.05 
	9.02 
	3.91 
	6.91 
	-95.54 
	-98.06 
	-96.58 
	3.27 
	61.17 

	8 
	8 
	8,673.24 
	1,119.50 
	1,101.42 
	1,074.67 
	-87.09 
	-87.30 
	-87.61 
	12.67 
	97.95 

	9 
	9 
	579.29 
	200.31 
	242.65 
	212.42 
	-65.42 
	-58.11 
	-63.33 
	37.71 
	90.02 

	10 
	10 
	8,888.91 
	36.51 
	55.22 
	51.26 
	-99.59 
	-99.38 
	-99.42 
	0.54 
	79.31 

	11 
	11 
	7,155.08 
	238.93 
	279.39 
	254.64 
	-96.66 
	-96.10 
	-96.44 
	3.60 
	92.08 

	12 
	12 
	9,863.21 
	142.03 
	145.32 
	153.92 
	-98.56 
	-98.53 
	-98.44 
	1.49 
	95.83 

	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	Bias (%) Bias Excluding Outliers (%) Accuracy (%) = 100 -Absolute Bias Consistency (%) = 100 -COV(Accuracy) 
	-89.68 
	91.44 

	-90.80 
	-90.80 

	9.20 
	9.20 

	0.38 
	0.38 


	I.4. Advantages of the 3D Technology 
	Based on the observations outlined in chapter 4, this chapter will describe some of the advantages of the 3D technology over the 2D technology for detection, identification, and quantification of flexible pavement surface distresses. 
	I.4.1. Improved Crack Detection 
	As it was clearly demonstrated in crack detection, the 3D technology with the range (depth) data is facilitating detection of significantly more cracking compared to the 2D images. In the 12 representative test sections evaluated for this study, the use of 3D technology resulted in about 67 percent increase in accuracy of crack detection compared to the 2D technology (see . This is also evident in the 89 percent of the cracking in the reference survey being detected from the 3D images, compared to only 18 p
	Figure 223)

	2D vs 3D Crack Detection 
	98.89 
	97.20 
	94.95 
	93.32 
	Accuracy (%) Consistency (%) Repeatability (%) 2D Crack Detection 
	3D Crack Detection 
	31.51 38.84 0 20 40 60 80 100 
	Figure 223. Comparison of 2D versus 3D Crack Detection Success Metrics 
	In order to better demonstrate the advantage of 3D technology in detecting surface cracks, two example locations have been selected. and show the 3D and 2D crack detection results for the first example location, respectively. and show the 3D and 2D crack detection results for the second example location, respectively. In both examples, it is evident that the 3D technology significantly improves the chances of detecting surface cracks because of the additional depth information. It can also be seen that due 
	Figure 224 
	Figure 225 
	Figure 226 
	Figure 227 

	Figure
	Figure 224. Example LCMS Intensity (left), Range (center), and Detected Crack Map (right) 
	Figure
	Figure 225. Example LRIS Image (left) and Detected Crack Map (right) Corresponding to the LCMS Example in 
	Figure 224 

	Figure
	Figure 226. Example LCMS Intensity (left), Range (center), and Detected Crack Map (right) 
	Figure
	Figure 227. Example LRIS Image (left) and Detected Crack Map (right) Corresponding to the LCMS Example in 
	Figure 226 

	In addition to improved detection of cracking, the 3D technology is also superior to 2D technology in terms of correctly determining crack widths. This is based on work performed outside of this project. When the pavement surface is damp, the area around the crack edges become darker in the 2D images and as a result, the crack detection algorithms result in exaggerated crack width measurements based on pixel intensities. The 3D technology is less prone to these issues because it uses a combination of pixel 
	I.4.2. Improved Identification of Cracking Distresses 
	provides summary statistics for the automated distress identification results based on 2D and 3D images. 
	Table 129 

	Table 129. Summary Statistics for Automated Distress Identification Results from 2D and 3D Images 
	Distress 
	Distress 
	Distress 
	Accuracy (%) 
	Section-To-Section Consistency (%) 
	Run-To-Run Repeatability (%) 

	TR
	2D 
	3D 
	2D 
	3D 
	2D 
	3D 

	Longitudinal Cracking 
	Longitudinal Cracking 
	45.58 
	92.86 
	44.67 
	81.23 
	89.02 
	97.02 

	Transverse Cracking 
	Transverse Cracking 
	24.17 
	90.24 
	5.62 
	73.80 
	91.35 
	89.84 

	Alligator Cracking 
	Alligator Cracking 
	0.01 
	94.55 
	-139.83 
	68.46 
	15.72 
	93.23 

	CW 
	CW 
	9.20 
	92.51 
	0.38 
	83.93 
	91.44 
	97.22 

	CO 
	CO 
	33.42 
	89.62 
	34.07 
	84.81 
	86.29 
	96.19 


	and compare the 2D and 3D distress identification results for longitudinal, transverse, and alligator cracking, respectively. The 3D algorithm has resulted in higher accuracy, section-to-section consistency, and run-torun repeatability compared to the 2D algorithm in identifying longitudinal, transverse, and alligator cracking. 
	Figure 228, 
	Figure 229, 
	Figure 230 
	-

	2D vs 3D Longitudinal Cracking Identification 
	97.02 
	100 92.86 
	Accuracy (%) Consistency (%) Repeatability (%) 2D Longitudinal Cracking 
	3D Longitudinal Cracking 
	45.58 44.67 89.02 81.23 0 20 40 60 80 
	Figure 228. Comparison of 2D versus 3D Longitudinal Cracking Success Metrics 
	2D vs 3D Transverse Cracking Identification 100 
	90.24 91.35 
	89.84 

	Accuracy (%) Consistency (%) Repeatability (%) 2D Transverse Cracking 
	3D Transverse Cracking 
	Figure 229. Comparison of 2D versus 3D Transverse Cracking Success Metrics 
	2D vs 3D Alligator Cracking Identification 
	Accuracy (%) Consistency (%) Repeatability (%) 2D Alligator Cracking 
	3D Alligator Cracking 
	Figure 230. Comparison of 2D versus 3D Alligator Cracking Success Metrics 
	Figure 231 and Figure 232 compare the results of 2D and 3D distress identification according to the FDOT definitions of wheel path cracking (CW) and outside wheel path cracking (CO), respectively. The accuracy, section-to-section consistency, and run-to
	-

	499 
	24.17 5.62 73.80 0 10 20 30 40 50 60 70 80 90 
	0.01 15.72 94.55 68.46 93.23 0 10 20 30 40 50 60 70 80 90 100 
	run repeatability of automated CO and CW identification is higher from 3D images compared to 2D images. 
	2D vs 3D Wheel Path Cracking (CW) Identification 
	97.22 
	92.51 91.44 90 
	100 

	83.93 
	80 
	70 
	60 
	50 
	40 
	30 
	20 
	9.20 
	10 0 Accuracy (%) Consistency (%) Repeatability (%) 
	0.38 
	2D CW 
	2D CW 
	3D CW 

	Figure 231. Comparison of 2D versus 3D Wheel Path Cracking (CW) Success Metrics 
	2D vs 3D Outside Wheel Path Cracking (CO) Identification 
	96.19 
	100 
	Accuracy (%) Consistency (%) Repeatability (%) 2D CO 
	3D CO 
	33.42 34.07 86.29 89.62 84.81 0 10 20 30 40 50 60 70 80 90 
	Figure 232. Comparison of 2D versus 3D Outside Wheel Path Cracking (CO) Success Metrics 
	I.4.3. Improved Identification of Pavement Texture Distresses 
	In addition to the superior performance of the 3D technology in crack detection and the corresponding distress identification that was evaluated in this report, the 3D technology also provides area-based surface macro-texture measurements. Since these measurements are area-based, they have shown a significantly higher run-to-run repeatability compared to the macro-texture measurements with point laser sensors, which are line based and sensitive to vehicle wander. These robust 3D texture measurements can be 
	I.5. Findings and Recommendations 
	This report described the effort under Purchase Order Number PR10026557 of this FDOT research project to collect and process 3D LCMS images of 12 representative flexible pavement test sections, and to compare the automated crack detection and distress identification results based on 2D and 3D technologies. 
	Based on a systematic evaluation framework and pertinent success metrics, it was found that the 3D technology is superior to the 2D technology in the following areas: 
	6. 
	6. 
	6. 
	About 67 percent increase in the crack detection accuracy, which translates into 71 percent more in percentage of detected crack length from the ground truth, and 50 percent more in percentage of the correctly detected cracks. 

	7. 
	7. 
	About 47 percent more accuracy in identifying the length of longitudinal cracks, 66 percent more accuracy in identifying the length of transverse cracks, and 95 percent more accuracy in identifying alligator cracking areas. About 83 percent more accuracy in identifying wheel path cracking (CW) and 56 percent more accuracy in identifying outside wheel path cracking (CO). 

	8. 
	8. 
	8. 
	About 8 percent more run-to-run repeatability in identifying the length of longitudinal cracks and 77 percent more repeatability in identifying alligator cracking areas. About 6 percent more run-to-run repeatability in identifying wheel 

	path cracking (CW) and 10 percent more repeatability in identifying outside wheel path cracking (CO). 

	9. 
	9. 
	About 36 percent more section-to-section consistency in identifying the length of longitudinal cracks, 68 percent more consistency in identifying the length of transverse cracks, and 68 percent more consistency in identifying alligator cracking areas. About 83 percent more section-to-section consistency in identifying wheel path cracking (CW) and 51 percent more consistency in identifying outside wheel path cracking (CO). 


	10.About 6 seconds faster in crack detection per image frame. 
	Based on past experience with collection of thousands of miles of data with both the 2D LRIS and the 3D LCMS technologies, the following advantages are also known: 
	3. 
	3. 
	3. 
	The 3D technology is less prone to crack width exaggeration on damp pavement surfaces and thereby produces more robust severity rating. 

	4. 
	4. 
	The 3D technology provides a more robust surface macro-texture measurement which can potentially be used for identifying raveling and weathering distresses. 


	Based on this superior accuracy, consistency, repeatability, and efficiency of the 3D technology in detecting pavement surface cracks and identifying the corresponding distress, it is recommended that the 3D technology be considered for automated identification and quantification of flexible pavement distresses. 
	I.6. ARAN Information and Specifications 
	Right of Way Video 

	A single HDTV camera (3CCD broadcast quality) was used for viewing the right of way. The images were recorded every 32 feet and were set up in 2016 to show a 45% to 55% sky-to-pavement ratio. The CCD camera has a rate of 1,000 frames per second and experiences limited to no frame to frame adjustment perceivable to the observer. 
	A single HDTV camera (3CCD broadcast quality) was used for viewing the right of way. The images were recorded every 32 feet and were set up in 2016 to show a 45% to 55% sky-to-pavement ratio. The CCD camera has a rate of 1,000 frames per second and experiences limited to no frame to frame adjustment perceivable to the observer. 
	Roughness 
	Fugro Roadware’s South-Dakota Profiler (SDP2) subsystem provides longitudinal profile measurement that will be collected in both wheel paths to calculate the International Roughness Index (IRI) standard. The Laser SDP2 is a non-contact, class 1 (ASTM E950), inertial profiler that uses lasers and accelerometers mounted over each wheelpath to measure the longitudinal profile and calculate IRI in real time. 
	Some of the technologies, best practices, and limitations of high-speed inertial profilers include: 
	• 
	• 
	• 
	Sensor Technology – The Laser SDP2 was equipped with LMI RoLine 3.6kHz scanning laser system, providing a full 100mm (4-inch) line of data across the road surface (similar to that of a tire footprint). 

	• 
	• 
	Flexible Testing Speeds – The Laser SDP2 is able to collect accurate longitudinal profile and roughness data at testing speeds ranging up to 70 mph while maintaining a bias of 5%. 

	• 
	• 
	Low Speed Collection Limitation – Unlike most inertial profilers on the market today, the Laser SDP2 allows for testing at lower speeds and in stop-and-go conditions, for example, in urban environments. This avoids the need to invalidate the IRI for the approximate 300 feet in the vicinity of the low speed zone. Enhanced speed-sensitive filters level the accelerometer influence at low-speed zones and remove parasitic frequencies specific for certain low speed intervals. While reductions to the length of inv

	• 
	• 
	High Accuracy – Measurements made by a properly calibrated Laser SDP2 are within +/-5% of the measurements made by manual profiling techniques such as rod and level. Class 1 benchmarking devices that typically used for inertial-profiler conformance testing include the Face Dipstick and the SurPro. 

	• 
	• 
	High Repeatability – The Standard deviation for repeat runs for the Laser SDP2 are within +/-5% of the mean IRI for each run, however summarized IRI results are typically well within this accuracy range. The use of RoLine sensors would further improve on this consistency, regardless of the testing surface type or condition. 

	• 
	• 
	Real Time -The ability to calculate IRI in real-time, which facilitates vehicle operators in the identification of non-operational or ill-functioning subsystems (such as the SDP2). This effectively reduces the amount of time to identify problems with the system, limiting the extent of data collection affected. 

	• 
	• 
	Compliance with Standards – Inertial profilers, such as the SDP2, should be fully compliant with the range of longitudinal profile collection standards including ASTM E950, AASHTO R 56, and the World Bank Technical Paper #46 protocol. The ARAN conforms to Class I profiling equipment requirements as specified in the most current Highway Performance Monitoring System (HPMS) Field Manual provided by the Federal Office of Highway Policy Information. The ARAN (equipped with a Pave3D system) has passed the Texas 

	• 
	• 
	Conformance Testing – To ensure that an inertial profiler system remains accurate, two conformance tests, one static and other dynamic, ensure that the laser and accelerometer components of the system are operating as intended. Without successful completion of these tests to within allowable threshold limits, an ARAN would not be signed off for collection commencement. 


	Rut Depth/Transverse Profile 
	Transverse profile and rutting data were collected by Fugro’s Pave3D system utilizing 
	the LCMS sensors. The Pave3D works by laser-illuminating one line of pavement on each half of the driven lane, and then capturing the profile of that laser line with a sensor. provides an overview of the Pave3D system rutting capability. 
	Table 130 

	Table 130. ARAN Rutting Capabilities 
	ITEM 
	ITEM 
	ITEM 
	Pave3D (LCMS) 

	1 Num. of laser profilers 
	1 Num. of laser profilers 
	2 

	2 Sampling rate 
	2 Sampling rate 
	5600 profiles/s 

	3 Vehicle speed (max) 
	3 Vehicle speed (max) 
	(70 mph) 

	4 Profile spacing 
	4 Profile spacing 
	0.2 inches 

	5 Points per profile 
	5 Points per profile 
	4160 points 

	6 Transverse field-of-view 
	6 Transverse field-of-view 
	13.2 feet 

	7 Depth range of operation 
	7 Depth range of operation 
	9.8 inches 

	8 Z-axis (depth) resolution 
	8 Z-axis (depth) resolution 
	0.02 inches 

	X-axis (transverse) 9 resolution 
	X-axis (transverse) 9 resolution 
	0.04 inches 


	When the Pave3D’s raw transverse data is validated, rutting is calculated in real-time on the ARAN using ASTM E1703 (straight-edge method), AASHTO R48 (wire method), or simulated N-point method (e.g. 7-point). 
	Some of the technologies, best practices and limitations of pavement transverse profile (TP) and rut depth collection, post processing and reporting include: 
	• Advanced Transverse Profile Processor and Rut Depth Settings – To ensure that the generation of a transverse profile is valid, and that the calculation of rut depths to an overlying straight edge or wire algorithm is measuring the intend pavement performance the following processor settings are used: 
	o 
	o 
	o 
	Validation of transverse profiles, using maximum tresholds for height differentials across the profile length, with a minimum profile length threshold set to ensure only highly valid profiles are incorporated into the rut depth calculation. 

	o 
	o 
	Ability to define the width of the lane to be incorporated into the transverse profile. This includes options such as using the pavement line marking detection (with or without minimum lane widths) to remove the influence of edge drop-off (unpaved shoulders) and curb-raise on either side of the lane. This will ensure that artificial rut depths due to these phenomena are not created and incorporated into the average for a segment. 

	o 
	o 
	Where crack detection is not used, an edge detection processor should be used to invalidate changes in height differentials that cannot be characterized by pavement deformation (e.g. edge drop-off or curb-raise). 

	o 
	o 
	The smoothing of transverse profiles (using either a moving average or wedge) are carried out to remove any ambiguities in the pavement surface that are not attributed to pavement rutting/deformation such as surface texture and cracking. 

	o 
	o 
	Ability to define the length of a straight-edge (half-lane, full-lane, 6-foot etc.) and its freedom of movement within, or outside of the calculated transverse profile width. 

	o 
	o 
	o 
	The ability to perform rut location optimization, whereby the transverse location of the maximum rut depth between TP intervals (longitudinally) must remain within predefined tolerances. This is very useful where rut 

	depth data is used primarily for the determination of pavement deformation performance (such as using rut data as part of a structural performance index) within each of the wheel paths. 

	o 
	o 
	Using the inertial component (multi-axis gyroscopes) of the survey vehicles to correct the orientation of the transverse profile (remove the influence of vehicle roll) to determine cross-fall. 


	Positioning 
	The Distance Measuring Instrument (DMI) measures ARAN chainage and linear distance travelled. Every ARAN is equipped with a GPS and an Inertial Reference System (POS LV) to fill in satellite gaps. POS LV is a state-of-the art inertial aided navigation system that provides precise roll, pitch, heading, velocity, and position information to other onboard subsystems. The GPS results were post processed as well to increase the level of accuracy of the readings. 
	J. MANUAL WINDSHIELD SURVEY RESULTS ON FLEXIBLE PAVEMENTS 
	Figure
	Figure
	K. FDOT FLEXIBLE PAVEMENT DISTRESS APPLICATION (FFPDA) TEST RESULTS 
	Table 131. Amount of Cracking by Crack Type, Severity, and Road Zone for Each Run 
	Run No. 
	Run No. 
	Run No. 
	Section No. 
	By Crack Type (Sq Ft) 
	By Crack Severity (Sq Ft) 
	By Road Zone (Sq Ft) 

	Alligator 
	Alligator 
	Branch 
	Single 
	1B 
	II 
	III 
	CW 
	CO 

	1 
	1 
	1 
	7,588.11 
	1,532.9 2 
	1,153.5 6 
	2,603.20 
	7,651.61 
	19.78 
	9,331.14 
	943.45 

	1 
	1 
	2 
	8,946.50 
	1,297.20 
	823.15 
	2,038.54 
	8,993.77 
	34.54 
	9,936.69 
	1,130.16 

	1 
	1 
	3 
	0.29 
	5.42 
	49.53 
	54.95 
	0.29 
	-
	15.04 
	40.20 

	1 
	1 
	4 
	1,057.78 
	1,791.27 
	1,802.43 
	1,948.88 
	2,369.69 
	332.92 
	2,403.96 
	2,247.52 

	1 
	1 
	5 
	20,487.05 
	3,883.75 
	2,530.17 
	5,103.22 
	19,774.07 
	2,023.68 
	16,927.41 
	9,973.56 

	1 
	1 
	6 
	33,851.89 
	4,652.60 
	2,847.45 
	6,159.14 
	31,959.63 
	3,233.16 
	28,064.93 
	13,287.00 

	1 
	1 
	7 
	1.52 
	24.31 
	194.82 
	154.58 
	62.01 
	4.07 
	152.72 
	67.93 

	1 
	1 
	8 
	2,306.74 
	3,066.65 
	3,991.30 
	3,225.03 
	5,328.35 
	811.31 
	6,693.50 
	2,671.19 

	1 
	1 
	9 
	51.27 
	160.59 
	1,053.97 
	797.28 
	444.07 
	24.48 
	875.90 
	389.93 

	1 
	1 
	10 
	9,551.10 
	2,790.71 
	3,844.70 
	6,327.73 
	9,745.01 
	113.77 
	10,634.30 
	5,552.20 

	1 
	1 
	11 
	3,632.87 
	3,429.36 
	6,902.53 
	8,771.04 
	4,672.96 
	520.77 
	8,381.75 
	5,583.02 

	1 
	1 
	12 
	4,387.39 
	5,383.59 
	6,038.59 
	10,430.69 
	5,111.88 
	267.01 
	7,692.68 
	8,116.89 

	2 
	2 
	1 
	7,298.45 
	1,539.14 
	1,169.93 
	2,425.28 
	7,483.51 
	98.73 
	9,060.00 
	947.52 

	2 
	2 
	2 
	9,277.17 
	1,298.56 
	780.38 
	1,828.68 
	9,248.75 
	278.68 
	10,179.67 
	1,176.44 

	2 
	2 
	3 
	-
	0.97 
	87.46 
	88.02 
	0.41 
	-
	20.39 
	68.04 

	2 
	2 
	4 
	1,041.91 
	1,763.05 
	1,756.64 
	1,694.64 
	2,417.28 
	449.67 
	2,365.40 
	2,196.19 

	2 
	2 
	5 
	20,279.58 
	3,680.41 
	2,453.86 
	4,013.00 
	18,966.58 
	3,434.28 
	16,590.08 
	9,823.77 

	2 
	2 
	6 
	34,857.24 
	4,658.20 
	2,792.44 
	5,354.97 
	31,739.78 
	5,213.12 
	28,904.92 
	13,402.96 

	2 
	2 
	7 
	0.68 
	2.24 
	175.97 
	133.37 
	44.84 
	0.68 
	116.29 
	62.60 

	2 
	2 
	8 
	2,436.32 
	3,008.02 
	3,962.41 
	2,817.46 
	5,552.25 
	1,037.04 
	6,936.54 
	2,470.20 

	2 
	2 
	9 
	32.30 
	192.02 
	1,089.31 
	698.58 
	600.32 
	14.74 
	860.28 
	453.36 

	2 
	2 
	10 
	11,254.60 
	2,814.09 
	3,867.42 
	6,211.84 
	11,573.18 
	151.09 
	12,733.16 
	5,202.95 

	2 
	2 
	11 
	3,494.94 
	3,358.99 
	7,381.27 
	8,356.06 
	5,214.97 
	664.18 
	8,136.94 
	6,098.27 

	2 
	2 
	12 
	4,118.14 
	4,942.75 
	6,213.41 
	9,455.32 
	5,375.74 
	443.23 
	7,278.20 
	7,996.10 

	3 
	3 
	1 
	7,054.82 
	1,706.58 
	1,184.66 
	2,653.30 
	7,228.25 
	64.51 
	8,949.32 
	996.73 

	3 
	3 
	2 
	9,319.85 
	1,287.12 
	809.97 
	2,095.92 
	9,321.02 
	-
	10,299.48 
	1,117.46 

	3 
	3 
	3 
	0.00 
	10.47 
	165.41 
	166.55 
	9.33 
	-
	50.01 
	125.87 

	3 
	3 
	4 
	1,108.40 
	1,844.53 
	1,667.74 
	1,685.28 
	2,478.33 
	457.07 
	2,457.78 
	2,162.89 

	3 
	3 
	5 
	20,269.21 
	3,863.66 
	2,633.78 
	4,062.28 
	19,899.88 
	2,804.49 
	16,456.42 
	10,310.23 

	3 
	3 
	6 
	34,595.94 
	4,856.83 
	2,659.82 
	5,346.26 
	31,532.06 
	5,234.28 
	28,717.70 
	13,394.89 

	3 
	3 
	7 
	2.78 
	7.02 
	194.25 
	157.41 
	43.07 
	3.56 
	136.30 
	67.75 

	3 
	3 
	8 
	2,289.16 
	3,053.49 
	3,910.31 
	2,835.68 
	5,611.77 
	805.50 
	6,665.02 
	2,587.94 

	3 
	3 
	9 
	26.29 
	183.46 
	1,216.98 
	852.23 
	555.05 
	19.44 
	967.15 
	459.58 

	3 
	3 
	10 
	9,031.73 
	2,338.37 
	3,989.04 
	5,840.31 
	9,311.26 
	207.57 
	10,649.13 
	4,710.01 

	Run 
	Run 
	Section 
	By Crack Type (Sq Ft) 
	By Crack Severity (Sq Ft) 
	By Road Zone (Sq Ft) 

	No. 
	No. 
	No. 
	Alligator 
	Branch 
	Single 
	1B 
	II 
	III 
	CW 
	CO 

	3 
	3 
	11 
	3,351.20 
	3,520.37 
	7,449.02 
	8,104.20 
	5,452.96 
	763.43 
	8,416.94 
	5,903.65 

	3 
	3 
	12 
	3,740.73 
	5,029.30 
	6,315.63 
	9,398.62 
	5,233.87 
	453.18 
	7,176.17 
	7,909.50 


	Table 132. Amount of Cracking by Crack Type and Severity for Each Run 
	Table 132. Amount of Cracking by Crack Type and Severity for Each Run 
	Table 133. Amount of Cracking by Road Zone and Crack Severity for Each Run 

	Run No. 
	Run No. 
	Run No. 
	Sectio n No. 
	Single Cracks (Sq Ft) 
	Branch Cracks (Sq Ft) 
	Alligator Cracks (Sq Ft) 

	1B 
	1B 
	II 
	III 
	1B 
	II 
	III 
	1B 
	II 
	III 

	1 
	1 
	1 
	1,096.97 
	50.52 
	6.08 
	1,506.23 
	26.69 
	-
	-
	7,574.41 
	13.70 

	1 
	1 
	2 
	775.31 
	46.35 
	1.50 
	1,263.23 
	33.97 
	-
	-
	8,913.45 
	33.05 

	1 
	1 
	3 
	49.53 
	-
	-
	5.42 
	-
	-
	-
	0.29 
	-

	1 
	1 
	4 
	1,167.93 
	624.30 
	10.20 
	780.95 
	1,010.32 
	-
	-
	735.07 
	322.72 

	1 
	1 
	5 
	2,069.68 
	434.63 
	25.86 
	3,033.54 
	841.78 
	8.43 
	-
	18,497.66 
	1,989.39 

	1 
	1 
	6 
	2,378.10 
	458.89 
	10.45 
	3,781.03 
	871.57 
	-
	-
	30,629.17 
	3,222.71 

	1 
	1 
	7 
	144.35 
	47.35 
	3.11 
	10.23 
	14.08 
	-
	-
	0.57 
	0.96 

	1 
	1 
	8 
	2,101.46 
	1,871.42 
	18.42 
	1,123.57 
	1,943.08 
	-
	-
	1,513.85 
	792.89 

	1 
	1 
	9 
	712.91 
	329.59 
	11.48 
	84.38 
	76.21 
	-
	-
	38.26 
	13.00 

	1 
	1 
	10 
	3,615.60 
	212.26 
	16.85 
	2,712.13 
	78.58 
	-
	-
	9,454.18 
	96.92 

	1 
	1 
	11 
	5,988.04 
	840.90 
	73.60 
	2,783.00 
	645.38 
	0.99 
	-
	3,186.69 
	446.19 

	1 
	1 
	12 
	5,573.20 
	390.76 
	74.64 
	4,857.49 
	526.10 
	-
	-
	4,195.02 
	192.37 

	2 
	2 
	1 
	1,054.35 
	112.84 
	2.73 
	1,370.93 
	168.22 
	-
	-
	7,202.46 
	95.99 

	2 
	2 
	2 
	641.89 
	130.76 
	7.74 
	1,186.79 
	111.77 
	-
	-
	9,006.22 
	270.94 

	2 
	2 
	3 
	87.46 
	-
	-
	0.56 
	0.41 
	-
	-
	-
	-

	2 
	2 
	4 
	1,037.14 
	682.40 
	37.09 
	657.50 
	1,105.54 
	-
	-
	629.33 
	412.58 

	2 
	2 
	5 
	1,779.66 
	659.67 
	14.53 
	2,233.34 
	1,444.74 
	2.34 
	-
	16,862.17 
	3,417.41 

	2 
	2 
	6 
	2,066.90 
	707.65 
	17.89 
	3,288.07 
	1,367.77 
	2.36 
	-
	29,664.37 
	5,192.87 

	2 
	2 
	7 
	132.82 
	43.15 
	-
	0.55 
	1.69 
	-
	-
	-
	0.68 

	2 
	2 
	8 
	1,812.32 
	2,142.38 
	7.71 
	1,005.14 
	2,002.87 
	-
	-
	1,407.00 
	1,029.33 

	2 
	2 
	9 
	608.07 
	478.79 
	2.45 
	90.51 
	101.51 
	-
	-
	20.02 
	12.28 

	2 
	2 
	10 
	3,539.88 
	306.22 
	21.31 
	2,671.95 
	142.14 
	-
	-
	11,124.82 
	129.78 

	2 
	2 
	11 
	6,010.16 
	1,284.36 
	86.75 
	2,345.90 
	1,005.15 
	7.94 
	-
	2,925.46 
	569.48 

	2 
	2 
	12 
	5,491.30 
	630.04 
	92.07 
	3,964.03 
	978.72 
	-
	-
	3,766.98 
	351.16 

	3 
	3 
	1 
	1,053.90 
	126.31 
	4.45 
	1,599.40 
	105.46 
	1.72 
	-
	6,996.48 
	58.33 

	3 
	3 
	2 
	808.81 
	1.17 
	-
	1,287.12 
	-
	-
	-
	9,319.85 
	-

	3 
	3 
	3 
	156.08 
	9.33 
	-
	10.47 
	-
	-
	-
	0.00 
	-

	3 
	3 
	4 
	988.22 
	658.29 
	21.23 
	697.05 
	1,145.41 
	2.07 
	-
	674.62 
	433.77 

	3 
	3 
	5 
	1,793.33 
	822.10 
	18.34 
	2,268.94 
	1,594.71 
	-
	-
	17,483.06 
	2,786.15 

	3 
	3 
	6 
	1,999.12 
	620.71 
	39.99 
	3,347.14 
	1,504.91 
	4.79 
	-
	29,406.44 
	5,189.50 

	3 
	3 
	7 
	152.10 
	41.36 
	0.79 
	5.31 
	1.71 
	-
	-
	-
	2.78 

	3 
	3 
	8 
	1,826.15 
	2,057.67 
	26.49 
	1,009.53 
	2,043.96 
	-
	-
	1,510.14 
	779.01 

	3 
	3 
	9 
	749.96 
	459.14 
	7.88 
	102.28 
	81.18 
	-
	-
	14.73 
	11.56 

	Run 
	Run 
	Sectio 
	Single Cracks (Sq Ft) 
	Branch Cracks (Sq Ft) 
	Alligator Cracks (Sq Ft) 

	No. 
	No. 
	n No. 
	1B 
	II 
	III 
	1B 
	II 
	III 
	1B 
	II 
	III 

	3 
	3 
	10 
	3,594.11 
	367.97 
	26.97 
	2,246.20 
	92.17 
	-
	-
	8,851.13 
	180.60 

	3 
	3 
	11 
	5,836.72 
	1,510.81 
	101.49 
	2,267.49 
	1,250.74 
	2.14 
	-
	2,691.41 
	659.80 

	3 
	3 
	12 
	5,541.35 
	737.00 
	37.28 
	3,857.27 
	1,172.04 
	-
	-
	3,324.83 
	415.90 


	Run No. 
	Run No. 
	Run No. 
	Section No. 
	Cracking in the Wheel Path (Sq Ft) 
	Cracking Outside the Wheel Path (Sq Ft) 

	1B 
	1B 
	II 
	III 
	1B 
	II 
	III 

	1 
	1 
	1 
	1,731.19 
	7,581.31 
	18.63 
	872.00 
	70.30 
	1.15 

	1 
	1 
	2 
	1,145.19 
	8,771.96 
	19.54 
	893.35 
	221.80 
	15.00 

	1 
	1 
	3 
	15.04 
	-
	-
	39.91 
	0.29 
	-

	1 
	1 
	4 
	551.49 
	1,583.62 
	268.85 
	1,397.39 
	786.07 
	64.06 

	1 
	1 
	5 
	1,794.49 
	14,065.63 
	1,067.28 
	3,308.72 
	5,708.44 
	956.40 

	1 
	1 
	6 
	1,716.78 
	23,980.96 
	2,367.19 
	4,442.36 
	7,978.67 
	865.97 

	1 
	1 
	7 
	96.13 
	54.13 
	2.47 
	58.45 
	7.88 
	1.60 

	1 
	1 
	8 
	1,617.91 
	4,376.61 
	698.98 
	1,607.12 
	951.74 
	112.33 

	1 
	1 
	9 
	519.55 
	342.30 
	14.05 
	277.74 
	101.76 
	10.43 

	1 
	1 
	10 
	3,930.84 
	6,610.76 
	92.70 
	2,396.89 
	3,134.25 
	21.07 

	1 
	1 
	11 
	4,637.38 
	3,417.35 
	327.02 
	4,133.66 
	1,255.61 
	193.75 

	1 
	1 
	12 
	4,749.74 
	2,801.96 
	140.99 
	5,680.95 
	2,309.92 
	126.02 

	2 
	2 
	1 
	1,640.97 
	7,325.15 
	93.88 
	784.31 
	158.37 
	4.84 

	2 
	2 
	2 
	976.95 
	8,942.09 
	260.63 
	851.73 
	306.66 
	18.05 

	2 
	2 
	3 
	20.39 
	-
	-
	67.63 
	0.41 
	-

	2 
	2 
	4 
	507.80 
	1,520.82 
	336.78 
	1,186.84 
	896.46 
	112.89 

	2 
	2 
	5 
	1,309.94 
	13,758.09 
	1,522.04 
	2,703.05 
	5,208.49 
	1,912.23 

	2 
	2 
	6 
	1,423.70 
	23,692.17 
	3,789.06 
	3,931.27 
	8,047.62 
	1,424.07 

	2 
	2 
	7 
	78.76 
	37.53 
	-
	54.61 
	7.31 
	0.68 

	2 
	2 
	8 
	1,360.35 
	4,658.99 
	917.20 
	1,457.11 
	893.26 
	119.84 

	2 
	2 
	9 
	367.05 
	487.38 
	5.86 
	331.54 
	112.94 
	8.88 

	2 
	2 
	10 
	4,003.24 
	8,636.34 
	93.57 
	2,208.60 
	2,936.84 
	57.52 

	2 
	2 
	11 
	4,198.92 
	3,473.57 
	464.44 
	4,157.14 
	1,741.39 
	199.73 

	2 
	2 
	12 
	4,276.52 
	2,798.85 
	202.83 
	5,178.81 
	2,576.88 
	240.41 

	3 
	3 
	1 
	1,843.67 
	7,050.35 
	55.31 
	809.63 
	177.90 
	9.20 

	3 
	3 
	2 
	1,241.48 
	9,058.00 
	-
	854.45 
	263.01 
	-

	3 
	3 
	3 
	50.01 
	-
	-
	116.55 
	9.33 
	-

	3 
	3 
	4 
	507.80 
	1,593.29 
	356.69 
	1,177.48 
	885.04 
	100.37 

	3 
	3 
	5 
	1,350.45 
	13,818.04 
	1,287.93 
	2,711.82 
	6,081.84 
	1,516.56 

	3 
	3 
	6 
	1,423.10 
	23,358.60 
	3,936.01 
	3,923.16 
	8,173.45 
	1,298.27 

	3 
	3 
	7 
	112.57 
	23.73 
	-
	44.84 
	19.34 
	3.56 

	Run No. 
	Run No. 
	Section No. 
	Cracking in the Wheel Path (Sq Ft) 
	Cracking Outside the Wheel Path (Sq Ft) 

	1B 
	1B 
	II 
	III 
	1B 
	II 
	III 

	3 
	3 
	8 
	1,307.08 
	4,703.68 
	654.26 
	1,528.60 
	908.09 
	151.24 

	3 
	3 
	9 
	494.37 
	456.16 
	16.62 
	357.86 
	98.89 
	2.82 

	3 
	3 
	10 
	3,874.28 
	6,621.60 
	153.25 
	1,966.03 
	2,689.67 
	54.32 

	3 
	3 
	11 
	4,169.74 
	3,707.66 
	539.55 
	3,934.47 
	1,745.30 
	223.88 

	3 
	3 
	12 
	4,183.89 
	2,781.78 
	210.50 
	5,214.73 
	2,452.10 
	242.68 
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	Version Number 
	Version Number 
	Version Number 
	Date of Issue 
	Authors 
	Brief Description of Changes 

	V.0.5 
	V.0.5 
	10/25/2017 
	Nima Kargah-Ostadi, Mina Zhou 
	Draft User’s Guide for semi-automated rating (manual rating of the images) using Vision 3.1 

	V 0.8 
	V 0.8 
	07/23/2018 
	Nima Kargah-Ostadi, Thomas Burchett 
	Draft User’s Guide for semi-automated rating using Vision 3.3 and automated rating using FFPDA 

	V 1.0 
	V 1.0 
	10/31/2018 
	Nima Kargah-Ostadi, Mina Zhou 
	Changed the name of the document to Reference Manual, made all sentences in active voice, changed the sequence of topics and inserted additional topics 

	V 1.2 
	V 1.2 
	02/25/2019 
	Nima Kargah-Ostadi, Mina Zhou 
	Addressed FDOT comments received 12/19/2018; added the Quick Start Guide from 12/06/2018 to this document; updated screen captures according to final software 


	L.1. Vision Batch Processing Quick Start Guide 
	This Quick Start Guide was developed with the objective of providing the users with an easy and quick guide to start using the batch processors in the Vision software. For further explanation of the details, please refer to the remainder of the Reference Manual. 
	After opening Vision, select the Database relevant to your assigned project. 
	Figure
	Select <Process> and then <New Batch Processor> from the dropdown menu. 
	Figure
	Check the boxes for ‘JPEG Lanes Detection Processor’, ‘JPEG Cracks Detection Processor’, ‘FDOT Flexible Pavement Distress App’, and ‘FDOT Flexible Pavement Rating Results Summary’. 
	Figure
	Make sure they are sorted in the correct order: 
	Figure
	Then Click <Options> 
	Click on the ‘JPEG Lanes Detection Processor’ to highlight, then click on the dropdown menu for <Detection> <Algorithm Version> and select “Wisecrax_V2”. Set the <Default lane width> to 3.6 meters and the <Minimum lane width> to 3 meters. 
	Figure
	Click on the ‘JPEG Cracks Detection Processor’ to highlight, then click on the dropdown menu for <Detection> <Detection Profile> and select “Learning based WiseCrax (LCMS)”. 
	Figure
	Click on the ‘FDOT Pavement Distress App’ to highlight, then click on <Settings>, for <Road Zone Type>, select “FDOT” for processing according to the FDOT Flexible Pavement Condition Survey Handbook or “HPMS” for processing according to the 
	HPMS Field Manual. Then, choose an output folder for your report. 
	Figure
	Click on the ‘FDOT Flexible Pavement Rating Results Summary’ to highlight, then click 
	on <Settings>, choose an output folder for your report. 
	Figure
	After you have set the above Options up once, choose Save All and save that processing setup (the 4 processes, with the settings). 
	Figure
	After saving the settings, next time you select <New Batch Processor>, skip the selection, click <Options> <Load> and select that saved process profile. 
	Figure
	Click <Data>, find your sections, highlight (use Ctrl+[left-click] to select multiple sections), click the dropdown menu next to the little check mark and click <Invert> which selects everything except what you had highlighted, and then click <Remove>. 
	Figure
	Figure
	Click <Process>, then <Start> 
	Figure
	When it is done running, click <OK> to save the processing results. 
	Figure
	Select <Rate> and then <Pavement Distress> from the dropdown menu. 
	Select <Rate> and then <Pavement Distress> from the dropdown menu. 
	Select section by highlighting it in the <Section Explorer> menu. Then, go back to the 

	Figure
	Figure
	module and click on Lock 
	to lock that section under your username. 
	Figure

	Figure
	Use the manual rating options to create manual distress (e.g. raveling, patching, etc.), or modify/delete automated distress results. 
	Figure
	Once you’re done modifying, click <Save> and <Unlock> 
	Click <Process> and then <New Batch Processor> from the dropdown menu. 
	‘FDOT Flexible Pavement Rating Results Summary’ to highlight, then click on 
	<Settings>, choose an output folder for your report. Click <Data> and reselect the desired sections, <Invert> and <Remove>. Click <Process>, <Start>. When that is done running, Click Ok to confirm the task is completed. 
	Open the destination folder and rename both output files, move them as needed. 
	L.2. Reference Manual 
	This Reference Manual includes instructions on using basic Vision software functions, and also instructions on using the automated application (batch processors) that was specifically developed during this research project for Florida DOT. The users will need to learn the basic Vision software functions to be able to setup and conduct quality control of the automated application results. Appendices C and D of this Reference 
	Manual have been designated for use by a ‘Professional User’ (project database owner) 
	because it is recommended that those adjustments be conducted at infrequent intervals by only one user per project. 
	Connecting to a Project Database 
	Vision software works based on SQL databases. Each database is called a project and it may include any number and length of sections. Click on Connect (top left-hand side) to display the recent databases that you have accessed. To connect to a new project, click on New and a window will allow you to enter the server name where the data is stored, username and password to access the server (or use Windows Authentication), and the name of the database which you would like to connect to. See an example below: 
	Figure
	Section Explorer 
	When connected to a specific project (database), a list of sections in the database will appear on the Section Explorer screen. These sections are defined during the planning process for data collection. The pavement sections are organized in 
	‘Sessions’, where images are stored. Double click on a session in the Section Explorer 
	to highlight it. Only one session can be highlighted at a time. A session needs to be highlighted before any manual data processing can be conducted on it (e.g. semiautomated rating of distress). Please refer to the section of this document on to select multiple sessions for the automated processing. 
	-
	Using 
	Batch Processors 

	Figure
	Section Filters 
	You can filter out the sections which do not have the desired data using the section filter, a small drop-down button below the column header. 
	Figure
	The default filter is not activated (‘No Filter’). To activate the filter function on each 
	column in the Section Explorer menu, first select a filter option from the filter drop-down list, input a value, and then click the filter drop-down button again to confirm using the filter. The drop-down list includes ten options, as shown below: 
	Figure
	The following explains how each filter option works. 
	: Only test sections in which the column value contains the input characters will 
	Contains

	be shown on the section list. For example, if you select ‘Contains’ and use ‘19’ as the input value in the ‘Route’ column, only sections in which ‘Route’ value contains 19 will be shown on the section list. This might include ‘Route’ number 19 or 192 or 219, etc. 
	Figure
	: Only test sections in which the column value does not contain the input characters will be shown on the section list. For example, if you select ‘Does not contain’ and use ‘19’ as the input value in the ‘Route’ column, only sections in which ‘Route’ value doesn’t contain 19 will be shown on the section list. 
	Does not contain

	: Only test sections in which column values start with the given characters will be shown on the section list. 
	Starts with

	: Only test sections in which column values end with the given characters will be shown on the section list. The following is an example application of this filter on the Route column: 
	Ends with

	Figure
	: Only test sections in which column values are equal to the given characters will be shown on the section list. 
	Equals

	: Only test sections in which column values are not equal to the given characters will be shown on the section list. The following shows an example application of this filter on the Direction column: 
	Not equal to

	Figure
	: Only test sections in which column values are ‘null’ will be shown on the section list. 
	Is null

	: Only test sections in which column values are not ‘null’ will be shown on the section list. 
	Is not null

	: you can create a more complicated filter by using ‘And’ and ‘Or’, for example, ‘Ends with I-4’ or ‘Ends with 24’ as shown in the following filter example on the Route column: 
	Custom

	Figure
	Group Editor 
	This function will allow you to save all the filters for Section Explorer. From the Tools drop-down menu, select Group Editor: 
	Figure
	The Section Explorer will appear within the Group Editor window: 
	Figure
	Apply the filtering criteria as described previously. Then, select all the filtered sections to be highlighted: 
	Figure
	Right click on the selected sections, and click on Create Group: 
	Figure
	The Group Editor window appears (see below). The IDSession values for the selected sections will appear in this window and can be modified if needed (see the last white box in the following screen capture). Input a Name and a Description for your group: 
	Figure
	Click OK to confirm the creation of the group. The following conformation window will appear. Click the Save button ( ) to save the group: 
	Figure

	Figure
	The next time you open Vision, click Groups in Section Explorer to view the saved group: 
	Figure
	The Group Partitions Explorer appears. Click on the desired saved group (e.g. 
	‘Run2’), and you will see the group you had created: 
	Figure
	The Section Explorer will only display the filtered sections in the created group: 
	Figure
	Column Chooser 
	You can add/remove more column(s) to/from the table in Section Explorer by using Column Chooser. Move the mouse over one of the header columns, and right click the header, a drop-down menu appears as shown below: 
	Figure
	Click the Column Chooser in the menu, and the Column Chooser menu appears. 
	: Drag the desired field from the list to the table header to add it to the current view as an additional column: 
	Add column

	Figure
	: Drag a column header from the table to the list to remove it from the current view. 
	Remove Column

	NOTE: Time is when the data was collected. Start is the start milepost in the actual collection. End is the end milepost in the actual collection. These start and end points might not necessarily be the boundaries within which the data is processed. Those boundaries can be adjusted through the Segmentation process, which is explained in the section on Segmentation at the end of this Appendix. 
	Opening Pavement and ROW Images 
	From the menu bar, select Images and then select LCMS3D, LCMSIntensity, LCMSRange, or ROW images: 
	From the menu bar, select Images and then select LCMS3D, LCMSIntensity, LCMSRange, or ROW images: 
	While the LRIS system only collects intensity images, the LCMS 3D image system is able to acquire both intensity images and range images, which includes depth information of pavement surface. The LCMS3D image is the combination of intensity image (LCMSIntensity) and range image (LCMSRange). All of these images are displayed if a path is provided to the location where the images are stored. Please refer to the section on Advanced Project Settings in this Appendix for instructions on providing the image path.

	Figure
	Figure
	LCMS 3D Image LCMS Range Image LCMS Intensity Image 
	ROW image shows the forward-facing Right-of-Way image. If more than one image is provided, the software is capable of displaying more forward or rear facing images. 
	Figure
	The play-stop-forward-backward buttons can be used to see images along the length of the roadway. The play speed can be adjusted. The slider bar on the right-hand side shows the location in 0.001-miles from the beginning of the roadway section. 
	Customizing the Work Space 
	You can move any of the opened tabs (‘Section Explorer’, ‘LCMS3D’ and ‘ROW’ in this 
	example) around one or multiple monitor screens to arrange the windows according to your preferences. If you have multiple monitors, you can right-click on any tab, select Undock and then move the new window to another monitor screen: 
	Figure
	Using Batch Processors 
	Batch processors are used for any automated data processing in Vision. The use of batch processor(s) includes the following five steps: 
	1. 
	1. 
	1. 
	Select Batch Processor 

	2. 
	2. 
	Set Parameters and Options 

	3. 
	3. 
	Select Data 

	4. 
	4. 
	Run Batch Processor(s) 

	5. 
	5. 
	Save Batch Processor Settings (optional but recommended) 


	Step1. Select Batch Processor 
	To launch the batch processor, click on the Process icon located on the upper toolbar (as shown in the following figure). Select New Batch Processor from the drop-down menu. 
	Figure
	To select a batch processor, locate the processor from the list, or type in the name of the processor into the search bar and click on the search icon. 
	Figure
	Click on the checkbox to select the batch processor. The selected batch processor will be displayed in the table at the bottom of the window: 
	Figure
	Step2. Set Parameters and Options 
	Once you have selected the processor(s), the next step is to set the parameters and other options for the processing. Click on the Options tab and options of the batch processor will be displayed: 
	Figure
	Select the parameters for each processor from the table on the right: 
	Select the parameters for each processor from the table on the right: 
	A description of each selected parameter is also provided in the table below it: 

	Figure
	Figure
	To reset any of the changes in the parameters or the options, click on the Reset button: ( 
	). Select the options from the Options table: 
	Figure
	Any errors or missing values for parameters are displayed at the bottom of the window: 
	Figure
	Step3. Select Data 
	The next step is to select the data on which the batch processors will run. Click on the Data tab. All sessions (sections) have been selected by default and you needs to remove the sessions that you are not interested in: 
	The next step is to select the data on which the batch processors will run. Click on the Data tab. All sessions (sections) have been selected by default and you needs to remove the sessions that you are not interested in: 
	To select specific sessions (sections) only, click on those sessions in the list and they will be highlighted in blue: 

	Figure
	Figure
	Click Invert to deselect all the undesirable sessions (sections), which will result in the undesirable sessions being highlighted in blue. Click Remove to keep only the desired sections: 
	Figure
	A list of selected sessions will be displayed: 
	Figure
	Step4. Run Batch Processor 
	After selecting the processor, its options, and the data, the last step is to run the batch processing. Click on the Process tab, which will appear after all the parameters have been set correctly. 
	1. 
	1. 
	1. 
	To schedule a batch process, click on Schedule and select Immediate to process immediately or click on Delayed and select the date and time when it should be processed. 

	2. 
	2. 
	Click on Start to begin processing immediately. If you have selected Delayed in the first step, you do NOT need to click on Start. 

	3. 
	3. 
	The progress for each batch processor and the overall progress will be displayed at the bottom of the window. 

	4. 
	4. 
	Once the processing is complete, a pop-up window will be displayed, which will report whether the process was completed without errors. After clicking on the OK button on that pop-up window, the Tasks tab is no longer available. To carry out another batch process, close the window and reopen the Batch Processor. 


	Figure
	Running Multiple Batch Processors 
	Vision allows you to select multiple processors and process the data with each processor one after another: 
	1. Select the desired processors from the Task tab: 
	Figure
	2. 
	2. 
	2. 
	Make sure the desired processors are selected in the correct order by checking the table in the bottom of the window: 

	3. 
	3. 
	Set Options for each batch processor: 

	4. 
	4. 
	Click on the Data tab and select section(s) that you want to process. Note that by default, all sections in a project are selected and the desired section(s) are chosen by selecting and removing the undesired section(s). 

	5. 
	5. 
	Click on the Process tab and click on the Start button to process the selected section(s): 


	Figure
	Figure
	Figure
	Figure
	Step5. Save Batch Processor Settings 
	You can save all the settings for the batch processors so that the same settings can be applied the next time you open Vision software. 
	Click on the Save all button ( ) to save all options for all selected processors: 
	Figure

	Figure
	Select the file path where you want to save the xml file and Input the file name: 
	Figure
	The next time you run multiple batch processors, you can skip the steps of selecting Tasks and go directly to Options. Click the Load button to load the settings file saved in Step 5: 
	The next time you run multiple batch processors, you can skip the steps of selecting Tasks and go directly to Options. Click the Load button to load the settings file saved in Step 5: 
	Four processors are selected in this example, and the previous settings are loaded for all four processors: 

	Figure
	Figure
	Figure
	Next, you need to select the desired sections and run the processors. By using this save and load operation, the same batch processors with the same settings can be used on multiple databases and multiple sections. 
	Automated Distress Rating 
	There are five steps for automated pavement distress rating: 
	1. 
	1. 
	1. 
	Vision Lane Detection: the ‘JPEG Lanes Detection Processor’ 

	2. 
	2. 
	Vision Crack Detection: the ‘JPEG Cracks Detection Processor’ 

	3. 
	3. 
	‘FDOT Flexible Pavement Distress Application (FFPDA)’ 

	4. 
	4. 
	Quality Control of Automated Distress Rating Results using Manual Rating (this is a non-mandatory manual process) 

	5. 
	5. 
	‘FDOT Flexible Pavement Rating Results Summary’ 


	It is recommended to utilize the first three batch processors simultaneously to automatically detect the lanes, detect cracks from pavement images, and classify and rate the detected cracks to be assigned as distresses according to the FDOT protocol. After automated rating has been completed, you can perform an optional quality control check to investigate whether the automated rating was completed successfully and use the manual rating tools to make adjustments where necessary (semi-automated rating). Runn
	If you want to skip the quality control step, you may select the ‘FDOT Flexible Pavement Rating Results Summary” processor together with the initial three batch processors for 
	automated distress rating in the following order: 
	Figure
	This way, the selected section(s) will be processed using all four processors one after the other. To ensure the data quality, it is recommended to NOT skip the manual quality control step. 
	Lane Detection Processor 
	Automated lane boundary detection can be completed on pavement images using the 
	‘JPEG Lanes Detection Processor’. 
	Figure
	Lane Detection Options 
	There are four groups of options for ‘JPEG Lanes Detection Processor’. 
	Figure
	• 
	Detection 

	Algorithm Version: Select algorithm version used for the lane detection. It is recommended to use the latest version. 
	• 
	Lane Width Range 

	Default lane width: The default lane width to be stored when no lanes are detected. When lane stripes are detected, and the detected lane width is not within the range 
	Default lane width: The default lane width to be stored when no lanes are detected. When lane stripes are detected, and the detected lane width is not within the range 
	identified by the minimum and maximum, this number will be stored. Please set this according to project specifics, e.g. 3.6 meters. 

	Maximum lane width: Only lanes smaller than this value will be stored to the database. When the detected lane width is more than this threshold, the default lane width will be stored. 
	Minimum lane width: Only lanes greater than this value will be stored to the database. When the detected lane width is smaller than this threshold, the default lane width will be stored. Please set this according to project specifics, e.g. 3.0 meters. 
	• 
	Memory/Performance 

	Allow parallelization at session level: If set to true, whole sessions are processed in parallel while keeping all images of each session together. If set to False, images from multiple sessions can be processed simultaneously if the computer has adequate number of cores available for such an operation. This is set to false by default for improved speed. 
	Use ideal CPU count: If parallelization at session level is set to True, this option will be available. If this is set to True, the number of CPU cores to use is determined automatically based on the hardware available and the amount of memory the processor uses. If this is set to False, the user should enter the number of CPU cores to use. 
	• 
	Process 

	Matches tolerance: Tolerance threshold, which will extend the matches if the next option is set to True. 
	Process only matches: If set to true, only the images contained in matches (parts of the sessions where collected data matches routed data) will be processed. It is recommended to keep this option at False to process all images in each session. 
	Run on every Nth image: Run on every Nth image, after 1 frame is added to the output. For example, if set to ‘2’, it only processes every other image. 
	Cracks Detection Processor 
	Automated crack detection can be completed on pavement images using the ‘JPEG Cracks Detection Processor’. 
	Figure
	Crack Detection Options 
	There are three groups of options for ‘JPEG Cracks Detection Processor’. 
	• 
	Detection 

	Detection Profile: Select the profile used for crack detection, as defined in the schema 
	editor. It is recommended to select the ‘Learning based WiseCrax (LCMS)’ as detection 
	profile if the LCMS range images are available. This profile was developed by training a 
	machine learning algorithm on LCMS range (depth) images. The ‘Learning based WiseCrax (JPEG)’ option was developed by training a machine learning algorithm on 
	intensity images. The other options on this list were developed for specific past projects and are not recommended to be used on new projects. 
	• 
	Memory/Performance 

	Allow parallelization at session level: If set to true, whole sessions are processed in parallel while keeping all images of each session together. If set to False, images from multiple sessions can be processed simultaneously if the computer has adequate number of cores available for such an operation. This is set to false by default for improved speed. 
	Use ideal CPU count: If parallelization at session level is set to True, this option will be available. If this is set to True, the number of CPU cores to use is determined automatically based on the hardware available and the amount of memory the 
	Use ideal CPU count: If parallelization at session level is set to True, this option will be available. If this is set to True, the number of CPU cores to use is determined automatically based on the hardware available and the amount of memory the 
	processor uses. If this is set to False, the user should enter the number of CPU cores to use. 

	• 
	Process 

	Matches tolerance: Tolerance threshold, which will extend the matches if the next option is set to True. 
	Process only matches: If set to true, only the images contained in matches (parts of the sessions where collected data matches routed data) will be processed. It is recommended to keep this option at False to process all images in each session. 
	Run on every Nth image: Run on every Nth image, after 1 frame is added to the 
	output. For example, if set to ‘2’, it only processes every other image. 
	Figure
	FDOT Flexible Pavement Distress Application (FFPDA) 
	The ‘FDOT Flexible Pavement Distress Application’ is a crack classification and rating tool customized for FDOT according to classification and rating protocols defined in the FDOT Flexible Pavement Condition Survey Handbook. 
	Figure
	FFPDA Options 
	There are four options that you need to select in the FFPDA batch processor. 
	• 
	Memory/Performance 

	Allow parallelization at session level: If set to true, whole sessions are processed in parallel while keeping all images of each session together. If set to False, images from multiple sessions can be processed simultaneously if the computer has adequate number of cores available for such an operation. This is set to false by default for improved speed. 
	Use ideal CPU count: If parallelization at session level is set to True, this option will be available. If this is set to True, the number of CPU cores to use is determined automatically based on the hardware available and the amount of memory the processor uses. If this is set to False, the user should enter the number of CPU cores to use. 
	• 
	Settings 

	Output Folder for Rating Results: This is the file location to save the rating results, a csv file. 
	Rating Distress in Different Road Zone? (True or False): The batch processor provides two ways to rate the distress. It is recommended to use the default value, which is True. 
	1. 
	1. 
	1. 
	False: First classify and rate the distresses, then divide the rated distresses into different road zones. 

	2. 
	2. 
	True: First divide the cracks into the different road zones, and then classify and rate them. 


	RoadZone Type: use FDOT for the FDOT defined wheel paths and use HPMS for FHWA defined wheel paths for calculating Percent Cracking. 
	Figure
	FFPDA Results 
	The Rating Results are saved as a ‘distressRecord.csv’ file in the output folder that you 
	had chosen in the settings. If FFPDA is executed multiple times with the same folder selected for output, then the csv file created in the initial run will be amended with results from the following runs. The table in the csv file includes the following fields: 
	• 
	• 
	• 
	: ID of the specific distress within the entire section. 
	DistressID


	• 
	• 
	: ID of the specific section. 
	SectionID


	• 
	• 
	: ID of Run on the specific section. In the sample data, each section has been collected for three times. The RunID ranges from 1 to 3 in that example. 
	RunID


	• 
	• 
	: Type of distress, alligator, branch or single cracking. 
	Type


	• 
	• 
	: severity level of distress, value can be 1B, II or III. 
	SeverityID


	• 
	• 
	: a Boolean value, true means the distress is within wheel path 
	IsWheelPath



	road zones (CW), ‘False’ means the distress is outside wheel path road 
	zones (CO). 
	• 
	• 
	• 
	: transverse extent (in feet) of the distress bounding box. 
	TransExtent


	• 
	• 
	: longitudinal extent (in feet) of the distress bounding box. 
	LongiExtent


	• 
	• 
	: distress area (in square feet). For alligator cracking the area is the TransExtent multiplied by LongiExtent. For single cracking and branch cracking, the area is distress length (the diagonal length of the distress bounding box) multiplied by 1ft. 
	Area


	• 
	• 
	: the corresponding range (depth) image file path (including the file name), which contains the distress. 
	ImageName


	• 
	• 
	: distance of distress from the beginning of the session (in feet). 
	DistanceStamp



	The following is an example screen shot of the output file format: 
	Figure
	Automated Rating Results Summary 
	The ‘FDOT Flexible Pavement Rating Results Summary’ processor has been designed 
	to summarize all the rating results either directly following the FFPDA automated rating or after conducting a manual QC of the FFPDA results. This batch processor exports the summarized results into a csv file. 
	Summary Options 
	There are two options that you need to select in the ‘FDOT Flexible Pavement Rating Results Summary’. 
	Figure
	• 
	Memory/Performance 

	Allow parallelization at session level: If set to true, whole sessions are processed in parallel while keeping all images of each session together. If set to False, images from multiple sessions can be processed simultaneously if the computer has adequate number of cores available for such an operation. This is set to false by default for improved speed. 
	Use ideal CPU count: If parallelization at session level is set to True, this option will be available. If this is set to True, the number of CPU cores to use is determined automatically based on the hardware available and the amount of memory the processor uses. If this is set to False, the user should enter the number of CPU cores to use. 
	1. 
	Settings 

	Output Folder for Rating Results Summary: This is the file location to save the rating results, a csv file. 
	Summary Results 
	The rating results are saved as ‘distressResultSummary.csv’ in the output folder that 
	you had chosen in the settings. The table in the csv file includes the following fields: 
	• 
	• 
	• 
	: ID of the specific section. 
	SectionID


	• 
	• 
	: ID of Run on the specific section. In the sample data, each section has been collected for three times. The RunID ranges from 1 to 3 in that example. 
	RunID


	• 
	• 
	: 
	Section_Length (ft)


	• 
	• 
	: 
	Avg_Section_Width (ft)


	• 
	• 
	: 
	Section_Area (sq ft)


	• 
	• 
	: Percentage area of section wheel paths with distress. 
	CW (%)


	• 
	• 
	: Percentage area of section non-wheel path zones with distress. 
	CO (%)



	• 
	• 
	• 
	SeverityID_WP: predominant severity level of distress in the wheel paths, value can be 1B, II or III. 

	• 
	• 
	SeverityID_NWP: predominant severity level of distress in the non-wheel path zones, value can be 1B, II or III. 

	• 
	• 
	Code_WP: assigned according to the FDOT Flexible Pavement Condition Survey Handbook. 

	• 
	• 
	Code_NWP: assigned according to the FDOT Flexible Pavement Condition Survey Handbook. 

	• 
	• 
	SectionScore: calculated according to the FDOT Flexible Pavement Condition Survey Handbook. 


	Figure
	Quality Control of Automated Distress Rating Results 
	In this optional step, you can modify or delete the automatically identified distresses, or add a new distress that was not detected by the automated process. For example, you might want to increase the severity level of a distress or identify an area of patching or raveling that cannot be automatically identified. 
	Setup for Distress Rating 
	Select the Pavement Distress module from the Rate menu located along the Vision toolbar to rate pavement distress: 
	Figure
	Switching Image Type 
	The default image displayed is LCMS 3D image, which is the combination of both intensity image and depth image. You can change the displayed image to Range image, and Intensity image using the LCMS button. 
	Figure
	Pavement Image Control 
	To scroll image forward or backward, place cursor on the left edge to see the blue arrows. The scroll speed is controlled by placement of the cursor along the left edge. Speed increases as cursor position is further away from the middle zone along the left edge and speed decreases as cursor position is closer to the middle. Placing the cursor in the middle zone or moving it away from the left edge will stop the scrolling. 
	Figure
	Segmentation Status Check 
	Click on the check-mark icon at the bottom left side of the pavement image. From the menu, click on the Segmentation Status Legend, which will appear on the left edge of the screen when turned on to indicate whether the current pavement image is segmented: 
	Click on the check-mark icon at the bottom left side of the pavement image. From the menu, click on the Segmentation Status Legend, which will appear on the left edge of the screen when turned on to indicate whether the current pavement image is segmented: 
	It will show a navy-blue line for segmented, light blue line for non-segmented, and red for rejected, along the left edge of the pavement image: 

	Figure
	Figure
	This allows you to differentiate between the different sections, i.e. segmented, non-segmented or rejected. If any part of the image is not segmented, the data processing cannot be saved. Please refer to the section on Segmentation at the end of this Appendix for segmentation instructions. 
	Pavement Image Adjustment 
	You can edit the appearance of pavement imagery to facilitate manual rating of the 
	pavement images. The 
	button from the top of the pavement image provides an Image Adjustment window as in the following screen to edit properties such as sharpness, brightness, and contrast. These modifications will only affect the image 
	button from the top of the pavement image provides an Image Adjustment window as in the following screen to edit properties such as sharpness, brightness, and contrast. These modifications will only affect the image 
	Figure

	appearance for manual rating, and will not affect the automated distress identification process. 

	Figure
	‘Lock’ Sessions 
	Before you can start a manual distress survey on any pavement section, that specific session/section needs to be "locked" under your name. This ensures that only one person at a time can have access to add/edit pavement distresses on that section. As a general rule, automated processes can be executed without locking sessions, but any manual adjustments would require you to lock the session. 
	Click on the lock icon on the top left side and select Lock from the menu to lock that section under your user name. 
	Figure
	Select Assignments from the menu and you can see a list of assignments for each user and the status of the assignments. If you are the administrator, you can select a user, Assign them an activity, Lock or Unlock the section under their user name, and mark that assignment as Complete. 
	Figure
	Manual Rating of Pavement Distress (Semi-Automated Survey) 
	The available distress types and the corresponding severity levels are preset using the Distress Schema. Please refer to the section on Advanced Project Settings in this Appendix for setting up the Distress Schema for each Project. There are a variety of tools for drawing cracks and distresses on pavement surface. 
	Adjust Lane Edge 
	At the first step, you will need to identify the edges of the lane that you would like to 
	rate. Using this button 
	you can drag and adjust the lane edges on the left and right. The lane edge adjustment will need to happen at specified intervals or wherever you deem necessary. 
	Figure

	Figure
	Click on left/right half of the image, left click your mouse and select Adjust Lane Edge (left/right): 
	Figure
	Draw Distresses 
	You can use the Distress button 
	on the top to draw distresses. If you would like to identify linear distresses such as spalling, you should left-click the beginning and the end points for the crack, and depending on the angle of the created line (less than or more than 45 degrees), the software will give you options to select from the available distresses. You should also select from the defined list of severity levels. For example, 
	on the top to draw distresses. If you would like to identify linear distresses such as spalling, you should left-click the beginning and the end points for the crack, and depending on the angle of the created line (less than or more than 45 degrees), the software will give you options to select from the available distresses. You should also select from the defined list of severity levels. For example, 
	Figure

	you can see a longitudinal crack in the following example, which can be a Single or Branch crack: 

	Figure
	If you would like to identify an area type distress (fatigue cracking, patching, etc.), then you should left-click and drag to draw a box, and the software will give you the available distress options and severity levels for each. For example, you can see an area distress in the following example, which can be Block Cracking, Alligator Cracking, Patching, or Raveling: 
	If you would like to identify an area type distress (fatigue cracking, patching, etc.), then you should left-click and drag to draw a box, and the software will give you the available distress options and severity levels for each. For example, you can see an area distress in the following example, which can be Block Cracking, Alligator Cracking, Patching, or Raveling: 
	If you would like to identify a point type distress (counting the number of joints with defined condition, or number of shattered slabs), then you should double-click on the pavement image and the software will give you the available distress options and severity levels for each distress type. 

	Figure
	Erase Distresses 
	If you would like to erase a distress you can use the Eraser 
	button and you can identify the distresses that you would like to erase. An alternative option would be to use 
	Figure

	the Delete 
	button for which, the distress needs to be selected before using this button. 
	Figure

	Figure
	Modify Distress Type and Severity Level 
	To modify a distress type or severity, you can use the Modify Distress button: 
	Figure
	Figure
	Modify Distress Size 
	To modify the size of a manually drawn distress, first use the Select ( ) button to 
	Figure

	select the distress and then click the Resize Distress button: In the following example, distress record 1406 is being modified. The coordinates of the bottom of the distress have been selected as the anchor for this resizing. The horizontal and vertical scroll bars help change the length and angle of the selected linear distress. If this was 
	Figure

	an area distress, the horizontal and vertical scroll bars would change the dimensions of the selected distress. You cannot modify the size of an automatically identified distress. 
	Figure
	Manual Measurements 
	If you need to measure distress dimensions to assign appropriate severity levels, you 
	can use the Measure 
	button. 
	Figure

	Finish Manual Changes 
	If you would like others to be able to see the results of your distress survey, you should 
	save your work with the Save 
	button. Be CAUTIOUS as the Reload 
	Figure

	button will undo all of the distresses that you have drawn on the pavement image since the last time that you hit the save button. Make sure you Unlock the section after you have completed any manual changes. 
	Figure

	Recommendations 
	The following are recommendations for FDOT staff to consider while using the software. 
	Build Workspace 
	It is recommended to build your own work space by using Dock, Undock, New Horizontal Tab Group and New Vertical Tab Group. Vision provides you with flexibility when building your workspace. If you are using dual monitors, you may wish to undock your video or your map views and move them to a second monitor. 
	: To undock a window from its tabbed location, right click on the tab of the window and select Undock. 
	Undock a Window

	Figure
	Dock a Window: 
	1. 
	1. 
	1. 
	To dock a floating window into a tabbed location, click on the Dock window icon on the toolbar. 

	2. 
	2. 
	From the dropdown list, select the view you wish to dock as a tab in the Vision window. 

	3. 
	3. 
	The floating window now becomes a tab in the main Vision window. 


	Figure
	Figure
	: Split Windows provide you with the capability to split your workspace views into frames; providing the advantage of having all of your views in one workspace. 
	Create Split Window

	1. 
	1. 
	1. 
	Right click on the tab you wish to move into the split window. 

	2. 
	2. 
	Select between New Horizontal Tab Group or New Vertical Tab Group, and the active tab now appears in a split window below or to the right, respectively. 

	3. 
	3. 
	Continue to split tabs using either horizontal or vertical splits until you have achieved the views that work for you. Then go to the File menu and select Save Workspace to save these settings. Next time you open Vision, you can go to the File menu and Select Workspace to reload the same settings. 


	Figure
	Check Segmentation status 
	You should check the segmentation status (page  to make sure the manual rating is only conducted on pavement images in the segmented sections, which are within the provided mileage range. 
	559) frequently

	Use LCMS Range Image and ROW Image 
	It is recommended to use both LCMS range image and ROW image as references for manual quality control of the automated results. 
	Wheel Path Crack and Non-Wheel Path Crack 
	You don’t need to differentiate between wheel path crack and non-wheel path crack when conducting the manual rating. The developed SQL code in the ‘FDOT Flexible Pavement Rating Results Summary’ processor will separate them based on their x 
	coordinates. These x coordinates are affected by the adjusted lane lines and vehicle wander. If lanes are adjusted after distress identification, the summary processor will use the adjusted lanes to identify the wheel path zones. Vehicle wander is always an 
	coordinates. These x coordinates are affected by the adjusted lane lines and vehicle wander. If lanes are adjusted after distress identification, the summary processor will use the adjusted lanes to identify the wheel path zones. Vehicle wander is always an 
	issue and drivers need to do their best to drive in the middle of the lane. However, if there are clear lane markings on the pavement, vehicle wander will not impact the lane detection significantly and thereby the location of the wheel paths would not be impacted either. 

	L.3. Installation Instructions for Vision Platform and the FFPDA 
	0) Uninstall the current Fugro Roadware Vision 
	1) Install Fugro Roadware Vision 3.1.1 using the provided msi file. 
	If there is an error regarding C++ (see below), install the vcredist_x64.exe file and then install Vision. 
	Figure
	Please note that for the Vision software, you will need to enter the licence key to extend the availability of the software from 30 days to 365 days. Please contact Fugro for a license key if you have not been provided one. 
	3) Copy the following Roadware.Algorithm.FDOT.Rating.dll file into this folder: 
	C:\Program Files\Fugro Roadware\Fugro Roadware Vision\ 
	Figure
	4) Copy the Roadware.Processing.FDOT.FlexibleCrackRating.dll file into this folder: C:\Program Files\Fugro Roadware\Fugro Roadware Vision\PlugIn\Processors\Cracks\ 
	Figure
	5) Now, run Vision and connect to the following test database to test if everything is working fine: 
	database name: FDOT_LRIS_TEST_Final 
	L.4. The Difference Between Crack and Distress 
	The following provides a clarification on the Crack and Distress nomenclature in Vision software. Cracks are linear features detected from pavement surface images. 
	Crack Cracks Rated as Distress Distress 
	After classification and rating, type and severity are assigned to cracks. Then the cracks become distresses. 
	The length of crack is the actual length of the crack lines. 
	We use diagonal lengths of distress bounding boxes in order to match the semiautomated result and what raters do in reality. 
	-

	L.5. Project Advanced Settings 
	It is recommended that only a professional user (project database owner) would setup these advanced settings on each project. After the professional user conducts these preliminary settings, the parameters will be saved against the corresponding project SQL database. Therefore, any other user who accesses the project will not need to modify these settings. 
	Connecting to the Images for the Project (Professional User) 
	If this is the first time you or any of your colleagues are accessing this database, then you need to make sure that the project contains the correct links to the directory where the corresponding images are stored. This setting would also be required if the project images have been moved to a new location on the server. Go to the File System Mapper under the Tools menu. Select the image type(s) for which you would like to specify a directory and then click on Remap: 
	Figure
	Then you will be able to enter a new directory address for those images and click OK. then you will see a list of all the images found. Click on Check >> Destination. If the images exist, the destination addresses will turn bold: 
	Figure
	Now you can click on Map and the correct image paths will be restored. Please note that this will update the image paths for this project for all users. Therefore, this needs to be done once, preferably by the administrator of that project and then everyone will be able to see the images. In order for Vision to run faster, it is recommended that the images be stored on the FDOT server. 
	Preliminary Adjustments (Professional User) 
	The correct ‘Distress Schema’ needs to be loaded before running the application. The 
	schema specifies the included distress types and their severities. Fugro engineers create project specific schema that can be saved, emailed, and loaded. If you do not have a distress schema, or if you would like to create one for a specific different project, 
	then you need to use the process for ‘Setting Up a Schema,’ which is explained at the 
	end of this Appendix. It is recommended that the new users would refrain from creating or modifying distress schema, unless approved by a more professional user. Different profiles will impact the detection results a lot, because each profile contains different parameter settings for the detection process. It is very important that you use the detection profile specifically created for you by a professional user. Once a schema is loaded for a project, other users can access it. Therefore, it is recommended 
	The following screen captures show where the professional user can load a previously 
	saved schema. Click the ‘Schema’ button to go to the ‘Distress Schema Editor’. 
	Figure
	Then go to the ‘Profiles’ tab, and load the schema file from the saved location on your 
	hard drive or server. 
	Figure
	Distress Schema Setup (Professional User) 
	Click on the New button in the ‘Distress Schema Editor’ window. Create Distress Types (Distress Name and category listed as follows):  
	Figure
	Create distress type by using the Distress Type Editor: 
	Figure
	You can create and/or modify severity levels by using the Severity Editor. The rated crack would be displayed according to severity level. 
	Figure
	L.6. Segmentation 
	Vision software relies on location referencing data provided by roadway owners, also known as Routing data to collect inventory and condition data. Routing data is the list of all the roads to be collected, defined using locators, GPS markers, associated chainages etc. and Routing is the process that prepares that data for collection. 
	The Routing data is imported twice during the span of data collection to processing, 
	using the ‘Routing Importer’ tool. First, the Routing data is imported into the ARAN 
	Collection Software (ACS) to inform the truck-operators which roads they need to collect. Second, the Routing data is imported into the processing database for all sorts of data handling using Vision software, including especially the Segmentation process. Vision software accepts a certain format of Routing data to be imported for these purposes. 
	Segmentation is a combination of multiple processes (match, transfer, order, reject, etc.), which evaluate the Routing expected data, that is linear references, GPS positions, landmarks, etc. and compare them against the collected data. 
	This assessment can be performed using two concepts: ‘rubber-banding’ and ‘re-chaining’. For example, if the Routing data (before collection) suggest that a piece of 
	road is 100 feet and the collected data suggest it is 110 feet, but the owner desires the data to be tagged according to their own system as 100 feet, you can rubber-band the data. On the other hand, if the owner desires to correct their system according to the collected data, then you can re-chain the data. In other words, rubber-banding is used when there is more confidence in the Routing package and re-chaining is used when there is more confidence in the actual collected data than the pre-collection Rou
	The Section Composition module in addition to a few other modules allow you to perform all of these complex tasks through a simple user interface. 
	Segmentation Workflow 
	The steps below are simplified instructions for the segmentation process: 
	1. 
	1. 
	1. 
	Connect to the project database. 

	2. 
	2. 
	Review the project-specific location referencing data to get familiar with the sections and their boundaries. 

	3. 
	3. 
	Perform auto-matching (See instructions in the remainder of this Appendix for more details) if a standard Routing package is available. NOTE: The Java code developed for this research project for transferring data into a Vision database is already conducting the automated matching and there is no need for a Routing package if this Java code is executed. 

	4. 
	4. 
	Manual matching can be used to QC the results of the automated matching. In the ‘Section Composition’ module, go to each ‘session’ (section), QC the matching results and if any corrections are needed, perform the manual matching steps explained below. 

	5. 
	5. 
	‘Save’, ‘Check-In’, and ‘Complete’ to submit your segmentation work. 


	The following will focus on details in steps 4 and 5 of the above workflow. 
	Manual Matching 
	The following will start with the introduction of the Section Composition View to help you get familiar with this interface. Then the procedure of performing manual matching in Section Composition is explained. 
	Section Composition View 
	The Section Composition View presents a linear representation of all the sections that have been collected, and allows you to match the collected data with the routed data through automatic or manual matching. To perform matching, the Section Composition view is used along with the Map View, Image Stream and the Web Map. 
	To launch the Section Composition View, click on View drop down menu and select Section Composition or select it from the Segment drop down menu. 
	Section Composition in View 
	Section Composition in View 
	Section Composition in View 
	Section Composition in the 

	Menu 
	Menu 
	Segment drop down menu. 


	Figure
	There are three main components in the Section Composition as shown in the figure below: two bars (highlighted in blue), a tool bar on the top (highlighted in red) and two tables on the left hand side (highlighted in green). 
	The tool bar on top provides general tools that will be discussed in this Appendix and it also shows the length of the matched section in the white box. Of the two bars highlighted in blue in the following picture, the top bar shows the routed section and the bottom bar shows the collected section. 
	Figure
	Located at the top left, the Section table provides locator information and the associated values. Located below the Section table, the Session table provides information about the session, such as Time, Date, Collection Vehicle, and current user. 
	Section table Session table 
	Below the Section and Session tables is a Navigation Tool bar. 
	Navigation Tool bar: 

	Figure
	The cursor icon in Navigation Tool bar (see above) opens the actions drop down list. For instructions on how to use these actions, see the remainder of this Appendix. 
	Action drop down list: 
	Figure

	Figure
	Following the first cursor icon ( ), there are four pointers, A, B, C and D. 
	Following the first cursor icon ( ), there are four pointers, A, B, C and D. 
	Figure

	The table below explains functions of these four pointers. 

	Figure
	Icon 
	Icon 
	Icon 
	Description 

	First pointer (A) 
	First pointer (A) 
	Jump to the beginning chainage 

	Previous pointer (B) 
	Previous pointer (B) 
	Navigate to previous landmark 

	Next pointer (C) 
	Next pointer (C) 
	Navigate to next landmark 

	Last pointer (D) 
	Last pointer (D) 
	Jump to the end chainage 


	If there are multiple collected segments in one session (typically this happens because collection was started ahead of the intended section and/or ended after the 
	Go: 

	end of the intended section), this button ( ) selects one of the segments in the Section Composition view. 
	Figure

	Use the pink cursor shown below to navigate to different positions along the Section Composition View. The cursor is useful as a visual aid to help line up the nodes when performing manual matches or making adjustments. 
	Cursor: 

	Figure
	Click and drag the cursor to the desired location. All views, including the Map View, Image Stream and the Web Map will reflect the new location. 
	Perform Manual Matching 
	Performing manual matching in the Section Composition includes two steps: 
	1. 
	1. 
	1. 
	Open the Section Composition view. 

	2. 
	2. 
	Right click on the collected session (the bottom bar), click ‘Add Match’ and select the ‘All’ option. 


	The option to Add Match will be available if the segment is not already matched. If the segment has already been matched, the option for Ad Match will be greyed out and the option to Delete Match will be available. 
	Figure
	The Match Editor will open (as shown below). 
	Figure
	3. Select how to adjust the chainage, i.e rubber-band or re-chain, depending on the project protocol. 
	Note: Rubber-band will match the beginning and end chainages of the collected data to the routed data, while re-chain will modify the routed landmark’s start or end chainage based on the collected data, depending on the direction of propagation. 
	4. 
	4. 
	4. 
	Insert a comment into the Comments box. 

	5. 
	5. 
	Click on OK to add match. 


	Save, Check-In and Complete 
	After segmenting is complete, it needs to be saved and marked completed. 
	‘Save’ Segmentation Work 
	Saving is required to protect what you have accomplished thus far for a particular section from getting lost. Saving will still leave a section checked out to the initial user that checked out the file or had it assigned to them initially. 
	1. 
	1. 
	1. 
	Click on the ‘Save’ icon from the upper tool-bar in Section Composition view: 

	2. 
	2. 
	Insert a Comment into the comment box (OPTIONAL). 

	3. 
	3. 
	Click on OK. 


	Figure
	The following window appears: 
	Figure
	‘Check-In’ 
	Once a section is partially or fully segmented, you can ‘Check-In’ the file. This task unlocks the file so that other users may ‘Check-out’ the section and perform more segmenting adjustments on that particular file. The process of checking in a file also saves a file, and unlocks it for other users to access. The process of checking files in and out is implemented so that there is no conflict if two users try to access the same file at the same time. 
	1. 
	1. 
	1. 
	Click on the ‘Check-In’ icon from the upper tool-bar in Section Composition view: 

	2. 
	2. 
	Insert a Comment into the comment box (OPTIONAL). 

	3. 
	3. 
	Click on OK. 


	Figure
	The following window appears: 
	Figure
	‘Complete’ 
	The last option is to ‘Complete’ a file. Marking a file as complete, checks-in and saves and also marks the file with a green check mark. This is beneficial to users when they are trying to figure out when a file has been fully segmented to the point of completion. 
	1. 
	1. 
	1. 
	Click on the ‘Complete’ icon from the upper tool-bar in Section Composition view: 

	2. 
	2. 
	Insert a Comment into the comment box (OPTIONAL). 

	3. 
	3. 
	Click on OK. 


	Figure
	The following window appears: 
	Figure
	Automatic Matching (PROFESSIONAL USER) 
	The Java code developed for this research project for transferring data into a Vision database is already conducting the automated matching. If there is a Routing package developed for a project in the Vision format, then the instructions in this Appendix can be used to conduct auto-matching of collected data to the Routing package. 
	With Fugro Vision 3.1.1, you have the option to perform auto-matching via either one of the following methods: 
	1. Perform auto matching on several sessions at once using a Batch Processor 
	called ‘Auto Segmentation Processor’. 
	2. Perform auto matching on each session/section using the Section Composition 
	Perform Auto Matching in the Batch Processor 
	Automated Matching can be completed using ‘Auto Segmentation Processor’. 
	Figure
	Options 
	There are six groups of options for Auto Segmentation Processor. 
	Figure
	1. 
	1. 
	1. 
	Matching Mode: Auto-matching mode based on GPS or on Events 

	2. 
	2. 
	Discrepancy 


	Matches tolerance (m): Tolerance threshold which will be used to discard matches that are further away from the landmarks than the specified value 
	3. Process 
	a) 
	a) 
	a) 
	Auto Fill: If set to true, the unmatched fragments between matches within the same collection/session will be distributed evenly to fill the gaps 

	b) 
	b) 
	Ignore completed sessions: If set to true, the sections that belong to sessions marked as Complete will be ignored. 

	c) 
	c) 
	Partial Matches: If set to true, partial matches will be created. Otherwise only full segment matches will be created and if a segment cannot be filled, it will be left unmatched. 

	d) 
	d) 
	Sessions Order: Select the order in which the available fragments from sessions will be processed. 

	e) 
	e) 
	Snap mode: designated how nodes are matched. Snap matches begin and ends to the closest position within the data stream (images, station data) that was selected, if one was selected. Otherwise, it will just snap the match based on GPS. 


	4. 
	4. 
	4. 
	Events: This option has been disabled since Vision 3.1.1 to avoid confusion. Please ignore. 

	5. 
	5. 
	Memory/Performance 


	If set to true, whole sessions are processed in parallel. If false, some processors split each session and process parts of it in parallel. 
	6. Process 
	If set to true, matches for the sessions will be deleted before doing auto segmenting. 
	Perform Auto Matching in the Section Composition 
	Automatic matching within the Composition can be done on a section by section basis or on a per session basis. 
	1. 
	1. 
	1. 
	Check out the section you wish to segment by clicking the lock icon on the Section Composition toolbar. 

	2. 
	2. 
	The two different methods to perform Auto matching as mentioned, include performing the task on a section level or on a session by session basis as shown in the table below. If performing on a section level, right click on the top routing bar and select Auto match. If performing on a per session level, right click on the bar corresponding to the session you want to match, and the menu will display. 

	3. 
	3. 
	3. 
	The Automatic Section Matching dialog box appears. 

	NOTE: If you have not checked out the file; the section composition checkout dialog box appears. You can then check the file out and right click on the file again and select auto match. 

	4. 
	4. 
	Make your desired selections within this dialog box and click Run. 


	Section Action Menu Session Action Menu 
	Figure
	Auto Matching Parameter Descriptions 
	The table below provides descriptions for the parameters in the Automatic Section Matching dialog box. 
	Parameter 
	Parameter 
	Parameter 
	Description 

	Auto matching using GPS 
	Auto matching using GPS 
	Match customer data to collected data based on GPS location 

	Auto matching using Events 
	Auto matching using Events 
	Match customer data to collected data based on ARAN Events set. 

	Autofill Using Continuous Collection 
	Autofill Using Continuous Collection 
	Assumes ARAN travels from point A to point B and if GPS or Event matches cannot be made, length of data will be resolved equally across segments unable to be matched. 

	Tolerated discrepancy Data 
	Tolerated discrepancy Data 
	Data will be matched using the nearest GPS points within the tolerance set by this parameter. 

	Matching Candidates 
	Matching Candidates 
	A list of sessions that can be selected to match using the parameters that were selected. 


	Unmatch the Automatic Matching for the Entire Section 
	1. 
	1. 
	1. 
	Select the section you wish to Unmatch 

	2. 
	2. 
	From the section tool menu, select the X icon (Delete All Matches). 

	3. 
	3. 
	The section will revert back to being completely unmatched. 


	Other Segmentation Tasks (PROFESSIONAL USER) 
	Besides matching, segmenting involves other functionalities such as the following: 
	Landmark Editing 
	In certain scenarios, landmarks need to be edited to meet customer requirements or to provide feedback to customers. 
	Insert Landmark: Inserts a new landmark into a selected section. 
	1. 
	1. 
	1. 
	Click on the exact chainage where the landmark needs to be inserted, 

	2. 
	2. 
	Click on Landmark Editing >Insert Landmark. 


	Figure
	The following window appears. If the pink bar is at the beginning of the section and you want to Insert Landmark, then automatically the Extend option is selected. If the pink bar is at the middle of the matched section, then automatically, the Split option is selected. 
	Figure
	• 
	• 
	• 
	Verify the chainage or enter a new value (highlighted in red) 

	• 
	• 
	Enter an Event type and Description (highlighted in blue) 

	• 
	• 
	Click on OK Edit Landmark: Changes the position, event type, description etc. of current landmarks. 


	Select the landmark to be edited and click on Landmark Editing >Edit Landmark from the upper tool-bar in Section Composition. 
	Figure
	The following window appears: 
	Figure
	• 
	• 
	• 
	Select the chainage to where the landmark needs to be moved (highlighted in red) 

	• 
	• 
	Change the Event type and Description (highlighted in blue) if necessary 

	• 
	• 
	Select the rechaining effect (highlighted in green), i.e either to propagate forward or backward etc. 

	• 
	• 
	Click on OK 


	Create Gap 
	Creates gaps between landmarks. 
	Click the area between which two landmarks the gap needs to be created, and then click on Landmark Editing >Create gaps 
	Figure
	The following window will appear: 
	Figure
	• Verify the chainage lengths and click on Yes. 
	Merge Segments 
	Merges two segments by removing the landmarks between them. 
	Select the segment which needs to be merged and click on Landmark Editing >Merge Segments 
	Figure
	The following window will appear: 
	Figure
	Choose the segment to merge (highlighted in red) and click on OK. 
	Delete match 
	Auto-matching is not always accurate and to perform certain tasks such as align, transfer and reject, the match needs to be deleted and then re-matched. 
	1. To delete a match, right-click on the matched, collected section 
	Figure
	2. 
	2. 
	2. 
	To delete all matches, click Delete Match >All. 

	3. 
	3. 
	To delete the current match from the section, i.e the portion between the two landmarks, 


	click Delete Match >Current 
	4. To delete a selected matched portion from the section, select a portion of the section and 
	click Delete Match >Selected. 
	Align 
	During certain occasions, landmarks need to be moved / shifted / flipped depending on collection or network data. This is also used when one section has multiple segments which need to be aligned. Note: Aligning cannot be done after the sections are matched, hence the match needs to be deleted or aligning needs to be performed before matching. 
	1. 
	1. 
	1. 
	Shifting: Shifts the begin/end landmarks of the collected section to a new position, keeping the collected length the same. 

	2. 
	2. 
	Moving: Moves the begin/end landmarks of the collected section to a new position by stretching/compressing the collected length. 

	3. 
	3. 
	Flipping: Flips the whole section (this needs to be done when the collected section in the Section 


	Composition is opposite to all other views, for example moving forward in the Section Composition 
	takes the ROW images backward.) 
	• 
	• 
	• 
	Right-click on the collected section and select Align 

	• 
	• 
	Select Shift Begin to shift the beginning landmark 

	• 
	• 
	Select Shift End to shift the end landmark. 

	• 
	• 
	Select Move Begin to move the beginning landmark 

	• 
	• 
	Select Move End to move the end landmark 

	• 
	• 
	Select Flip to flip the whole section 

	• 
	• 
	Select Reload to undo any changes 


	Figure
	Order 
	When one section has multiple segments, the segments are not always correctly ordered. 
	Figure
	1. 
	1. 
	1. 
	To order segments, right-click on the segment to be moved up/down. 

	2. 
	2. 
	Select Order >Move Up to move the selected segment up. 

	3. 
	3. 
	Select Order >Move Down to move the selected segment down. 


	Transfer 
	When a fragment of a section/segment belongs to the wrong collection, then that fragment needs to be transferred to the correct section. 
	Note: Transferring cannot be done after the sections are matched, hence the match needs to be deleted or transferring needs to be performed before matching. 
	1. Right-click on the section to be transferred and select Transfer 
	Figure
	2. The following window appears: 
	Figure
	• 
	• 
	• 
	Select the fragment to be transferred (highlighted in red) 

	• 
	• 
	Click on Select (highlighted in blue) to select the transfer location, i.e the section to which the fragment will be transferred. 

	• 
	• 
	Insert a comment into the Comment box (highlighted in green) 

	• 
	• 
	Click on OK. 


	Reject 
	During certain collections, certain sections might contain fragments with wrong/missing/not needed data, therefore the fragment is rejected. Note: Rejecting cannot be done after the sections are matched, hence the match needs to be deleted or rejecting needs to be performed before matching. 
	1. Right-click on the section to be rejected and select Reject. 
	Figure
	2. The following window will appear: 
	Figure
	• 
	• 
	• 
	Select the fragment (highlighted in red) to be rejected 

	• 
	• 
	Insert a comment into the comment-box (highlighted in blue) 

	• 
	• 
	Click on OK. 


	Exceptions 
	Certain collections might contain missing/poor images and/or GPS etc. which can be categorized and marked as errors, warnings or just information using the Exception Editor in Section Composition. 
	1. 
	1. 
	1. 
	Identify the exception using the appropriate view, such as too dark images using the Image Stream, and select the appropriate section. 

	2. 
	2. 
	Right-click on the section and click on Exception Editor. 

	3. 
	3. 
	The following window appears: 


	Figure
	Figure
	4. Click on Add Exception (highlighted in red) and the following window appears: 
	Figure
	• 
	• 
	• 
	Select the fragment where the exception exists (highlighted in red) 

	• 
	• 
	Click on Select (highlighted in blue) to select the reason/category for the exception 

	• 
	• 
	Select the status (error/warning/info) of the exception (highlighted in green) 

	• 
	• 
	Insert a comment into the comment-box (highlighted in purple) 

	• 
	• 
	Click on OK 


	M. WORKFLOW FOR TRANSFER OF FDOT MPSV DATA TO VISION SOFTWARE 
	Here are instructions that were developed as a customized means for transforming LRIS data from FDOT MPSV (provided at a specific folder structure and format) into a Vision database. 
	M.1. Folder Instructions 
	The folder structure should be the same as that finalized with FDOT and shown in 
	Figure 233. 

	Figure
	Figure 233. Folder Structure for FDOT MPSV Data 
	The encapsulating box in shows 6 folder names: 
	Figure 233 

	1. 
	1. 
	1. 
	Duval&Hills-Vision: This is an example folder, and the name of this folder is not linked with the underlying code. Therefore, the name of this folder should provide a general description of what the folder contains, which in this case is data for Duvall and Hillsborough counties. 

	2. 
	2. 
	2017-2018: This folder represents the year. 

	3. 
	3. 
	By County: This folder name indicates that the next child folder would have data broken down by counties; e.g. 10 Hillsborough and/or 72 Duvall. 

	4. 
	4. 
	10 Hillsborough: At this level, the data should be broken down by counties as explained in point 3. 

	5. 
	5. 
	Rigid: At this level of the folder structure, the type of data is outlined; i.e. Rigid or Flexible. 

	6. 
	6. 
	10190000L1_01: At this level, the folder name displays as Roadway ID_Run Number 

	7. 
	7. 
	Images: This level of the folder structure can be seen inside the 10190000L1_01 folder. All the images for this county should be stored here 


	The Roadway ID_Run Number folder (i.e. 10190000L1_01 in the example above) should contain four files starting with the Roadway ID_Run Number and ending with .G01, .N01, _Img_3.csv, and _six_01.csv. In this example, the four files would be named 10190000L1_01.G01, 10190000L1_01.N01, 10190000L1_01_Img_3.csv, and 10190000L1_01_six_01.csv. 
	M.2. Steps to Converting the Data Format 
	The detailed queries for converting the data into a format compatible with Vision database are listed below. For this purpose, a Java code was developed. The zipped Java App (file name: ListFolder.zip) has been provided to FDOT. This Java code conducts the following steps: 
	1. 
	1. 
	1. 
	Lists full path of files except for the image files 

	2. 
	2. 
	Renames the xxxx_img_3.csv file, xxxx.N01 files and xxxx.G01 files. 

	3. 
	3. 
	Changes the image path and Filename in xxxx_Img_3.csv and xxxx.N01 files to make Vision work. At the same time, the xxxx_Img_3.csv and xxxx.G01 files are split into separate img_3.csv and .G01 files for each segment. The new created _Img3.csv files are named in this format: (Segment#)_[(Section)(SubSection)(Lane+Lane#)]_(Run#), for example, 0_50010000L1_01_Img_3.csv is the _Img_3.csv file for the first segment (segment index starts from 0). 


	The following steps need to be executed in the following sequence to run this Java code. If your machine was already installed with Java, please skip steps 1 and 2, and jump to step 3. 
	1. 
	1. 
	1. 
	Download the latest version of Java. Go to this web page, and follow the instructions 
	https://www.java.com/en/download/help/windows_offline_download.xml 


	2. 
	2. 
	Set Up the Java Path for Windows. Assuming you have installed Java in C:\Program Files\java\jdk directory, right-click on 'My Computer' and select 'Properties'. Click the 'Environment variables' button under the 'Advanced' tab. Alter the 'Path' variable so that it also contains the path to the Java executable. For example, if the path is currently set to 'C:\WINDOWS\SYSTEM32', then change your path to read 'C:\Program Files\java\jdk\bin'. 

	3. 
	3. 
	Run the ListFolder.Segment java apps. Open the command prompt window by typing cmd in the Windows search bar. Change the current directory to the directory where you put the java code (e.g. C:\JavaDir) by typing this command in the command prompt: cd /d C:\JavaDir. Type this command in the cmd window: java ListFolder.Segment. Follows instructions in the cmd window; it will ask for the full file path (including folder name) of the root folder. Copy and paste the root folder name in the cmd window. 


	M.3. Steps to Transfer the Converted Data into a Vision Database 
	The following are the steps to transfer the converted data into a Vision database: 
	1. : Use Roadware DBGen software (see to create a blank 
	1. : Use Roadware DBGen software (see to create a blank 
	STEP1
	Figure 234) 


	Vision database by selecting the Server under ‘Step 1: Connection Settings’ and selecting the ‘Create a New Database’ option under ‘Step 2: Select Database’ 
	and give the database a name (e.g. call it Test_16). 
	Figure
	Figure 234. Screen Capture of Roadware DBGen 
	2. : Execute the first SQL code that will conduct the following: 
	STEP2

	• 
	• 
	• 
	: Add extra tables and functions to the Vision database 
	2-1


	• 
	• 
	: Grab the paired _Img_3.csv and .G01 file names into the T_G01 and Timg3 tables, suggest using the following commands to check whether the files are paired: select * from T_G01 select * from Timg3 
	2-2


	• 
	• 
	• 
	: Importing all the data 
	2-3


	• : Populate the locator, ‘uniquerun’ info and the GPS data, 
	2-4


	• 
	• 
	: Populate the images info. Note: the physical dimension info can't be found from the pavement JPG provided so the size is evaluated e.g assuming the width is 4 meters and the length of the pavement is 
	2-5



	evaluated by the average value of the station interval in each ‘uniquerun’. 
	• 
	• 
	• 
	: Populate routing (predefined segments) info and assigned the matched segments info. 
	2-6


	• 
	• 
	: Clean the extra records in the image tables. 
	2-7



	The first SQL code for step 2 is as following according to the steps described above: 
	STEP 2-1: 
	use "DBName" GO create table T (txt varchar(max)) BULK INSERT T FROM 'fullPath\files_f.csv' WITH ( FIRSTROW = 1, FIELDTERMINATOR = ',', ROWTERMINATOR = '\n' ) 
	SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO create function [dbo].[fn_GetGPStimefromUTCtime] ( @UTCtime datetime ) returns float AS BEGIN return (DATEPART ( WEEKDAY, @UTCtime)-1)*86400 ---day +DATEPART ( HOUR, @UTCtime)*3600 ---hour +DATEPART ( MINUTE, @UTCtime)*60 ----minutes +DATEPART ( SECOND, @UTCtime) ---second +(DATEPART ( MILLISECOND, @UTCtime))*0.001 ---ms +(DATEPART ( MICROSECOND, @UTCtime))*0.000001 ---us +16 ----leap seconds end; 
	GO 
	create FUNCTION [dbo].[udf_Split]( @Text NVARCHAR(2000),@Splitor CHAR(1) ) RETURNS @Result TABLE ( id int identity, value NVARCHAR(50)) AS BEGIN DECLARE @PathInd INT Set @Text+=@Splitor WHILE LEN(@Text) > 0 BEGIN SET @PathInd=PATINDEX('%'+@Splitor+'%',@Text) INSERT INTO @Result VALUES(SUBSTRING(@Text, 0, @PathInd)) SET @Text= SUBSTRING(@Text, @PathInd+1, LEN(@Text)) END RETURN END GO 
	create FUNCTION [dbo].[udf_lastpos_Split]( @Text NVARCHAR(2000),@Splitor CHAR(1) ) RETURNS int AS BEGIN DECLARE @PathInd INT DECLARE @returnPathInd INT =0 Set @Text+=@Splitor WHILE LEN(@Text) > 0 BEGIN SET @PathInd=PATINDEX('%'+@Splitor+'%',@Text) SET @Text= SUBSTRING(@Text, @PathInd+1, LEN(@Text)) set @returnPathInd=@returnPathInd+@PathInd END RETURN @returnPathInd-@PathInd END GO 
	create table TImgpath(IDsession int, filename varchar(30), imgpath varchar(300)) create table Img_3_staging( Num int , ImageNum varchar(10), AdjDmi int , FromDist float, ToDist float, Latitude varchar(20), LatDir varchar(10), Longitude varchar(20), LongDir varchar(10), 
	Q int, Sat int, HDOP float, Height float, HeightU varchar(10), GeoSep varchar(8), GeoSepU varchar(8), AgeDif varchar(8), Track varchar(8), TrackU varchar(8), GpsSpeed float, SpeedU varchar(10), UTCTime varchar(20), DeltaUTCTime float, AccumDist float, GPSDist float, DeltaAccumDist float, DeltaGPSDist varchar(20) , Time float, DiffDist float, DBF int , Filename varchar(30), FromCounty varchar(10) , ToCounty varchar(10) , FromRoute varchar(255), ToRoute varchar(255), FromSect varchar(12), FromAdjRP float, ToS
	create table G01_staging(DBF int , Filename varchar(30), FromCounty int , ToCounty int , FromRoute varchar(255), ToRoute varchar(255), FromSect varchar(12), FromAdjRP float, ToSect varchar(12), ToAdjRP float, DateCollected Datetime, TimeCollected Datetime, 
	ImageNum varchar(8), Dontknow1 varchar(8), Dontknow2 int , AdjDmi int , SpeedU varchar(10), FromDist float, Latitude float, LatDir varchar(10), Longitude float, LongDir varchar(10), Q int, Sat int, HDOP float, Height float, HeightU varchar(10), GeoSep varchar(8), GeoSepU varchar(8), AgeDif varchar(8), Track varchar(8), TrackU varchar(8), GpsSpeed float, Dontknow3 varchar(10), UTCTime varchar(12), Dontknow4 int, Dontknow5 int, AdjDmi2 int, -------------pre sign as GPSDist GPSDist float, -------------pre sign
	STEP 2-2: 
	Select * into T_G01 from T where txt like '%.G01' AND txt not like '%orig%' Select REPLACE(txt,'.G01', '_Img_3.csv') as txt into Timg3 from T_G01 GO 
	STEP 2-3: 
	declare @query varchar(1000) DECLARE @table_name varchar(1000); DECLARE table_cursor CURSOR FOR select txt from T_G01; OPEN table_cursor; FETCH NEXT FROM table_cursor INTO @table_name; 
	WHILE @@FETCH_STATUS = 0 BEGIN --SELECT @query = 'BULK INSERT G01_staging FROM '+QUOTENAME(@table_name,'''')+' WITH ( FIRSTROW = 1, SELECT @query = 'BULK INSERT G01_staging FROM '''+@table_name+''' WITH ( FIRSTROW = 1, FIELDTERMINATOR = '','', ROWTERMINATOR = ''\n'' )'; print @query EXEC (@query ); FETCH NEXT FROM table_cursor INTO @table_name; END CLOSE table_cursor; DEALLOCATE table_cursor; 
	DECLARE table_cursor CURSOR FOR select txt from TImg3; OPEN table_cursor; FETCH NEXT FROM table_cursor INTO @table_name; WHILE @@FETCH_STATUS = 0 BEGIN --SELECT @query = 'BULK INSERT Img_3_staging FROM '+QUOTENAME(@table_name,'''')+' WITH ( FIRSTROW = 1, SELECT @query = 'BULK INSERT Img_3_staging FROM '''+@table_name+''' WITH ( FIRSTROW = 1, FIELDTERMINATOR = '','', ROWTERMINATOR = ''\n'' )'; print @query EXEC (@query ); FETCH NEXT FROM table_cursor INTO @table_name; END CLOSE table_cursor; DEALLOCATE table
	update Img_3_staging set Latitude=replace(Latitude,'"',''), LatDir=replace(LatDir,'"',''), Longitude=replace(Longitude,'"',''), UTCTime=replace(UTCTime,'"',''), FromCounty=replace(FromCounty,'"',''), ToCounty=replace(ToCounty,'"',''), FromRoute=replace(FromRoute,'"',''), ToRoute=replace(ToRoute,'"',''), DateCollected=replace(DateCollected,'"',''), TimeCollected=replace(TimeCollected,'"',''), ImagePath=replace(ImagePath,'"',''), LongDir=replace(LongDir,'"',''), Filename=replace(Filename,'"',''), 
	update Img_3_staging set Latitude=replace(Latitude,'"',''), LatDir=replace(LatDir,'"',''), Longitude=replace(Longitude,'"',''), UTCTime=replace(UTCTime,'"',''), FromCounty=replace(FromCounty,'"',''), ToCounty=replace(ToCounty,'"',''), FromRoute=replace(FromRoute,'"',''), ToRoute=replace(ToRoute,'"',''), DateCollected=replace(DateCollected,'"',''), TimeCollected=replace(TimeCollected,'"',''), ImagePath=replace(ImagePath,'"',''), LongDir=replace(LongDir,'"',''), Filename=replace(Filename,'"',''), 
	HeightU=replace(HeightU,'"',''), GeoSepU=replace(GeoSepU,'"',''), TrackU=replace(TrackU,'"',''), SpeedU=replace(SpeedU,'"','') GO 

	STEP 2-4: 
	alter table Locators add Section varchar(15), County varchar(3),RouteName varchar(50), Direction varchar(2), Lane varchar(2), TestSection varchar(2),RunNumber varchar(2) GO 
	select distinct identity(int,1,1) as IDLocator,filename, fromcounty, fromroute into Tlocator from Img_3_staging order by filename 
	set identity_insert Locators on insert into Locators(IDLocator, Section,County,RouteName,Lane,TestSection,RunNumber) select IDlocator, LEFT(filename,11), FromCounty, fromroute, SUBSTRING(filename,12,2), IDlocator, SUBSTRING(filename,16,1) from Tlocator set identity_insert Locators off 
	update Locators set Direction=(CASE WHEN Lane LIKE 'L%' THEN '-' WHEN Lane LIKE 'R%' THEN '+' ELSE NULL END) 
	-----AccumDist (ft) convert to meter as DS, from/toDist (Mile) convert to mmile as distancestamp--------set identity_insert DCSessions on Insert into DCsessions(IDSession, IDLocator, UniqueRun, StartDistanceStamp, EndDistanceStamp,StartChainage, EndChainage,DCSTimeStamp) select b.IDlocator, b.IDLocator,left(a.filename,16), MIN(AccumDist*0.3048), MAX(AccumDist*0.3048), (select distinct FromDist from Img_3_staging where Filename=a.filename and AdjDmi=MIN(a.adjDmi))*1000, (select distinct ToDist from Img_3_sta
	-

	where a.AccumDist is not null group by a.filename, a.DateCollected, b.IDLocator set identity_insert DCSessions off ---make chainage = distancestamp *0.6213712, ~ 4-8 mmile difference update DCSessions set Endchainage = case when StartChainage<EndChainage then round(startchainage+(EndDistanceStamp-StartDistanceStamp)*0.6213712,0) else round(startchainage-(EndDistanceStamp-StartDistanceStamp)*0.6213712,0) end 
	---elapsedtime may not correct------set identity_insert stationdata on Insert into stationdata(IDStation, IDSession, DistanceStamp, Chainage, ElapsedTime, Speed, StationTime, PositionStatus, Interpolated, Latitude, Longitude, Elevation) select ROW_NUMBER() over (order by b.IDLocator, a.AdjDmi), b.IDlocator, AccumDist*0.3048, FromDist*1000,time,GpsSpeed*0.44704, [dbo].[fn_GetGPStimefromUTCtime](cast (replace(DateCollected,'/','-')+' '+ a.UTCTime as datetime)), 'CADifferential','GPSReceiverOutput', Latitude*P
	---elapsedtime may not correct------set identity_insert stationdata on Insert into stationdata(IDStation, IDSession, DistanceStamp, Chainage, ElapsedTime, Speed, StationTime, PositionStatus, Interpolated, Latitude, Longitude, Elevation) select ROW_NUMBER() over (order by b.IDLocator, a.AdjDmi), b.IDlocator, AccumDist*0.3048, FromDist*1000,time,GpsSpeed*0.44704, [dbo].[fn_GetGPStimefromUTCtime](cast (replace(DateCollected,'/','-')+' '+ a.UTCTime as datetime)), 'CADifferential','GPSReceiverOutput', Latitude*P
	-
	-
	-

	x.DateCollected+x.UTCtime between y.minUTC and y.maxUTC inner join ( select filename, AVG(offset) as offsetdist from ( select a.AccumDist, b.GPSDist, (b.GPSDist-a.AccumDist) as offset, a.filename from Img_3_staging a inner join G01_staging b on a.Filename=b.Filename and a.AdjDmi=b.AdjDmi) results group by filename) z on x.Filename=z.Filename order by y.IDlocator, x.DateCollected+x.UTCtime set identity_insert VehiclePositions off 

	GO 
	STEP 2-5: 
	---images---delete from TImgpath insert into TImgpath(imgpath,filename) select distinct LEFT(txt,[dbo].[udf_lastpos_Split](txt,'\')),right(txt,len(txt)([dbo].[udf_lastpos_Split](txt,'\'))) from T where txt like '%_Img_3.csv%' AND txt not like '%orig%' update TImgpath set imgpath=imgpath+'Images\', filename=replace(filename, '_Img_3.csv', '.N01') update a set IDsession=b.IDsession from TImgpath a inner join DCsessions b on left(a.filename, len(a.filename)-4)=b.uniquerun ----------CCDWidth/Height=ourvalue in 
	-
	-
	-

	select a.*, substring(b.txt, len(a.imgpath)+1,100) as Imgname,cast(right(substring(b.txt, len(a.imgpath)+1,100),12) as varchar(12)) as jpgname into Tjpg from Timgpath a inner join (select REPLACE(txt, 'JPG', 'jpg') as txt from T where UPPER(right(txt,3))='JPG') b on a.imgpath=left(b.txt, len(a.imgpath)) go create index ixT1 on Tjpg(IDSession, jpgname) go 
	select a.*, substring(b.txt, len(a.imgpath)+1,100) as Imgname,cast(right(substring(b.txt, len(a.imgpath)+1,100),12) as varchar(12)) as jpgname into Tjpg from Timgpath a inner join (select REPLACE(txt, 'JPG', 'jpg') as txt from T where UPPER(right(txt,3))='JPG') b on a.imgpath=left(b.txt, len(a.imgpath)) go create index ixT1 on Tjpg(IDSession, jpgname) go 
	--------imagename includes subfolder to make Vision work------set identity_insert ImageFrames on Insert into ImageFrames(IDImageFrame, IDImageStream, ImageName, DistanceStamp) select ROW_NUMBER() over (order by b.IDLocator, a.AdjDmi), b.IDlocator, right(c.imgpath,len(c.Imgpath)[dbo].[udf_lastpos_Split](c.imgpath,'Flexible\')8)+ltrim(a.ImageNum+'.jpg'),AccumDist*0.3048 from Img_3_staging a inner join Tlocator b on a.Filename=b.filename inner join Tjpg c on a.filename=c.filename and ltrim(a.ImageNum+'.jpg')=l
	-
	-
	-
	-


	----------sourceframes table has more records than Images----set identity_insert distress.SourceFrames on Insert into distress.SourceFrames(IDSourceFrame, SourceFrameType, IDSession, DistanceStamp, LeftLaneOffset, RightLaneOffset) select ROW_NUMBER() over (order by IDLocator, DS),'JPEG',IDlocator,DS,0,0 from (select distinct b.IDlocator, AccumDist*0.3048 as DS from Img_3_staging a inner join Tlocator b on a.Filename=b.filename where a.AccumDist is not null) x order by IDLocator, DS set identity_insert distr
	-
	-

	inner join DCSessions c on b.IDSession=c.IDsession) y on x.IDsession=y.IDsession and x.Distancestamp between y.minDS-0.5 and y.maxDS+0.5 where y.IDsession is null delete x from vehiclepositions x left join (select distinct a.*, b.IDsession, c.uniquerun+'.N01' as filename, c.IDLocator from ( select min(distancestamp) minDS, max(distancestamp) maxDS, IDImagestream from imageframes group by IDImagestream) a inner join ImageStreams b on a.IDImageStream=b.IDImageStream inner join DCSessions c on b.IDSession=c.ID
	set identity_insert VehicleOrientations on insert into VehicleOrientations(IDVehicleOrientation,GPSTime,IDSession, DistanceStamp) select IDVehiclePosition,GPSTime,IDSession, DistanceStamp from VehiclePositions order by IDVehiclePosition set identity_insert VehicleOrientations off 
	STEP 2-6: 
	------routing info, set identity_insert Sections on insert into sections(IDSection,IsRouted,IDLocator) select IDLocator,1,IDLocator from Tlocator set identity_insert Sections off -------use the data with the physical JPG parts as the mathed segment and use it clean the extra data from the stationdata and GPS select ROW_NUMBER() over (order by y.IDlocator, y.IDsession, y.minDS) as IDsegment,y.IDLocator,y.Filename, y.minDS as begDS,y.maxDS as endDS, (select distinct FromAdjRP from Img_3_staging where Filename
	------routing info, set identity_insert Sections on insert into sections(IDSection,IsRouted,IDLocator) select IDLocator,1,IDLocator from Tlocator set identity_insert Sections off -------use the data with the physical JPG parts as the mathed segment and use it clean the extra data from the stationdata and GPS select ROW_NUMBER() over (order by y.IDlocator, y.IDsession, y.minDS) as IDsegment,y.IDLocator,y.Filename, y.minDS as begDS,y.maxDS as endDS, (select distinct FromAdjRP from Img_3_staging where Filename
	into Tsegments from ( select distinct a.*, b.IDsession, c.uniquerun+'.N01' as filename, c.IDLocator from ( select min(distancestamp) minDS, max(distancestamp) maxDS, IDImagestream from imageframes group by IDImagestream) a inner join ImageStreams b on a.IDImageStream=b.IDImageStream inner join DCSessions c on b.IDSession=c.IDsession) y set identity_insert Nodes on Insert into Nodes(IDNode, Latitude, Longitude) select ROW_NUMBER() over (order by IDsegment, DS),lat,long from ( select IDsegment, IDLocator, beg

	set identity_insert Landmarks on Insert into Landmarks(IDLandmark, Chainage, IsAnchor,IsRouted,IDSection,IDNode) select ROW_NUMBER() over (order by IDsegment, DS),Chainage,1,1,IDLocator, ROW_NUMBER() over (order by IDsegment, DS) from ( select IDsegment, IDLocator, begDS as DS, Begchg as chainage, BegLat as lat, BegLong as long from Tsegments union select IDsegment, IDLocator, EndDS as DS, Endchg as chainage, EndLat as lat, EndLong as long from Tsegments) a order by IDsegment, DS set identity_insert Landmar
	inner join Tsegments b on a.IDLocator=b.IDlocator and a.IDSegment=b.IDsegment-1 where abs(a.endDS-b.begDS)<3.5 
	insert into matches(IDSegment, BeginChainage,EndChainage, BeginDistanceStamp, EndDistanceStamp, Mode, Status, IDSession) select IDsegment,Begchg, endchg,begds,endds,'Manual','Good',IDLocator from Tsegments order by IDsegment 
	STEP 2-7: 
	update m set ImageHeightInMeters=n.deltaheight from distress.SourceFramesDimensions m inner join ( select IDImagestream, avg(deltaDS) as deltaheight from ( select a.IDImagestream, (b.Distancestamp-a.Distancestamp) as deltaDS from imageframes a inner join imageframes b on a.IDImagestream=b.IDImagestream and a.IDImageframe=b.IDImageframe-1) x group by IDImagestream) n on m.IDsession=n.IDImagestream 
	update a set StartChainage=b.begchg, EndChainage=b.endchg, StartDistanceStamp=b.begDS, EndDistanceStamp=b.endDS from dcsessions a inner join Tsegments b on a.IDLocator=b.IDlocator 
	3. 
	3. 
	3. 
	Add necessary SQL permission to the database, and then open it in Vision software, and run the "Vehicle Positions Processor" from the batch processor menu once. 
	STEP 3: 


	4. 
	4. 
	remove gaps and overlaps between consecutive images using the following SQL code: 
	STEP 4: 



	use FDOT_LRIS_TEST ------------if DB name is changed, please use the actual name instead. go alter table distress.SourceFrames add odistancestamp float alter table ImageFrames add odistancestamp float alter table distress.SourceFramesDimensions add oImageHeightInMeters float go update distress.SourceFramesDimensions set oImageHeightInMeters=ImageHeightInMeters 
	use FDOT_LRIS_TEST ------------if DB name is changed, please use the actual name instead. go alter table distress.SourceFrames add odistancestamp float alter table ImageFrames add odistancestamp float alter table distress.SourceFramesDimensions add oImageHeightInMeters float go update distress.SourceFramesDimensions set oImageHeightInMeters=ImageHeightInMeters 
	update distress.SourceFrames set odistancestamp = DistanceStamp update ImageFrames set odistancestamp = DistanceStamp delete a from distress.SourceFrames a left join ImageFrames b on a.IDSession=b.IDImageStream and a.DistanceStamp=b.DistanceStamp where b.DistanceStamp is null select MIN(IDImageframe) as minID,IDImagestream into #t1 from ImageFrames group by IDImagestream update a set +(select top 1 odistancestamp from ImageFrames where IDImageStream=a.IDImageStream and IDImageFrame=b.minID) from ImageFrames
	DistanceStamp=(a.IDImageFrame-b.minID)*6.11 
	ImageHeightInMeters=6.11 


	--change the unit from millimile to mile UPDATE DCSessions set StartChainage=StartChainage/1000 UPDATE DCSessions set EndChainage=EndChainage/1000 
	N. WORKFLOW FOR TRANSFER OF FDOT CONTRACTOR DATA TO VISION SOFTWARE 
	Here are instructions that were developed as a customized means for transforming LCMS data (provided at a specific folder structure and format) into a Vision database. These instructions were tested successfully on the data collected by an FDOT contractor on Florida Interstate Highways. 
	N.1. Folder Instructions 
	The folder structure should be the same as that finalized with FDOT and shown in 
	Figure 235. 

	Figure
	Figure 235. Folder Structure for FDOT Data 
	In the "Shared DB SA" is the parent folder in this example and has no significance. There are no restrictions on folder name, it could be anything that explains the data collected. 
	Figure 235, 

	The folders inside "Shared DB SA" are required to be as identified, that is: “fis” folder should contain all the fis files, “LCMS3D” folder should contain all the 3D images, “LCMSIntensity” folder should contain all the Intensity images, and “LCMSRange” folder 
	should contain all the Range images. 
	There are three required files in this folder: 
	1. 
	1. 
	1. 
	FDOT ARA Interstate List 2018.csv contains a list of all PCS sections and the relevant attributes of each section 

	2. 
	2. 
	I275_13130000_bridge_01.csv contains a division of all tenth mile sections and an indication of bridges that needs to be excluded from the data 

	3. 
	3. 
	I275_13130000_Img_2_01.csv contains the Image names and the relevant attributes (This file is generated through the Fugro INI for WinPro) 


	N.2. Transferring the Data into a Vision Database 
	Open the Roadware DBGen software and create a new database by selecting the 
	Server under ‘Step 1: Connection Settings’ and selecting the ‘Create a New Database’ option under ‘Step 2: Select Database’ and give the database a name (see . 
	Figure 236)

	Figure
	Figure 236. Roadware DBGen Software Screen Capture 
	Click ‘Next’ to get to database options and choose the latest version (see for example 
	. 
	Figure 237)

	Figure
	Figure 237. Database Settings in Roadware DBGen software 
	After creating a new Vision database, Open the ‘FDOT Vision Controller’ interface (see . This interface can be used to run the SQL code that is included at the end of this Appendix. 
	Figure 238)

	Figure
	Figure 238. FDOT Vision Controller Blank Interface 
	is a filled-out image of the interface. Follow these steps: 
	Figure 239 

	1. 
	1. 
	1. 
	Select the server by opening the Server drop-down. 

	2. 
	2. 
	Select the Database that you just created using Roadware DBGen. 

	3. 
	3. 
	Select the type of data that you want to process i.e. Flexible or Rigid. 

	4. 
	4. 
	Click the Open Folder button to select the folder that contains the data as mentioned in the Folder Instructions portion of this appendix. 

	5. 
	5. 
	The panel in the interface will indicate if all the required files are available, if not it would give a warning. 


	Figure
	Figure 239. FDOT Vision Controller Interface with Options Selected 
	Click the Go button to process the files. Once done, the panel will say "Done!" as shown in 
	Figure 240. 

	Figure
	Figure 240. FDOT Vision Controller Interface After Running the SQL Code 
	If the folder structure and file formats are followed, the SQL code can transfer the data 
	into a Vision database. The SQL code that is executed using the ‘FDOT Vision Controller’ interface is as follows: 
	SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO 
	SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO 
	create function [dbo].[fn_GetGPStimefromUTCtime] ( @UTCtime datetime ) returns float AS BEGIN return (DATEPART ( WEEKDAY, @UTCtime)-1)*86400 +DATEPART ( HOUR, @UTCtime)*3600 +DATEPART ( MINUTE, @UTCtime)*60 +DATEPART ( SECOND, @UTCtime) +(DATEPART ( MILLISECOND, @UTCtime))*0.001 +(DATEPART ( MICROSECOND, @UTCtime))*0.000001 +16 end GO 

	create FUNCTION [dbo].[udf_Split]( @Text NVARCHAR(2000),@Splitor CHAR(1) ) RETURNS @Result TABLE ( id int identity, value NVARCHAR(50)) AS BEGIN DECLARE @PathInd INT Set @Text+=@Splitor WHILE LEN(@Text) > 0 BEGIN SET @PathInd=PATINDEX('%'+@Splitor+'%',@Text) INSERT INTO @Result VALUES(SUBSTRING(@Text, 0, @PathInd)) SET @Text= SUBSTRING(@Text, @PathInd+1, LEN(@Text)) END RETURN END go 
	create FUNCTION [dbo].[udf_lastpos_Split]( @Text NVARCHAR(2000),@Splitor CHAR(1) ) RETURNS int AS BEGIN DECLARE @PathInd INT DECLARE @returnPathInd INT =0 Set @Text+=@Splitor WHILE LEN(@Text) > 0 BEGIN SET @PathInd=PATINDEX('%'+@Splitor+'%',@Text) SET @Text= SUBSTRING(@Text, @PathInd+1, LEN(@Text)) set @returnPathInd=@returnPathInd+@PathInd END 
	RETURN @returnPathInd-@PathInd END GO 
	create table TImgpath ( IDsession int, filename varchar(30), imgpath varchar(300) ); create table Img_3_staging ( Num varchar(15) , ImageNum varchar(10), AdjDmi varchar(15) , FromDist varchar(15), ToDist varchar(15), Latitude varchar(20), LatDir varchar(10), Longitude varchar(20), LongDir varchar(10), Q varchar(15) , Sat int, HDOP float, Height varchar(15), HeightU varchar(10), GeoSep varchar(8), GeoSepU varchar(8), AgeDif varchar(8), Track varchar(8), TrackU varchar(8), GpsSpeed varchar(15), SpeedU varchar
	FromRoute varchar(255), ToRoute varchar(255), FromSect varchar(12), FromAdjRP varchar(15), ToSect varchar(12), ToAdjRP varchar(15), DateCollected varchar(20), TimeCollected varchar(20), ImagePath varchar(255) ); 
	create table bridge_staging ( Filename varchar(30), DateCollected varchar(30) , TimeCollected varchar(30) , Operator varchar(255), Route varchar(255), HdrLane varchar(12), Direction varchar(30) , BeginningRef varchar(30) , DCF varchar(30) , Vehicle varchar(30) , SampleDistance varchar(30) , SensorCalDate varchar(30) , AvgSpeed varchar(30) , Frm varchar(30) , RRCode varchar(30) , T varchar(30) , RghDist varchar(30) , Rut1 varchar(30) , Rut1Std varchar(30) , Rut2 varchar(30) , Rut2Std varchar(30) , AvgRut var
	Sat varchar(30) , Msg varchar(30) ); 
	create table ARA_staging-->>2/21 ( District varchar(15), RoadwayID varchar(30), SR varchar(30) , US varchar(30) , System varchar(255), Roadway varchar(255), Type varchar(12), BMP varchar(12), EMP varchar(12), Lanes varchar(15), R_LN varchar(15), Length varchar(12), Surface varchar(50) ); 
	select * into Timg3 from T1 where txt like '%_Img_%' select * into Tbrdg from T1 where txt like '%_bridge_%' select * into TARA from T1 where txt like '%ARA%' declare @query varchar(1000) DECLARE @table_name varchar(1000); 
	DECLARE table_cursor CURSOR FOR select Concat(fullpath,'\',txt) from TImg3; OPEN table_cursor; FETCH NEXT FROM table_cursor INTO @table_name; WHILE @@FETCH_STATUS = 0 BEGIN 
	SELECT @query = 'BULK INSERT Img_3_staging FROM '''+@table_name+''' WITH ( FIRSTROW = 2, FIELDTERMINATOR = '','', ROWTERMINATOR = ''\n'' )'; print @query EXEC (@query ); FETCH NEXT FROM table_cursor INTO @table_name; END CLOSE table_cursor; DEALLOCATE table_cursor; DECLARE table_cursor CURSOR FOR select Concat(fullpath,'\',txt) from Tbrdg; OPEN table_cursor; 
	FETCH NEXT FROM table_cursor INTO @table_name; WHILE @@FETCH_STATUS = 0 BEGIN 
	SELECT @query = 'BULK INSERT bridge_staging FROM '''+@table_name+''' WITH ( FIRSTROW = 2, FIELDTERMINATOR = '','', ROWTERMINATOR = ''\n'' )'; print @query EXEC (@query ); FETCH NEXT FROM table_cursor INTO @table_name; END CLOSE table_cursor; DEALLOCATE table_cursor; DECLARE table_cursor CURSOR FOR select Concat(fullpath,'\',txt) from TARA; OPEN table_cursor; FETCH NEXT FROM table_cursor INTO @table_name; WHILE @@FETCH_STATUS = 0 BEGIN 
	SELECT @query = 'BULK INSERT ARA_staging FROM '''+@table_name+''' WITH ( FIRSTROW = 2, FIELDTERMINATOR = '','', ROWTERMINATOR = ''\n'' )'; print @query EXEC (@query ); FETCH NEXT FROM table_cursor INTO @table_name; END CLOSE table_cursor; DEALLOCATE table_cursor; 
	delete from Img_3_staging where Num='Num' delete from bridge_staging where FileName='FileName' delete from ARA_staging where RoadwayID='RDWYID' update Img_3_staging set Latitude=replace(Latitude,'"',''), AccumDist=Replace(AccumDist,'*',''), LatDir=replace(LatDir,'"',''), Longitude=replace(Longitude,'"',''), UTCTime=replace(UTCTime,'"',''), FromCounty=replace(FromCounty,'"',''), ToCounty=replace(ToCounty,'"',''), FromRoute=replace(FromRoute,'"',''), ToRoute=replace(ToRoute,'"',''), DateCollected=replace(Date
	LongDir=replace(LongDir,'"',''), Filename=replace(Filename,'"',''), HeightU=replace(HeightU,'"',''), 
	TrackU=replace(TrackU,'"',''), SpeedU=replace(SpeedU,'"',''); Alter table Img_3_staging Alter column Num int; Alter table Img_3_staging Alter column AdjDmi int; Alter table Img_3_staging Alter column FromDist float; Alter table Img_3_staging Alter column ToDist float; Alter table Img_3_staging Alter column Q int; Alter table Img_3_staging Alter column Height float; Alter table Img_3_staging Alter column GPSSpeed float; Alter table Img_3_staging Alter column DeltaUTCTime float; Alter table Img_3_staging Alte
	FROM [bridge_staging] order by Frm; 
	;with cte as ( select top 1 * from ogX tab order by union all select tab.[Filename],tab.[DateCollected] ,tab.[TimeCollected] ,tab.[Operator],tab.[Route],tab.[HdrLane],tab.[Direction] ,tab.[BeginningRef] ,tab.[DCF] ,tab.[Vehicle] ,tab.[SampleDistance],tab.[SensorCalDate] ,tab.[AvgSpeed],tab.[Frm] ,tab.[RRCode],tab.[T] ,tab.[RghDist] ,tab.[Rut1],tab.[Rut1Std] ,tab.[Rut2],tab.[Rut2Std],tab.[AvgRut],tab.[STD],tab.[IRI1],tab.[IRI2],tab.[AvgIRI],tab.[Lat itude],tab.[LatDir],tab.[Longitude] ,tab.[LongDir],tab.[Hei
	tab.id 
	tab.id,
	cte.id 
	tab.id 

	Alter table bridge_staging_final Add Section varchar(30); Alter table ARA_staging Alter column BMP float; Alter table ARA_staging Alter column EMP float; Update bridge_staging_final Set Section=Concat(id,'_',Format(Convert(numeric,parsename(REPLACE(SUBSTRING(File Name, CHARINDEX('_', FileName), LEN(FileName)), '_', ''),2)),'00000000')); 
	Alter table Img_3_staging Alter column ToAdjRP float; 
	Declare @DType varchar(30) Set @DType='FLEXIBLE' Select distinct a.*,Left(a.RoadwayID,2) County, CASE WHEN Right(Direction,3) like '+%' THEN 'R' ELSE 'L' END Dir,b.* into bridge_staging_final2 from bridge_staging_final b left join ( select distinct * from ARA_staging Where Surface Like 'FLEXIBLE%'--<<This is updated to RIGID% ofr RIGID data ) a on a.roadwayid=Format(Convert(numeric,parsename(REPLACE(SUBSTRING(FileName, CHARINDEX('_', FileName), LEN(FileName)), '_', ''),2)),'00000000') and (b.Frm + b.T) / 2 
	alter table Locators add Section varchar(30), County varchar(15), RoadwayID varchar(50), Direction varchar(2), Lane varchar(2), TestSection varchar(15), RunNumber varchar(15), L_Section varchar(30), L_Run varchar(15), -->>2/21 District varchar(15), SR varchar(15), US varchar(15), System varchar(15), Type varchar(15), Lanes varchar(15), R_LN varchar(15), Surface varchar(15) GO 
	Declare @pth varchar(225); select distinct @pth=fullpath from T1 where txt='LCMS3D';--This would need to be changed to fis if thats all that the user is required to provide Update Img_3_staging Set ImagePath=CONCAT(@pth,'\'); GO select distinct a.[RoadwayID] 
	-->>2/21 ,a.District ,a.SR ,a.system ,a.type ,a.lanes ,a.r_ln ,a.[County] ,a.[Dir] ,a.[id] ,a.[Filename] fn ,a.[DateCollected] dc ,a.[TimeCollected] tc ,a.[Operator] ,a.[Route] ,a.[HdrLane] ,a.[Direction] ,a.[BeginningRef] ,a.[DCF] ,a.[Vehicle] ,a.[SampleDistance] ,a.[SensorCalDate] ,a.[AvgSpeed] ,a.[Frm] ,a.[RRCode] ,a.[T] ,a.[RghDist] ,a.[Rut1] ,a.[Rut1Std] ,a.[Rut2] ,a.[Rut2Std] ,a.[AvgRut] ,a.[STD] ,a.[IRI1] ,a.[IRI2] ,a.[AvgIRI] ,a.[Latitude] lat ,a.[LatDir] ld ,a.[Longitude] long ,a.[LongDir]lod ,a.[H
	,a.us 

	,a.[Msg] mssg ,a.[Section] ,b.[Num] ,b.[ImageNum] ,b.[AdjDmi] ,b.[FromDist] ,b.[ToDist] ,b.[Latitude] ,b.[LatDir] ,b.[Longitude] ,b.[LongDir] ,b.[Q] ,b.[Sat] ,b.[HDOP] ,b.[Height] ,b.[HeightU] ,b.[GeoSep] ,b.[GeoSepU] ,b.[AgeDif] ,b.[Track] ,b.[TrackU] ,b.[GpsSpeed] ,b.[SpeedU] ,b.[UTCTime] ,b.[GPSDistance] ,b.[DeltaUTCTime] ,b.[AccumDist] ,b.[GPSDist] ,b.[DeltaAccumDist] ,b.[DeltaGPSDist] ,b.[Time] ,b.[DiffDist] ,b.[DBF] ,b.[Filename] ,b.[FromCounty] ,b.[ToCounty] ,b.[FromRoute] ,b.[ToRoute] ,b.[FromSect] 
	Format(Convert(numeric,parsename(REPLACE(SUBSTRING(a.FileName, CHARINDEX('_', a.FileName), LEN(a.FileName)), '_', ''),2)),'00000000')=Format(Convert(numeric,parsename(REPLACE(SUBSTRING(b.File Name, CHARINDEX('_', b.FileName), LEN(b.FileName)), '_', ''),2)),'00000000') and (b.FromDist + b.ToDist) / 2 >= a.Frm AND (b.FromDist + b.ToDist) / 2 < a.T; alter table bridge_img3_staging add realImg varchar(100); 
	update bridge_img3_staging set bridge_img3_staging.realImg=parsename(Right(b.txt,Len(b.txt)+1patindex('%0%',b.txt)),2) from bridge_img3_staging a inner join T1 b on Right(a.imagenum,6)=parsename(Right(b.txt,Len(b.txt)+1-patindex('%0%',b.txt)),2); delete from bridge_img3_staging where realImg is NULL or realImg=''; select distinct identity(int,1,1) as IDLocator, y.section filename, y.county, y.roadwayid ,dir ,Convert(int,LEFT(section, CHARINDEX('_', section) -1)) tis -->>2/21 ,y.district,y.system,y.type,y.la
	-
	,y.sr,
	y.us

	set identity_insert Locators on insert into Locators(IDLocator, Section,County,RoadwayID,Direction,TestSection,RunNumber -->>2/21 ,District,sr,us,System,Type,lanes,R_LN) select IDlocator, filename, County, roadwayid, dir,tis,1 -->>2/21 ,district,sr,us,system,type,lanes,r_ln from Tlocator set identity_insert Locators off Go set identity_insert DCSessions on Insert into DCsessions(IDSession, IDLocator, UniqueRun, StartDistanceStamp, EndDistanceStamp,StartChainage, EndChainage,DCSTimeStamp) select b.IDlocator,
	cast (replace(DateCollected,'/','-')+' '+ min(TimeCollected) as datetime) from bridge_img3_staging a inner join Tlocator b on a.Section=b.filename where a.AccumDist is not null group by a.section, a.DateCollected, b.IDLocator order by b.IDlocator set identity_insert DCSessions off 
	update DCSessions set Endchainage = case when StartChainage<EndChainage then round(startchainage+(EndDistanceStamp-StartDistanceStamp)*0.6213712,0) else round(startchainage-(EndDistanceStamp-StartDistanceStamp)*0.6213712,0) end; 
	set identity_insert stationdata on Insert into stationdata(IDStation, IDSession, DistanceStamp, Chainage, ElapsedTime, Speed, StationTime, PositionStatus, Interpolated, Latitude, Longitude, Elevation) select ROW_NUMBER() over (order by b.IDLocator, a.AdjDmi), b.IDlocator, AccumDist*0.3048, FromDist*1000,time,GpsSpeed*0.44704, [dbo].[fn_GetGPStimefromUTCtime](cast (replace(DateCollected,'/','-')+' '+ a.UTCTime as datetime)), 'CADifferential','GPSReceiverOutput', Latitude*PI()/180, Longitude*PI()/180, Height*
	set identity_insert VehiclePositions on insert into VehiclePositions (IDVehiclePosition, Status, Interpolated, Satellites, HDOP, IDSession, GPSTime, Latitude, Longitude, Elevation, DistanceStamp) select ROW_NUMBER() over (order by y.IDlocator, x.DateCollected+x.UTCtime), 'CADifferential', 'GPSReceiverOutput', x.Sat, x.HDOP, y.IDlocator, [dbo].[fn_GetGPStimefromUTCtime](x.DateCollected+x.UTCtime), x.latitude*PI()/180, x.longitude*PI()/180, x.height*0.3048, (x.GPSDist-z.offsetdist)*0.3048 from ( select a.Date
	a.Sat, a.HDOP, a.latitude, a.longitude, a.height, a.GPSDist, a.section, a.adjdmi from bridge_Img3_staging a inner join ( select DateCollected, min(UTCtime) as UTCtime, section, AdjDmi from bridge_Img3_staging group by DateCollected, section, AdjDmi ) b on a.section=b.section and a.UTCtime=b.UTCtime) x inner join ( select a.Section, b.IDLocator, MIN(AccumDist) as mindist, MAX(AccumDist) as maxdist, MIN(cast (replace(DateCollected,'/','-')+' '+ a.UTCTime as datetime)) as minUTC, MAX(cast (replace(DateCollecte
	a.Sat, a.HDOP, a.latitude, a.longitude, a.height, a.GPSDist, a.section, a.adjdmi from bridge_Img3_staging a inner join ( select DateCollected, min(UTCtime) as UTCtime, section, AdjDmi from bridge_Img3_staging group by DateCollected, section, AdjDmi ) b on a.section=b.section and a.UTCtime=b.UTCtime) x inner join ( select a.Section, b.IDLocator, MIN(AccumDist) as mindist, MAX(AccumDist) as maxdist, MIN(cast (replace(DateCollected,'/','-')+' '+ a.UTCTime as datetime)) as minUTC, MAX(cast (replace(DateCollecte
	section from bridge_Img3_staging ) results group by section ) z on x.section=z.section order by y.IDlocator, x.DateCollected+x.UTCtime 

	set identity_insert VehiclePositions off go select distinct b.fullpath,section filename,Convert(int,LEFT(section, CHARINDEX('_', section) -1)) tis into timg from bridge_img3_staging a left join T1 b on parsename(a.Filename,2)=left(b.txt,12) order by tis--since we dont need .n01 files anymore, the on condition tricks in getting just the right combination delete from TImgpath insert into TImgpath(imgpath,filename) select distinct fullpath,filename from timg update a set IDsession=b.IDsession from TImgpath a i
	set identity_insert ImageStreams on Insert into ImageStreams(IDImageStream, IDSession, CameraID, Name, ImagePath,ImageCompression, CCDWidth, CCDHeight) select ROW_NUMBER() over (order by IDLocator,Nam),x.* from ( select IDlocator, '9' Cam,'LCMSIntensity' Nam,Concat(b.imgPath,'\LCMSIntensity\') Imag, 3 Comp, round(1392*1.618895116,0) CCDW, round(1040*1.497734139,0) CCDH from Tlocator a inner join Timgpath b on a.filename=b.filename Union all select IDlocator, '10' Cam,'LCMSRange' Nam,Concat(b.imgPath,'\LCMSR
	select distinct a.IDsession,a.filename,b.fullpath as imgpath, b.txt as Imgname,b.txt as jpgname 
	into Tjpg from Timgpath a inner join (select REPLACE(txt, 'JPG', 'jpg') as txt,fullpath from T1 where UPPER(right(txt,3))='JPG') b on a.imgpath=left(b.fullpath, len(a.imgpath)) go create index ixT1 on Tjpg(IDSession, jpgname); go set identity_insert ImageFrames on Insert into ImageFrames(IDImageFrame, IDImageStream, ImageName, DistanceStamp) Select Row_number() over(order by y.idimagestream) idimageframe,y.idimagestream,x.Imgname,AdjDmi from ( select ROW_NUMBER() over (order by b.IDLocator, a.AdjDmi) idimag
	-
	x.name=
	y.name 
	 tis,x.name, 

	set identity_insert ImageFrames off go set identity_insert distress.SourceFrames on Insert into distress.SourceFrames(IDSourceFrame, SourceFrameType, IDSession, DistanceStamp, LeftLaneOffset, RightLaneOffset) select ROW_NUMBER() over (order by IDLocator, DS),'LCMS',IDlocator,DS,0,0 from (select distinct b.IDlocator, AccumDist*0.3048 as DS from bridge_img3_staging a inner join Tlocator b on a.section=b.filename where a.AccumDist is not null) x order by IDLocator, DS set identity_insert distress.SourceFrames 
	select a.IDLocator, a.IDlocator, 2067, 3048, 4, b.avgdeltadist from Tlocator a inner join ( select AVG(DeltaAccumDist)*0.3048 as avgdeltadist, section from bridge_img3_staging group by section) b on a.filename=b.section order by a.IDLocator set identity_insert distress.SourceFramesDimensions off 
	delete x from stationdata x left join (select distinct a.*, b.IDsession, c.uniquerun as filename, c.IDLocator from ( select min(distancestamp) minDS, max(distancestamp) maxDS, IDImagestream from imageframes group by IDImagestream) a inner join ImageStreams b on a.IDImageStream=b.IDImageStream inner join DCSessions c on b.IDSession=c.IDsession) y on x.IDsession=y.IDsession and x.Distancestamp between y.minDS-0.5 and y.maxDS+0.5 where y.IDsession is null; delete x from vehiclepositions x left join (select dis
	set identity_insert Sections on insert into sections(IDSection,IsRouted,IDLocator) select IDLocator,1,IDLocator from Tlocator set identity_insert Sections off 
	select ROW_NUMBER() over (order by y.IDlocator, y.IDsession, y.minDS) as IDsegment,y.IDLocator,y.Filename, y.minDS as begDS,y.maxDS as endDS, (select distinct FromAdjRP from bridge_img3_staging where section=y.filename and AccumDist*0.3048=y.minDS)*1000 as Begchg, (select distinct ToAdjRP from bridge_img3_staging where section=y.filename and AccumDist*0.3048=y.maxDS)*1000 as endchg, (select distinct Latitude from bridge_img3_staging where section=y.filename and 
	AccumDist*0.3048=y.minDS)*PI()/180 as BegLat, (select distinct Latitude from bridge_img3_staging where section=y.filename and AccumDist*0.3048=y.maxDS)*PI()/180 as EndLat, (select distinct Longitude from bridge_img3_staging where section=y.filename and AccumDist*0.3048=y.minDS)*PI()/180 as BegLong, (select distinct Longitude from bridge_img3_staging where section=y.filename and AccumDist*0.3048=y.maxDS)*PI()/180 as Endlong into Tsegments from ( select distinct a.*, b.IDsession, c.uniquerun as filename, c.ID
	set identity_insert Landmarks on Insert into Landmarks(IDLandmark, Chainage, IsAnchor,IsRouted,IDSection,IDNode) select ROW_NUMBER() over (order by IDsegment, DS),Chainage,1,1,IDLocator, ROW_NUMBER() over (order by IDsegment, DS) from ( select IDsegment, IDLocator, begDS as DS, Begchg as chainage, BegLat as lat, BegLong as long from Tsegments 
	union select IDsegment, IDLocator, EndDS as DS, Endchg as chainage, EndLat as lat, EndLong as long from Tsegments) a order by IDsegment, DS set identity_insert Landmarks off 
	set identity_insert routedsegments on insert into routedsegments( IDRoutedSegment, Direction, Lane, SegmentRoutingId, SegmentLength, IDBeginLandmark, IDEndLandmark, IDSection, SequenceIndex) select IDsegment,case when Begchg>endchg then '5' else '6' end,1,IDsegment,abs(Begchg-endchg), IDsegment*2-1, IDsegment*2, IDLocator,1 from Tsegments set identity_insert routedsegments off update a set endDS=b.begDS from Tsegments a inner join Tsegments b on a.IDLocator=b.IDlocator and a.IDSegment=b.IDsegment-1 where ab
	insert into matches(IDSegment, BeginChainage,EndChainage, BeginDistanceStamp, EndDistanceStamp, Mode, Status, IDSession) select IDsegment,Begchg, endchg,begds,endds,'Manual','Good',IDLocator from Tsegments order by IDsegment; 
	update m set ImageHeightInMeters=n.deltaheight from distress.SourceFramesDimensions m inner join ( select IDImagestream, avg(deltaDS) as deltaheight from ( select a.IDImagestream, (b.Distancestamp-a.Distancestamp) as deltaDS from imageframes a inner join imageframes b on a.IDImagestream=b.IDImagestream and a.IDImageframe=b.IDImageframe-1) x group by IDImagestream) n on m.IDsession=n.IDImagestream; 
	update a set StartChainage=b.begchg, EndChainage=b.endchg, StartDistanceStamp=b.begDS, EndDistanceStamp=b.endDS from dcsessions a inner join Tsegments b on a.IDLocator=b.IDlocator; 
	alter table distress.SourceFrames add odistancestamp float; alter table ImageFrames add odistancestamp float; alter table distress.SourceFramesDimensions add oImageHeightInMeters float; 
	go update distress.SourceFramesDimensions set oImageHeightInMeters=ImageHeightInMeters; update distress.SourceFrames set odistancestamp = DistanceStamp; update ImageFrames set odistancestamp = DistanceStamp; delete a from distress.SourceFrames a left join ImageFrames b on a.IDSession=b.IDImageStream and a.DistanceStamp=b.DistanceStamp where b.DistanceStamp is null; select MIN(IDImageframe) as minID,IDImagestream into t2 from ImageFrames group by IDImagestream; update a set +(select top 1 odistancestamp from
	DistanceStamp=(a.IDImageFrame-b.minID)*6.11 

	UPDATE DCSessions set StartChainage=StartChainage/1000; UPDATE DCSessions set EndChainage=EndChainage/1000; 
	set identity_insert LCMSFisFrames on Insert into LCMSFisFrames(IDLCMSFisFrames, IDSession, Filename, FrameNumber, DistanceStamp,DistanceStampOrig) select ROW_NUMBER() over (order by substring(parsename(Right(a.txt,Len(a.txt)+1patindex('%0%',a.txt)),2), patindex('%[^0]%',parsename(Right(a.txt,Len(a.txt)+1patindex('%0%',a.txt)),2)), 10)) idfr ,Dense_rank() over (order by  den ,Concat(a.fullpath,'\',txt) filename , substring(parsename(Right(a.txt,Len(a.txt)+1-patindex('%0%',a.txt)),2), patindex('%[^0]%',parsen
	-
	-
	c.id)

	inner join (select distinct substring(parsename(Right(Right(Imagename,LEN(Imagename)-charindex('_',Imagename)),LEN(Right(Imagename,LEN(Imagename)-charindex('_',Imagename)))-charindex('_',Right(Imagename,LEN(Imagename)charindex('_',Imagename)))),2), patindex('%[^0]%',parsename(Right(Right(Imagename,LEN(Imagename)-charindex('_',Imagename)),LEN(Right(Imagename,LEN(Imagename)-charindex('_',Imagename)))-charindex('_',Right(Imagename,LEN(Imagename)charindex('_',Imagename)))),2)), 10)name,distancestamp from Imagef
	-
	-
	10)=b.name 
	-
	-
	c.id,

	update Locators set L_Section=TestSection, L_Run=RunNumber 
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